BrioQuery Object Model and
Executive Information Systems

Version 6.6

(fnmo

e —— T\
SOFTWARE

4980 Great America Parkway
Santa Clara, CA 95054 USA
+1(408)496-7400

BrioQuery Object Model and Executive Information Systems — Version 6.6
Part Number Part Number Variable

© Copyright 2002 Brio Software

All rights reserved. Printed in the USA.

This product and related products and documentation are protected by copyright and
are distributed under licenses restricting their use, copying, distribution, and
decompilation. No part of this product or related documentation may be reproduced
in any form by any means without prior written permission of Brio Software and its

licensors.

Brio Software

4980 Great America Parkway
Santa Clara, CA 95054
+1(408)496-7400

support@Brio.com
sales@Brio.com

www.Brio.com

Refer to the Brio Software License Agreement in this package before installing or using
the product.

If you find any errors or problems with this documentation, please notify Brio
Software. Brio Software does not guarantee that this document is without error. The
information in this document is subject to change without notice.

Trademarks

Brio®, Brio Inform™, Brio Intelligence™, Brio Performance Applications™,

Brio Performance Builder™, Brio Performance Suite™, Brio Portal™, Brio Reports™,
Brio Software™, Personal SQR™, and SQR™ are trademarks or registered trademarks
of Brio Software in the United States and other countries. All other marks are the
trademarks or servicemarks of Brio’s suppliers or partners and are the property of such
third parties.

Contents in Brief

About This Book

PART | Overview
CHAPTER 1 Executive Information Systems

CHAPTER 2 Brio Intelligence Object Model

CHAPTER 3 Scripting EIS Controls

PART Il Brio JavaScript Tutorials
CHAPTER 4 JavaScript Syntax

CHAPTER 5 JavaScript Basics
CHAPTER 6 JavaScript Control Structures

CHAPTER 7 Drop-Down and List Boxes

PART Il Brio Scripting Reference
CHAPTER 8 General Scripting Reference

CHAPTER 9 Objects

CHAPTER 10 Methods

CHAPTER 11 Properties
CHAPTER 12 JavaScript Examples

CHAPTER 13 Object Model Map

PART IV General JavaScript Reference
CHAPTER 14 JavaScript Operators

CHAPTER 15 Statements

CHAPTER 16 Core Objects

Index

iv Contents in Brief

Contents

PART |
CHAPTER 1

About This Book

In This BOOK ...t e et e xiii
AUIENCE .« oottt e xiv
Typographic CONVENtioNS vu vttt ettt e iaaaan.. xiv
Related DOCUMENTS .« ..\ttt ittt it e ettt e XV
Help oot xvi
Overview

Executive Information Systems

EISSectionooituitiii e 1-2
Working with the EIS Sectiono, 1-4
Inserting an EIS Section i, 1-4
Renaming an EIS Section i, 1-4
Deleting an EIS Sectionc.ouuiuiiiineneeiennnnnnnn.. 1-4
Switching Between Design and Run Modes 1-5
Working with EIS Objectsot 1-6
Inserting EIS Objectsttt 1-7
Deleting EIS Objectsottt e 1-8
Setting EIS Properties iiuuiniiiii i 1-8
Alignment Propertiesuuuiiii i 1-9
Border And Background Propertiesol 1-10
Font Propertiesttt 1-12
ODbjJeCt PrOPerties « . .« vvuu vttt ettt e e e e 1-13
Picture Properties it 1-15
Tab Order Propertiesouuuutnuiiin i, 1-16

Values Propertiesoouiiininniiit i 1-17

CHAPTER 2

CHAPTER 3

Using Design Toolso ouu i e 1-18

Layout Toolso e 1-18
Design Guidesottt e 1-18

GIidS © ot 1-18

Rulerst 1-19

EIS Section Toolbar, 1-19
Navigation Toolbar, 1-20
EIS Menu Command Referenceccoiiiiiininnennnnn.. 1-21

Brio Intelligence Object Model

Understanding the Brio Intelligence Object Model 2-2
Understanding Brio Intelligence Eventst 2-4
Object Level Eventsouuuuiuinen it 2-5
Section Level Eventso i 2-6
Document Level Events, 2-7
Using the Script Editor ... oo 2-7
ODbJeCt BIOWSET . . ot v vttt ittt e e et 2-8
Scripting Pane 2-9
Description Pane and OnlineHelp 2-10
Sample JavaScript SCriptottt e 2-11
Testing Scripts Using the Execution Window 2-13
Checking Errors Using the Console Window 2-14
Finding/Replacing Scriptcooiiiii i 2-16

Scripting EIS Controls

Scripting Control Objects ...ttt 3-2
Creatinga New EISSectiono it 3-2
Changing a Control Object’s Titlet 3-3

Associating Scripts with Command Buttons 3-5

Associating Scripts with Radio Buttons, 3-7

Associating Scripts with Check Boxescooiiun... 3-11

Associating Scripts with List Boxes, 3-15

-vi

Contents

PART Il
CHAPTER 4

CHAPTER 5

Exercise: Associating a Script witha List Box 3-15

Brio JavaScript Tutorials

JavaScript Syntax
Basic JavaScript Syntax i 4-2
JavaScript Code Structurevuit ittt 4-2
JavaScript Operatorsttt i 4-4
Using Assignment versus Comparison Operators 4-5
Exercise: Adding Comparison and Assignment Buttons 4-6
Exercise: Using the Comparison Operator 4-6
Exercise: Using the Assignment Operator 4-7
Including Operators in Stringsc.euoeueeneeeeenennnnnn.. 4-8
Exercise: Using Operators as Characters 4-8
Concatenating versus Adding i it 4-9
Exercise: Concatenating Values 4-11
Exercise: Summing Values 4-12
Variablesot e 4-13
Declaring Local Variables 4-14
Declaring Global Variables oL, 4-14
Dynamically Declaring Variables, 4-15
Assigning Values i 4-15
Reserved WOrdsottt e e 4-17

JavaScript Basics

Using Drop-Down Boxesot 5-2
Accessing a Drop-Down Selectionccoiiiiiiina.... 5-3
Using a Variable for the Selection 5-7

Exercise: Declaringa Variable 5-8

ModifyIng LImits . .« oo vvntt ittt et e e e e 5-9
Modifying a Results Limitouuiiii ..., 5-9
Using a Variable foran Object oL, 5-13
Modifying a Query Limitouuinen ... 5-14

Finishing the Documento, 5-15
Settinga Chart Fact i i 5-15

Contents -vii

Hiding Toolbars 5-17

CHAPTER 6 JavaScript Control Structures

Understanding Control Structure Syntaxc..ooiiveeeeeenn. 6-2
About if...else Statementsouvr ettt e 6-4

Exercise: Using an if...else Statement to Change Chart Types 6-5
About switch Statements i 6-8

Exercise: Using a switch Statement to Change Chart Types 6-9
Controlling Chart Facts with if..else 6-12
Controlling Chart Facts with switch 6-13

CHAPTER 7 Drop-Down and List Boxes

USING fOr LOOPS « ¢ v v ottt e ettt e e e e e e 7-2
Filling Boxes with Multiple Values, 7-3
Filling a List Box with Available Values 7-4
Exercise: Using a for Loop to Fill a List Box with Limit Values . 7-5

Filling a Drop-Down Box with Available Values 7-7
Accessing Selected Values i, 7-8
Drop-Down Item Argumentccoviiiiiinninnnnneennnn. 7-8
List Box Item Argumentoeeeeneeeennneennnnennn. 7-8
Exercise: Using Loops to Access List Box Selections 7-10

Creating Results Limitsouuuuiiineniiiiiiiinenenen.. 7-12
Exercise: Using JavaScript to Clear and Assign New Results Limits in Drop-
DownBoxeso 7-14
What's NeXt . .ottt e e e e e e e e 7-18

PART lll Brio Scripting Reference
CHAPTER 8 General Scripting Reference

Scripting Applications in Brio Intelligence 8-2
Understanding FUnctionsoeeeiiiiiiiininnneneeeennn 8-3
Defining FUNCtionsooiiiiiiiiinneneneeennnnnn. 8-3
Calling FUnctionsuuuun ettt 8-4
Function Scope ov it 8-5
Defining Functions in Different Scopes 8-5

Using JavaScript Statementsoiiiiiiiiiinniinnen.. 8-7
Conditional Statementsot 8-7
if..else Statementsvutttt e 8-8

Inline if Statementsttt 8-9

-vili Contents

switch Statements . ..ot 8-10

Loop Statementscouiiuiiiniiiiinnieinneenneenn. 8-12
FOr Statements «o ittt e 8-12
do..while Statements il 8-13
while Statements 8-13
label Statementsoo ittt 8-14
continue STAtEMENtsoviin it 8-15
break Statements i i i 8-16
Manipulating Objects with JavaScript ..., 8-17
for..in Statementt e 8-17
with Statemento it e 8-18
Using JavaScript to Open Web and OnDemand Server Documents 8-19
Shell) Method . ..o oot e e e 8-19
OpenURL() Method . ..ot 8-20
Bypassing the Userid and Passwordoo.... 8-21
Including Limit Values in the URL Submitted to the ODS 8-22
Passing Parameters to OnDemand Server Documents Using Browser
Cookies or URL Parametersovuuruunnnneneeenennnnn.. 8-22
Accessing CoOKIeSovviiiiiiii i 8-23
Accessing URL Parameterscoouviinnneenn... 8-24
Microsoft Automation Interfaces and the Object Model 8-25
OLE Automation Controller within JavaScript 8-26
Exporting Scripts to Text Fileso, 8-27
Troubleshooting Scriptsooviiiiiiiii i, 8-28
Space-Saving Variables i, 8-28
Case-Sensitive Code ..ottt 8-29
Assignment Operators Versus Comparison Operators 8-30
Conditional Testsoiiiiiiii e 8-30
Syntax Referenceoiiiiiiiiiii i, 8-32
Recalculating Results 8-33
Designing Your SCriptottt 8-33
Code ENtry ..ot 8-35
BypassErrorso e 8-35
Getting Help with a Problem Script 8-36

Contents -ix

CHAPTER 9

CHAPTER 10

CHAPTER 11

CHAPTER 12

CHAPTER 13

Objects
Methods
Properties

JavaScript Examples

Displaying and Entering Valuesina Text Box 12-2
Retrieving and Setting the Properties of an Object 12-3
Enabling and Disabling Controls, 12-4
Controlling the Visibility of Graphics and Controls 12-5
Creating an OCE (connectionfile) 12-6
Displaying a Connection Login Box, 12-6
Downloading DataModels ...t 12-7
Displaying a Table Catalog i, 12-7
Adding Topics to a Data Model Sectioncooien... 12-7
Setting up Topic Object Variablest 12-8
AddIng JOINS ..o v et e 12-8
Adding Items to the Request Line, 12-9
Adding a Computed Column to a Query Request Line 12-9
Creating and Setting Variable Limits 12-10
Using the ODS User Name asaLimitoooiieeioa... 12-10
Using a Brio Intelligence 6.6 Limit Dialog Box and

Storing Selected Value in Text Boxoviiininiiiiiinn... 12-10
Turning off the Page Headers for the First Page in the Report......... 12-11
Including Limit Values in the URL Submitted to the ODS 12-11
Turning off the Prompt To Save DialogBox 12-11
Processing Queries Using “Don’t Prompt For Database Logon” 12-12
Processing Queries Using “Prompt For Database Logon” 12-13

Object Model Map

Object Model Hierarchy ..., 13-2
Application Level 13-3
Active Document Level i 13-4
QUETY SECHION . .ottt ettt e e 13-5
EIS Sectionttt e 13-6

=X

Contents

PART IV
CHAPTER 14

CHAPTER 15

CHAPTER 16

Chart SECtion . .o vttt e e e e e 13-7
Results, Report, and Pivot Sectionsooiiiiiiiinnn... 13-8
Table and OLAPQuery Sectionscuuuutineneeeeennnnnnnn... 13-9

General JavaScript Reference

JavaScript Operators

Arithmetic Operatorsouuuuuiinnen ettt 14-2
Assignment OPeratorsuueeuunneeuunneeeenneeennnnens 14-3
Bitwise Operatorsceuuititnin i 14-5

Bitwise Logical Operatorsouiuuiiinnneninnnnn.. 14-6

Bitwise Shift Operators, 14-7
Comparison OPeratorso.uttin ettt et enneeneennnn 14-8
Logical Operatorsuuuuenee ettt e, 14-9

Short-Circuit Evaluation, 14-10
String OPeratorsoueutin et nin it 14-10
Special Operatorsottt 14-11
Statements

Core Objects

Index

Contents -xi

-xii Contents

About This Book

In This Book

Welcome to Brio Intelligence Object Model and Executive Information Systems.
This book focuses on providing an understanding of Executive Information
System (EIS) sections, and the JavaScript syntax and object framework,
specifically as they apply to interacting with Brio Intelligence document
elements.

The book describes how to create custom applications in the EIS section, how
to use JavaScript to script and control Brio Intelligence documents, how
JavaScript programs are interpreted by the Brio engine, how JavaScript
programs are used to provide dynamic control of a Brio Intelligence
document, how documents enhanced with JavaScript are able to respond to
user interaction, and how JavaScript is used within Brio Intelligence to
respond to user events and the document lifecycle.

Brio Intelligence Object Model and Executive Information Systems is one of four
books that explain how to use Brio Intelligence (see “Related Documents” on
page -xv). This book contains four main parts:

= PartI, “Overview,” provides an overview of the EIS section and introduces
the Brio Intelligence object model and JavaScript, an object-oriented
programming language.

= PartII, “Brio JavaScript Tutorials,” provides hands-on experience with
creating JavaScript scripts. The exercises focus on the relationship between
the Executive Information System, the Brio Intelligence object model, and
the built-in Script Editor for creating customized, interactive front-ends to
enterprise data.

Audience

Part III, “Brio Scripting Reference,” describes the structure of applications
scripted in Brio Intelligence and provides general reference and
troubleshooting information. It is also a complete reference to Brio
Intelligence’s objects, methods, and properties, and to the Brio Intelligence
object model.

Part IV, “General JavaScript Reference,” provides information on
JavaScript operators, statements, and core objects.

This book is written for developers who create documents using Brio

Intelligence Explorer or Designer and who need to create front-ends using the

EIS functionality provided by the Brio Intelligence application.

The tutorials are written for the application designer who has Brio Intelligence

experience, but little or no JavaScript experience. The reference sections are

written for all levels of Brio Intelligence users who need detailed information

on Brio Intelligence elements and JavaScript.

Typographic Conventions

This book uses the following typographic conventions:

Options, buttons, or tabs that you need to choose and text that you need to
type are indicated in bold.

Select Typical Install. Type 1234.
Key names are shown in square brackets.
Press [Down Arrow]

Two key names joined with a plus sign (+) are consecutive keystrokes. Press
and hold down the first key while pressing the second key.

Press [Ctrl+Z]
Options in a menu command path are separated with an arrow. The

following example indicates that you are to open the File menu and choose
the Open menu item.

Choose File - Open.

Xiv About This Book

D Note When an instruction includes a menu command, the toolbar icon (if one exists) for the
command appears in the left margin. The keyboard shortcut (if one exists) for the command is
listed in brackets at the end of the line.

Variables you replace with specific information are shown in italics.
sp_adduser login_id

Files, directories, and paths are shown in a monospace font.
Sanpl el. bqy islocated in the Bri oQuer y/ Sanpl es di rect ory.

A Note, Tip, or Caution is a brief side-note that deserves special attention or
does not fit within the normal flow of text. These types of information are
set off in the text by an icon in the margin.

[] Note Thisis an example note.

[] Tip This is an example tip.

Caution! This is an example caution.

Related Documents

Along with the Brio Intelligence Object Model and Executive Information
Systems book, there are three additional Brio Intelligence books:

Getting Started with Brio Intelligence 6.6 provides an overview of Brio
Intelligence and explains the Brio Intelligence user interface and basic
commands. It includes how to retrieve data using Brio Intelligence, how to
query new data and change existing queries, and how to query a single
database as well as multiple databases. It also covers how to work with
query results.

Data Analysis and Reporting with Brio Intelligence 6.6 describes how to use
the Brio Intelligence application’s powerful reporting features—pivots,
charts, and tables—and the Report Designer to create spectacular reports.

About This Book xv

Help

= Brio Intelligence 6.6 Administration Guide explains data modeling, including
how to modify existing data models, and create new data models. It also
discusses metadata definitions, database connectivity, and document
scheduling.

Brio Intelligence comes with a number of user manuals as well as an extensive
online help system. If you need help with Brio Intelligence and cannot find the
answers you need in the documentation, and you have a current Brio Technical
Support agreement, call Brio Customer Support at +1(800)337-6324 (within
North America) or +1(619)610-5769. You may also send an email message to
support@brio.com.

Please be prepared to provide your valid customer number and company
name. You also need to know the version of Brio Intelligence you are using.

xvi

About This Book

PART I

Overview

Executive Information Systems

An Executive Information System (EIS) is a customizable document front-end
that makes it easy for developers to build and deploy analytic applications and
for end users to access information.

This chapter provides an overview of the EIS section and explains how to
create and work with EIS sections, and how to use EIS objects and properties.
It contains:

= EIS Section

» Working with the EIS Section
» Working with EIS Objects

= Setting EIS Properties

» Using Design Tools

s EIS Menu Command Reference

11

EIS Section

The EIS section provides a streamlined, push-button approach to querying a
database. Through the EIS section, application designers can quickly combine
report sections and enhanced EIS controls to build and deploy analytic
applications that deliver prepackaged business content, including:

= Simple forms to collect multiple input parameters for a report

= Executive dashboard applications, complete with visual drill-down from
high-level metrics to underlying data content

= Browser-style navigation pages to assist users in maneuvering around and
between documents

Brio Intelligence allows developers to customize the EIS section to create an
interface that focuses on precisely those views of the data that are relevant to
the end user. When end users open a Brio Intelligence document, the
customized EIS section appears as the document front-end. The user can
navigate the EIS section with a click of a button, enter parameters, and run
reports without any in-depth knowledge of the data structure or the Brio
Intelligence application. Each button click, item selection, or navigation
sequence invokes a script which the Brio Intelligence application processes in
the background.

1-2 Executive Information Systems

Section
Pane

Sections

Graphic

Ruler Units of Measurement Embedded Picture Ruler Design/Run Resizing Layers
@ File Edit Mew |nsert Format EIS {Tools ‘window HElp _|ﬁ||
| O = | |7 @ |0~ 7l = | BFPcess <
JIAriaI

Sections

B Repart

E'i Guerny I

- Results

Il

- Pivat

(3 Quarter Bar Chart
@ State Bar Chart
[Table

Items

Control

=

Eﬂ Graphics

m Contrals

~[Command Button
& Radio Button

Items

Catalog
Pane

¥l Check Box
=8 List Bow
EE Dirop Down
~[akl Tewt Box

13

Embedded

prospown [

Embedded Command Button

Units by State by Quarter

Graphic

Embedded
ext

Content

Pane

Embedded
Chart

[100%

Embedded Drop-down List

Section

You customize an EIS section by dragging objects from the Catalog pane to the

Content pane, and then attaching scripts to them that are executed in response

to an event or action.

EIS Section 1-3

Working with the EIS Section

3

Like other Brio Intelligence report sections, the EIS section is a section you add
to a Brio Intelligence document. The EIS section always appears at the top of
the Section pane.

Inserting an EIS Section

When you add a new EIS section, it is listed after any existing EIS sections.
To insert a new EIS section:

Choose Insert — New EIS.

Renaming an EIS Section

The first EIS section inserted in a document is given the default section name
of EIS. Subsequent EIS sections are numbered sequentially, for example, EIS2,
EIS3, FIS4, and so on.

To rename an EIS section:
In the Section pane, select the EIS section you want to rename.

Choose Edit — Rename Section.

The Section Label dialog box appears.

Section Label
Labe
[EIs Cancel |

Enter a new name in the Label field and click OK.

Deleting an EIS Section

To delete an EIS Section:
In the Section pane, select the EIS section you want to delete.

Choose Edit — Delete Section.

The Delete Section dialog box appears.

Click Delete.

14

Executive Information Systems

Switching Between Design and Run Modes

The EIS section has two modes:

= Design mode — Used when designing the EIS section. In Design mode, the
objects available for inclusion in the EIS section are displayed in the Catalog
pane.

= Run mode — Used when deploying the EIS section to end users. This is the
default mode for all EIS sections. The Catalog pane is empty in Run mode.

Al EIS sections are always in the same mode. Brio Intelligence documents
open by default with EIS sections in Run mode. Changing one EIS section to
Design mode changes all EIS sections to Design mode.

To toggle between Design mode and Run mode:

Choose EIS — Design Mode. [Ctrl+D]

Poperies]|

Ficture] Alignment] Tab-Order]

TBorder———— | [Background

' Default ' Default

' Mane ' Mane

& Custam & Custam
Calar: Calar: lﬁ
fidth: lﬁ Pattern: lm
Style: m

= Shaday

Preview

QK I Cancel Help

Working with the EIS Section 1-5

Working with EIS Objects

Brio Intelligence provides a variety of embeddable objects to help you
construct a custom EIS section, including:

[] Note

Sections — Results, Chart, Pivot, Table, and OLAP sections from the active
document.

When you embed an existing section in an EIS section, the section is
automatically resized to fit. You can resize the embedded section in the EIS
Content pane if you wish. In addition, data in embedded sections are
automatically updated to reflect any changes made in the original section.

In Run mode, active embedded tables and results have the Sort Ascending and Sort
Descending options available on the shortcut menu. You can also resize Table and Results
columns.

Graphics — Lines, rectangles, ovals, and pictures for which you can set
colors and border properties. Table 1-1 lists the graphics objects available
in the Catalog pane of the EIS section.

Controls — Widgets to include in the application interface for which you
can set fonts and default values. Controls provide users a way to interact
with the application and can be populated with values at design time or
dynamically populated using JavaScript. Table 1-2 lists the EIS control
objects and their suggested use.

Table 1-1 EIS Graphic Objects

Graphic Object Description

Line Creates a line that you can rotate.
Hz Line Creates a horizontal line.

Vit Line Creates a vertical line.

Rectangle Creates a rectangle.

Round Rectangle Creates a rectangle with rounded corners.

1-6 Executive Information Systems

Table 1-1 EIS Graphic Objects (Continued)

Graphic Object Description

Oval Creates an oval.
Text Label Creates a text label that you can use as a caption.
Picture Allows you to insert bitmaps (. bnp extension).

Table 1-2 EIS Control Objects

Control Object Suggested Use

Command Button To initiate or activate a process.

Radio Button To select one from a group of choices.

Check Box To toggle an option on/off or true/false. A check box either contains a

check mark or is empty.

List Box To list multiple values from which users can make one or more selec-
tions.

Drop Down To list multiple values from which users can make only one selection.

Text Box To gather and display user input.

Inserting EIS Objects

To embed an object in an EIS section:
Choose EIS — Design Mode. [CtrI+D]
In the Catalog pane, expand the folder that contains the object you want to insert.

Click the object you want to insert and drag it to the Content pane.

You can also use the following procedure to insert control and graphic objects:
Choose EIS — Design Mode. [CtrI+D]
Go to the EIS Menu.

Choose EIS - Insert Graphic — Option or Insert Control - Option.

Select a graphic or control object from the menu.

Click the Content pane to insert the control or graphic.

Working with EIS Objects ~ 1-7

=

Deleting EIS Objects

To delete embedded sections, controls, and graphics:
Choose EIS — Design Mode. [CtrI+D]

In the Content pane, select the object you want to delete.

To select multiple objects, press and hold [Ctrl] while selecting objects. Notice
the selection handles that appear.

3 Choose EIS - Remove Selected Items. [CtrI+D]

Setting EIS Properties

Use the Properties dialog box to set properties for an entire EIS section or for
specific objects within an EIS section. Many EIS objects have unique
properties. For instance, a radio button has a Radio Group property and a list
box has a Multiple Selection property. Tab-order properties are section-wide
but are accessible in the Properties dialog boxes for both the overall EIS section
as well as for the individual objects.

To set properties in an EIS section:

= For the EIS section’s properties, make sure that no objects are selected in
the EIS Content pane.

= For specific object properties, select the object in the EIS Content pane.

Choose EIS - Properties

The Properties dialog box appears. The active page depends on the selection
made prior to invoking the dialog box.

Click through the tabs to set properties for the selected object.

Click OK to apply the selected settings and close the Properties dialog box.
Available properties include:

= Alignment — Horizontal and vertical alignment, and text wrapping and
rotation.

= Border And Background— Border color, width, style, and shadow, and
background color and pattern.

1-8

Executive Information Systems

= Font— Font family, style, size, effects (underline, overline, double overline),
and color.

= Object — Name, title, visible, enable (control objects only), locked, scroll
bars always shown, and auto-size. For embedded sections, view-only,
active, or hyperlink.

= Picture — File name, size, and effects for EIS background and graphic object
pictures.

= Tab Order — Object path that end users follow when they press the [Tab] in
Run mode.

= Values — User-defined values that populate list box, drop down, or text box
controls.

Detailed information on each of these properties is presented on page 1-9
through page 1-17.

Alignment Properties

Use the Alignment page of the Properties dialog box to specify how objects are
aligned in the EIS Content pane.

Properties - TextLabel I

Object] Fant] Border and Background] Tab-Order]

i Horizontal Alignment— | [~ Text Control
(+ Left ™ wirap test

' Center
' Right

Wertical Alignment
' Top

= Middle
" Battom

Presview

Rotaton—————— |
% Horizontal TextLabel

0 Vertical
' Yertical Rotated Up
1 Vertical Rotated Down

QK I Cancel Help

Setting EIS Properties 1-9

Table 1-3 describes the properties available on the Alignment page and
specifies which properties apply to which objects.

Table 1-3 Alignment Properties

Property Description Applies to Object
Horizontal Alignment Sets the horizontal text alignment to either Left, Center, or Right. Text labels, pictures
Vertical Alignment Sets the vertical text alignment to either Top, Middle, or Bottom. Text labels, pictures

Rotation

Text Wrap

Preview

Sets the rotation alignment to either Horizontal, Vertical, Vertical Rotated Up, or Text labels, pictures
Vertical Rotated Down.

Sets the text wrap property. Text labels, pictures

Shows the results of the property settings on the selected object. Text labels, pictures

Border And Background Properties

Use the Border And Background page of the Properties dialog box to set colors
and styles for graphics object borders and backgrounds.

Popertios v |
Dbiject Tab-Order |
TBorder———— | [Background
' Default ' Default
' Mane ' Mane
& Custam & Custam
Calar: lﬁ Calar:
fidth: m Pattern: lm
Style: m
™ Shadow
Preview

QK I Cancel Help

1-10 Executive Information Systems

Table 1-4 describes the properties available on the Background And Borders
page and specifies which properties apply to which objects.

Table 1-4 Background And Border Properties

Property Description Applies to Object

Border Color Sets the color of the border. All graphics objects except pictures

Border Width Sets the width of the border from 1pt to 6pt. All graphics objects except pictures

Border Style Sets style of the border to solid, dashed, or dotted. All graphics objects except pictures

Border Shadow Sets the shadow of a graphic object. All graphics objects except lines and
pictures

Background Color

Background Pattern

Preview

Sets fill color of the graphic object. Default (white), None (trans- All graphics objects except lines and
parent), Custom (combination of a color mixed with pattern) pictures

Sets the background color by blending the Background color and All graphics objects except lines and
white to produce a percentage fill of the pattern. Solid sets 100% pictures

of the background color, 75% blends in 25% white, 50% blends

in 50% white, and 25% blends in 75% white.

Shows the results of the property settings on the selected object.All graphics objects except pictures

Setting EIS Properties 1-11

Font Properties

Use the Font page of the Properties dialog box to

Properties - TextLabel I

Object Alignment] Border and Background] Tab-Order]
Font: Style: Size:

IAriaI IHeguIar

Avial Black Italic

Avial Marrow _I Bald

AvantGarde Buald Italic

Barmeno Bold

Barmena ExtraBold s

Barmena Regular Falar

Batang

Blackoak = [—
rEffects—— | Preview

™ Underline

I Overline

5 TextLabel
I Double Overline

QK I Cancel Help

Table 1-5 describes the properties available on the Font page and specifies
which properties apply to which objects.

Table 1-5 Font Properties

Property Description Applies to Object

Font Sets the type of font. Text label graphics objects, all control objects

Font Style Sets the style to one of the following: Regular, ltalic, Bold, or Text label graphics objects, all control objects
Bold ltalic.

Font Size Sets the font size. Text label graphics objects, all control objects

Font Color Sets the font color. Text label graphics objects, all control objects

Font Effects Sets the font effect to one of the following: Underline, Overline, Text label graphics objects, all control objects
or Double Overline.

1-12 Executive Information Systems

Object Properties

Use the Object page of the Properties dialog box to set object-specific
properties. While many of the properties are the same for all objects, some
object properties apply only to certain objects. For example, only the radio
button control object has a Group Name property, and only the list box
control object has an Allow Multiple Selections property. There are also object
properties that apply only to sections.

Popetios pvan |
Object | TabOider |

~ Object

M ame: IPivot‘I

Tite: |

I~ Settings
¥ isible Make embedded section:
¥ | Enatil= £ Vigw-only
™ Locked O Active
r Serallbars Always Shown ' Huperlink
¥ Auto-Size

=001 Cancel Help

Table 1-6 describes the properties available on the Object page and specifies
which properties apply to which objects.

Table 1-6 Object Properties

Property Description Applies to Object

Name Sets the object’s name. The object model uses this name to reference All objects (embedded sections,

this object. graphics, and controls)

Title Specifies an optional name title for the object. Command button, radio button,
check box, and text box controls

Visible Allows the object to be visible during Run mode. All sections

Enabled Turns objects on or off. All controls

Setting EIS Properties 1-13

Table 1-6 Object Properties
Property Description Applies to Object
Locked Locks an object’s position in the Content pane. All objects (embedded sections,
graphics, and controls)
Scrollbars Always Turns on scroll bars in Run mode if the size of the original object Pivot, Results, and Table sections
Shown exceeds the allotted region in the EIS Content pane. This option is not
available if Auto-Size is selected.
Auto-Size Sizes the object to fit in the allotted region in the EIS Content pane. Pivot and Table sections
If not selected, the embedded object retains the size of the original sec-
tion. Vertical and horizontal scroll bars are enabled so that users can
easily navigate through the data.
Group Name Enables you to provide a distinct name for a group of radio buttons. The Radio button controls
default Radio Group name is RadioGroup.
Allow Multiple Allows users to select multiple values in a list box. By default, a single List box controls
Selections value is returned from a list box selection.
Password Displays asterisks (*) in place of characters typed in a text box. Text box controls
Scrollable Turns on scroll bars for viewing data not visible in the immediate display Text box controls
area.
View Only Provides read-only interaction with the embedded section, which All embedded sections
appears as a thumbnail in the EIS section. View Only is the default
setting for all embedded sections.
Active Provides limited analytical interaction with the embedded section, All embedded sections
which appears clipped in the EIS section. Only a subset of the analytical
functions available in the original sections are available for use in
embedded sections.
Hyperlink Allows users to easily navigate to the original section from the embed- All embedded sections

ded section, by clicking the thumbnail in the EIS section.

1-14 Executive Information Systems

Picture Properties

Use the Picture page to specify properties for picture graphics objects and EIS
section background pictures.

Popertios Piowe |
Object] Alignment] Ficture] Tab-Order]
rBorder—————— | [Background]
' Default ' Default
' Mane ' Mane
& Custam & Custam
Calar: Calar:
fidth: m Pattern: lm
Style: m
= Shaday
Preview

QK I Cancel Help

Table 1-7 describes the properties available on the Picture page.

Table 1-7 Picture Properties

Property Description

Picture Sets the bitmap (.bmp) file that is used for the picture graphic object.
Picture Scale Sets the height and width for the picture as a percentage of the original size.

Picture Effect Sets the picture effect to one of the following: None, Stretch, Clip or Title.

Setting EIS Properties 1-15

Tab Order Properties

Use the Tab-Order page to define the tab order (trail) of EIS objects, or to add
or remove selected EIS objects from the tab order. The default tab order is the
order in which the objects were added to the EIS content pane.

D Note The EIS background is not considered an object in the tab-order definition.

Poperies |

Border and Background] Ficture] Alignment]

* Rectd -
* Rect2
Up | * Rectd
* DropDownd
* TentLabeld
MI * CommandButionl
* CommandButtonz

* CommandButton3

* TextLabel

* TeutLabel2

* TeutLabeld

* Textl abels =

Double-click on an item to add/remave it from the tab order.
[ltemz added to the tab order are indicated with an * nest to the item.]|

QK I Cancel Help

» Double-click an object name in the list to add or remove it from the tab
order. Objects preceded by an asterisk (*) are included in the tab order.

= Click Up or Down to change the tab order sequence of one or more selected
objects.

Tab order is defined from top to bottom. Initial focus is placed on the
asterisked object listed first in the tab-order definition. Each toggle between
Run and Design modes re-initializes the tab order back to the first asterisked
object in the list.

The tab order also includes disabled and invisible EIS objects and overrides
any Enable and Visible properties settings. You need to determine whether you
want to include disabled or invisible objects in your tab-order definition.

1-16

Executive Information Systems

When an object is deleted from an EIS section, its name is removed from the
tab-order definition. However, the order of all other objects is preserved. For
instance, if the tab order is command button — radio button — check

box — drop down, and the radio button is deleted, the tab order should still be

command button - check box — drop down.

Values Properties

Use the Values page of the Properties dialog box to define one or more values

for the List Box and Drop Down control objects.

Object] Walues I Fant] Tab-Order]

Properties - ListBox1 I

List W alue:

| A |
January ;I Femove |
February

March

AEm Move Up |
June Move Down |
July

August

September

October

Movember

December LI

QK I Cancel Help

» To define values for a list box or drop down control object, type a value in
the List Value field and click Add.

D Note To add multiple values for list boxes or drop downs, make sure the Allow Multiple Selection
check box on the Object page is selected.

s To remove values from the list, select one or more values and click Remove.

= To change the order of the listed values, select a value and click Move Up or
Move Down.

Setting EIS Properties 1-17

Using Design Tools

Brio Intelligence gives you complete control of your EIS section setup and
provides a number of layout and navigation tools that assist you in designing
effective, high-quality custom applications.

Layout Tools

A rich set of layout aids is available to help you easily create professional
looking EIS sections. All the layout tools are available from the EIS Menu or
the EIS Section Toolbar.

Design Guides

Design guides are horizontal and vertical lines that you place in your report to
help you line up objects. Design guides are similar to grids in that objects
automatically snap to align to the design guides.

If rulers are visible, click the ruler and drag one or more design guides from
both the horizontal and vertical rulers.

To toggle the display of design guides:

Choose EIS — Design Guides.

A check mark appears next to Design Guides to indicate they are visible.
Choose the option again to clear the check mark and remove the design guides.

Grids

Brio Intelligence provides a layout grid that automatically snaps all objects to
the closest grid spot.

To toggle the display of the grid:

Choose EIS - Grid.

A check mark appears next to Grid to indicate the grid is visible. Choose this
option again to clear the check mark and remove the grid from view.

1-18

Executive Information Systems

Rulers

Horizontal and vertical rulers help you line up items based on precise units of
measure. Available units of measurement include inches, centimeters, and
pixels, which you select by clicking the measure indicator [ia] at the intersection
of the top and left rulers.

To toggle the display of the ruler:

Choose EIS - Ruler.

A check mark appears next to Ruler to indicate the ruler is visible. Choose this
option again to clear the check mark and remove the ruler from view.

EIS Section Toolbar

The EIS Section toolbar provides icons that enable you to quickly maneuver
multiple EIS objects.

Design/Run Mode
Align
Make Same Size
Layer

= Design/Run Mode — Toggles between Design and Run modes.

= Align — Aligns several objects at the same time. Objects are aligned to the
first object you select. Select the first object, then hold down [Ctrl] and
select the remaining objects. Click the arrow on the Align icon and choose
an alignment option: left, center, right, top, middle, or bottom.

= Make Same Size — Resizes the selected objects to the same size. Objects are
resized to match the first object you select. Select the first object, then hold
down [Ctrl] and select the remaining objects. Click the arrow on the Make
Same Size icon and choose a resizing option: width, height, or both.

= Layer — Stacks a single object in relative position to other objects. Layer
include four rearrangement options: Bring To Front, Send To Back, Bring
Forward, and Send Backward. Use this feature to layer multiple objects so
that only the sections of the objects you want visible are shown.

Using Design Tools ~ 1-19

Example 1:

Example 2:

Example 3:

Navigation Toolbar

Use the Navigation toolbar to return to an EIS section from another section
when the Section catalog, Section title bar, toolbars, and menus have been
turned off.

The Navigation toolbar is hidden by default, but you can use scripts to enable
it. When activated, it is available in all sections and includes the Back, Forward,
and EIS Home buttons.

Use the following scripts to work with the Navigation toolbar. The first script
turns on the Navigation toolbar. The second script turns on all toolbars with
the exception of the Navigation toolbar. The third script turns off all toolbars.

/1Syntax for turning on Navigation tool bar
Tool bars[" Navi gati on"]. Vi si bl e=tr ue;

/1 Syntax for turning on all tool bars except the Navigation tool bar
j =Tool bars. Count

for (i=1; i<sj; i++) {
if (Toolbars[i].Nane != "Navigation") {Tool bars[i].Visible=true}
}

/1Syntax for turning off all tool bars
j =Tool bars. Count

for (i=1; i<sj; i++) {
Tool bars[i]. Visibl e=fal se
}

1-20

Executive Information Systems

EIS Menu Command Reference

Table 1-14 provides a quick reference to the commands available on the EIS
menu and lists any related shortcuts.

5 B

Table 1-8

EIS Menu Commands

Command

Keyboard Shortcut

Description

Shortcut Menu

Design Guides
Grid
Rulers

Insert Graphic
Insert Control

Remove Selected
Items

Scripts
Properties

Home Dialog

Design Mode

Toggles the design guides on and off.
Toggles the grid on and off.

Toggles the rulers on and off.
Allows you to insert a graphic element.
Allows you to insert a control button or box.

Deletes the selected item.

Displays the Script Editor. [F8]
Displays the property menu for the selected item.

Allows you to designate a particular EIS section as
the home EIS section. The default is the EIS section
first created.

Toggles between the design and run mode. [Ctrl+D]

EIS Menu Command Reference

1-21

Summary

This chapter provided an overview of the EIS section, and familiarized you with the
concepts, procedures, and tools involved with custom application design. As you
continue, remember these points:

= The EIS section is what you use to develop custom applications referred to as
Executive Information Systems. It acts as the front-end to a Brio Intelligence
document and simplifies your users’ interactions with databases and other
document sections.

= You can embed a variety of objects to help you construct a custom EIS, including
Results, Table, Chart, Pivot and OLAP sections, graphics, bitmap pictures, and
graphical interface controls.

= Customized EIS sections are event driven and execute scripts in response to an
action, such as clicking a button or opening a document.

= You can control the order in which users navigate a customized EIS section by
specifying a tab-order definition in the Properties dialog box.

1-22 Executive Information Systems

Brio Intelligence Object Model

The Brio Intelligence object model is the cornerstone for scripting a
customized interface, or EIS, to enterprise data with JavaScript. The object
model and the built-in Script Editor provide quick and easy access to all levels
of the Brio interface.

This chapter describes the Brio Intelligence object model and the scripting
tools available to the application designer, and explains how to automate EIS

sections using Brio Intelligence events. It contains:

Understanding the Brio Intelligence Object Model
Understanding Brio Intelligence Events

Using the Script Editor

Sample JavaScript Script

Testing Scripts Using the Execution Window

Checking Errors Using the Console Window

2-1

Understanding the Brio Intelligence Object Model

The Brio Intelligence object model is a hierarchical representation of Brio
Intelligence objects and the actions and attributes used to manipulate those
objects. It consists of a collection of objects, each of which has its associated
methods (actions) and properties (attributes).

———l Application

--_| Methods

--J Properties

- Documents

Objects =@ ActveDocument

--_| Methods

--_| Froperties

l:—_lag.’ﬂ‘;{lr Sections
--_| Methods
--_| Properties
D @ SalesQuery
-- d SalesResults
@ IS
-- @ BooksTable
-- @ BooksChart
(- @ AlChart

ﬂ LaztSaved

FH@ ActiveSection

-1 Toolbars

-1 RecentFile:

#- @ Conzale

- @ Session

-2 Constants

-4 EIS Objects

Objects in Brio Intelligence can include the application, documents, sections,
limits, connections, graphics, controls, catalog items, topics, request lines,
results columns, chart labels, pivot side labels, facts, menu bars, status bars,
toolbars, and so on.

2-2 Brio Intelligence Object Model

Brio Intelligence methods include create, activate, open, close, save, add, copy,
remove, process, export, recalculate, and so on. For example, a data results
object (the results of a query to a database or a table containing results data)
has a recalculate method. This method (or action) refreshes (or recalculates)
data based on updated parameters in the document.

Properties of Brio Intelligence objects include an object name, value,
alignment, color, and so on. You can view properties or set (modify) the value
of a property. For example, all graphics objects have a “visible” property. You
can check to see if the property is set to true, suggesting that the object is
visible. Or, you can set the property to false, making the object invisible.

Table 2-1 defines basic terminology for the Brio Intelligence object model.

Table 2-1 Brio Intelligence Object Model Terminology

a
EE
i

W B

Brio Intelligence

Term Definition Example Example
Object Something that is perceived as an Tree, leaf, fruit Application, sec-
entity and referred to by a name. tion, document

Method What it can do; action that is executed Grow, bear fruit, Activate, Copy, Add

when an object receives a message. drop leaves
Property Characteristic quality or distinctive fea- Name, color, Active, Visible, Type
ture; attribute. growing pattern
Collection Group of objects. Grove Documents
Constant A value that does not change or vary. Number Constants

Typically, the object model is manipulated by the JavaScript language from
inside an EIS section to build self-contained analytic applications. On
Windows systems, the object model is also accessible via Automation
Interfaces (OLE Automation) that allow the Brio Intelligence application to be
controlled by external applications such as Excel, VB, C++, Delphi, or any
application capable of making OLE Automation calls.

Understanding the Brio Intelligence Object Model ~ 2-3

Understanding Brio Intelligence Events

[] Note

Custom applications (that is, EIS sections) developed using Brio Intelligence
are event driven. An event is an action recognized by a Brio Intelligence
document, section, or EIS object. Brio Intelligence event-driven applications
execute scripts in response to an event, such as clicking a button or opening a
document. When an event occurs, Brio Intelligence invokes the script attached
to the event. The order in which your application executes events depends on
what the user does; there is no set sequence of actions.

Brio Intelligence uses JavaScript as its scripting language since the release of Brio Intelligence
version 6.0. Documents scripts created using the older Brio scripting language are
automatically converted to JavaScript when the document is first opened.

Brio Intelligence has a set of predefined events. You determine how these
events respond by attaching a script to the event. For example, if you want a
button to perform an action when clicked, you attach a script that defines your
action to the OnCl i ck event associated with the button.

Brio Intelligence predefines events as follows:
= Object Level Events — Events associated with EIS objects.
= Section Level Events — Events associated with EIS sections.

= Document Level Events — Events associated with Brio Intelligence
documents.

2-4

Brio Intelligence Object Model

Object Level Events

Table 2-2 describes the predefined events associated with EIS objects
(embedded sections, graphics, and controls).

Table 2-2 Object Level Events

Event

Objects Supporting Event

Action That Invokes Event

OnClick

OnDoubl ed i ck

OnSel ection
OnChange
OnEnt er
OnExi t

OnRowbDoubl eCl i ck

Sections: Hyperlinked embedded section (not Clicking on a section, graphic, or
applicable for view-only or active embedded sections) control.

Graphics: Line, horizontal line, vertical line, rectangle,
round rectangle, oval, text label, picture

Controls: Command button, radio button, check box,

list box

Controls: List box

Controls: List box

Controls: Text box

Controls: Text box

Controls: Text box

Double-clicking on a value in the list
box.

Selecting a value in a list box.
Changing data in a text box.
Entering a text box.

Leaving a text box.

Sections: Active embedded Results or Table sec- Double-clicking on a row from an
tions (not for view-only or hyperlinked sections) active embedded Results/Table
section.

In addition to the overall object level events, graphic objects and control
objects have specific predefined events with which they are associated, as
shown in Table 2-3 and Table 2-4.

Table 2-3 Events Associated with Graphic Objects

Graphic Object

Event

Line

Horizontal Line

Vertical Line

OnCli ck
OnCli ck

OnCli ck

Understanding Brio Intelligence Events

2-5

Table 2-3 Events Associated with Graphic Objects (Continued)

Graphic Object Event

Rectangle OnCli ck
Round Rectangle OnClick
Oval OnCli ck
Text Label OnCli ck
Picture OnCli ck

Table 2-4 Events Associated with Control Objects

Control Object Event

Command Button OnCli ck

Radio Button OnClick

Check Box OnClick

List Box OnClick, OnDoubl eClick
Drop Down OnSel ection

Text Box OnEnter, OnExit, OnChange

Section Level Events

Section level event are events associated with EIS sections. The predefined
section level events and the actions that invoke the events are:

= OnActi vat e — Entering an EIS section.

= OnDeact i vat e — Exiting an EIS section.

2-6 Brio Intelligence Object Model

Document Level Events

Document level events are events associated with Brio Intelligence documents.
The predefined document level events and the actions that invoke the events
are:

= OnStart Up — Opening a Brio Intelligence document.
= OnShut Down — Closing a Brio Intelligence document.
= OnPreProcess — Before a query is processed.

= OnPost Process — After a query is processed.

Caution! OnShut Down events execute before any prompts in the Save dialog box

| Using the Script Editor

Use the built-in Script Editor to add scripts to events. You can open the Script
Editor for a selected object, an active EIS section, or a document.

To add a script to a document event:

J Choose File — Document Scripts to open the Script Editor from any section other than
the EIS section.

To open the Script Editor from within the EIS section:
U In Design mode, choose EIS — Scripts. [F8]
To open the Script Editor for a selected object:

J Choose EIS - Scripts. [F8]

Using the Script Editor ~ 2-7

Object

Contorl Object Event Trigger Scripting Pane

Browser

Description
Pane

Script Editor
= @ Application «| Obiect: Event Trigagr:
£ Molhods ICUmmandEutlum &l ID”EIiEk I = Line number |1_ GoTo
-] Properties
E& Diocuments ﬂ E ﬂ
[#_] Methods - _ : _ .
(1] Propetties ActiveDocument Sections['RegionReport’] Activate]) d
- @ Samplel.bgy
B @ ActiveDocument
' |1 Methods
' |_1 Properties
E B Sections
-] Methads
[#_] Properties
G- @ Query ﬂ
@ Results v
T Description
vaid Activate(] .
- of
Help Check Syntax oK Cancel

The Script Editor contains the Object browser, the Description pane, the
Events drop-down menu, and the Scripting pane.

Object Browser

The Script Editor provides an Object browser in the left pane, where it displays
the object model, listing all available objects, properties, and methods. At the
top of the Brio Intelligence object model hierarchy is Application, which
represents the entire Brio Intelligence application and contains application-
wide settings and options, methods, and properties. (For a compete flowchart
of the object model, see Chapter 13, “Object Model Map.”)

Clicking any object or collection in the Object browser displays methods and
properties, as well as internal objects. Double-clicking a method or property
automatically generates scripts in the scripting pane of the Script Editor.

2-8

Brio Intelligence Object Model

The Application object contains a Documents collection as well as an
ActiveDocument collection. In the active document Sanpl el. bqy, methods
and properties are available in two places in the object model hierarchy:

= Application - Documents — Samplel.bqy

= Application - ActiveDocument

Cut, Copy, Paste and Control Object Event Trigger
Find/Replace icon

Script Editor
B @ Application «| Object: Event Trigger:
-] Methods CammandButtdrt =] Jontick 1 =l Line rumber: |1 GoTa
Methods and -] Properties
. =¥ |
Properties for = Documents J E ﬂ
the Activ (10 Hethods ActiveD t3eclionsRegionRepor] Activat =
e Aclive BT Propetiss ctiveDocument Sections['RegionReport’] Activate
Document & Samplel bay
Samplel.bqy Bl @ ActiveDocument

|1 Methods
|_1 Properties

Sections

] Methods

{_] Properties
G- @ Query

= <
- @ Results 4
7~ Description
void Activate(] =
L ;H
Help Check Syntax oK Cancel

A script that accesses multiple open documents should use the Documents
path to the methods and properties of a specific document. A script that affects
only the currently active document can use the ActiveDocument path.

Scripting Pane

Use the Scripting pane to enter scripts that are attached to specific object
events (such as mouse clicks, button clicks, and so on.). Use JavaScript to
control the logic and flow of your application. Use the object model to access
objects, properties, and methods. Double-click an item in the Object browser

and a reference to the object, property, or method automatically appears at the
cursor location in the Script Editor.

Using the Script Editor 2-9

Above the Script Editor area is a drop-down menu that includes all available
events associated with the selected document, section, or object. Beside the
drop-down menu is the Event Trigger drop-down menu. This menu displays
the events for the control object, which is recognized as the action that will
invoke the script attached to the event.

After selecting the appropriate event, you can start typing in JavaScript and
referencing the object model. If you need to see or edit the script that extends
beyond the boundaries of the Scripting pane, use the horizontal and vertical
scroll bars.

Use the Cut icon to take out selected script from the editor and send it to the
Clipboard (a temporary storage place). With each subsequent copy or cut, the
Clipboard contents are overwrittern.

Use the copy icon to place a copy of the selected scripted on the Clipboard.

Use the Paste icon to place the contents of the Clipboard at the insertion point.
Script, which already exists at the insertion point, will be moved. Selected
script will be replaced when the Paste command is used.

Use the Find/Replace icon to search for and replace script and all instances of a
word, for example, you can replace "Chart" with "Pivot".

Description Pane and Online Help

When you select an item in the object model hierarchy, a brief description of
the item appears in the Description pane. For example, selecting the Active
Document Properties item displays the description Object/Document
ActiveDocument.

To display Help text for specific items in the object model:
Select the item, then click Help.
The online help dialog box opens and displays information on the specific

method or property selected, such as the type of argument expected. Online
help is also accessible from the Help menu.

2-10

Brio Intelligence Object Model

Sample JavaScript Script

Each level of the object model has a Methods folder that contains actions
(methods) applicable to an object at that level. You can “write” a script using
these methods by finding the object in the Object browser and double-clicking
the associated method.

The following procedure associate a JavaScript script to a document. The
script causes the SalesResults section (the object) to activate (the method)
when the document Sanpl el. bqy opens.

To create a script that activates the SalesResults section when Sanpl el. bqy
opens:

Open the Sample1.bqy file from within Brio Intelligence Designer.

Choose File — Document Scripts.

The Script Editor appears. OnStartup is selected by default in the Event drop-
down box.

Use the Object browser to navigate the object model and go to
Application - ActiveDocument — Sections — SalesResults —. Methods.
Double-click Activate.

Brio Intelligence automatically enters a script in the Scripting pane and
attaches it to the OnStartup event listed in the Event drop-down box.

Sample JavaScript Script 2-11

Script Editor

S @ Application | Obiject Event Trigger:
B Methods | CommandButtont =] [onCick | Line number: [1 GoTo
-] Properties

-3 Documents M E M

Bl @ ActiveDocument

] Methods ActiveDocument Sections['Results].Actwateo| d
- |_] Properties

- Sections

{1 Methods
{_1 Pioperties

H- @l Query
=- @ Results
E!J Methads

Click and Drag

-3 hclivate ﬂ
. : 7 to Resize the
~Desci Object Browser
Escription
Description text =
K| ;H
Help Check Syntax | oK Cancel

[] Tip Expand the view of the object model by clicking and dragging the striped
arrow at the bottom of the Object browser’s scroll bar.

5 Click OK to save the script and close the Script Editor.
6 Save and close the document.
7 Test your script by re-opening the document.

When Sanpl el. bgy opens, the SalesResults section of the document appears
by default.

2-12

Brio Intelligence Object Model

Testing Scripts Using the Execution Window

[] Note

You can immediately test a script by adding it to the Execution window. For
example, instead of closing and re-opening a document to test it’s OnStartup
script, copy and paste the script into the Execution window and press [Enter].

The following procedure assumes that Sample1.bqy, opened in the “Sample JavaScript Script”
is still open.

To test a document script without closing the document:
Activate the EIS section of Samplel.bqy, by clicking the title in the section pane.

Choose View — Execution Window.

An Execution window opens:

=

Click the Design mode &£ icon.

Open the document script created earlier (choose File — Document Scripts), copy the
script, and then paste it in the Execution Window.

Docunents ["Sanplel k"] .Secticns["Sale A|

sResults"] . Activate()

=

Press [Enter] to test that the SalesResults section displays.

Testing Scripts Using the Execution Window 2-13

Checking Errors Using the Console Window

[] Note

The Console window records all error messages that occur from the time Brio
Intelligence starts until the application is closed or the window is cleared (with
Edit - Clear).

The following exercise uses the script previously entered in the Execution window in
Sanpl el. bay.

To view error messages in the Console window:
Open the Console window (View — Console Window).
Change Activate() in the Execution window to lower-case activate()

Press [Enter] to run the script in the Execution window.

An error appears in Console window that specifies the line number where the
error occurred and the JavaScript error. The same message also appears in the
Execution window because we are testing a statement in this window.

-
=script>(l) :ActiveDocunent Sections["Sa

lesResults"] .activate is not a functison | Error Statement in Console Window

=

ActiveDocunent Sections['SalesResults"] w |

.activatel)

. - - <script>(l) ;ActiveDocunent Secticns["Sa
Error Statement in Execution Windo MesResults"] activate is net a Function

=

Line 1 contains the error. The error message is referring to the method (or
function) activate. Because JavaScript is case sensitive, it does not recognize
activate as Activate.

2-14 Brio Intelligence Object Model

Scripts can include JavaScript statements that write specific messages to the
Console window for debugging and troubleshooting. These messages can track
the progress of script execution and the state of objects in the script. Exercises
throughout the tutorials in the book use both the Console window and the
Alert dialog box for testing scripts.

Checking Errors Using the Console Window 2-15

Finding/Replacing Script

The Script Editor Find/Replace function allows you to search an entire script
for strings, puncuation marks, and numbers. You can retrieve matches by
treating each word as a prefix or as whole word only. Further differentiation
can be made by applying a case-sensitive constraint (upper and lower case
word matches).

The replace component of this function allows you to replace the first or
multiple occurrence(s) of a string, punctuation mark.

Find *hat: IStep Find Mext |
Fieplace 'With:
I Feplace |

™ Mateh whols Word Only Direction
C Up Replace Al |
™ Mateh Cass & Dawn Close |

Table 2-5 Find/Replace Definitions

Field Defintion

Find What Enter the search criteria that you wish to search on. The
search criteria can either be a string, punctuation mark or
number. When you make an entry in this field without match-
ing the whole word or case, search criteria acts as a prefix.
That is, "report" matches "reporting", "reporter" and
"reported.” This function does not support wildcats. .

Replace With Enter the replacement text for match.

Match Whole Word Instructs the Find/Replace feature to mgtch only the entire
text that matches exactly your search criteria. For example,
"report" will only match "report". It will not match "report"
matches "reporting”, "reporter" and "re-ported."

Match Case Instructs the Find/Replace feature to match only the text that
matches the uppercase or lowercase letters of your search
criteria. For example, if you specify "Chart", then an entry
must match the word "Chart" with a capital C. - that is,
"Chart" will only match "Chart".

2-16 Brio Intelligence Object Model

Table 2-5 Find/Replace Definitions

Field Defintion

Specify the direction from which to initiate the search be-
ginning at the insertion point. You can start the search in an
upward or downward direction. By default, the direc-tion is
from downward.

Direction

Finds, then replaces the first occurrence of a match. This

Replace)
allows you to confirm whether or not you want to make the
replacement.

ReplaceAll Replaces all occurrences of a match

Close Closes the Find/Replace window.

To find and replace:

1 Click anywhere in the Find What field and enter your search text.

To replace the matched search text with other text, click anywhere in the
Replace With field and enter the replacement text

You can either type the entry or past it.
To match the entire search text entirely, click the Match Whole Word Only field.
To match the exact case of the search text, click the Match Case field.

Select the direction from which to initiate the search in the Direction field.

a B w N

To find and replace the next occurrence of the search text, click Replace.
To find and replace all occurrences of the search text, click ReplaceAll.

When the Find/Replace feature has finished executing, the following message
is displayed: "Reached the end of the script. All instances of search item
replaced" or "Reached the end of the script. Cannot find Search item".

Summary
When creating customized interfaces, remember these points:

Lef = Choose EIS — Design Mode to toggle between Design and Run modes. [Ctrl+D].

Finding/Replacing Script ~ 2-17

= Add scripts to documents and EIS sections by opening the Script Editor on the
document (File -~ Document Scripts) or the section (EIS — Scripts). [F8]

= The Object browser in the Script Editor displays the entire Brio Intelligence
application, the Brio Constants, and the EIS section objects in a hierarchical
structure.

= Object and their methods and properties can be accessed from more than one
place in the application hierarchy.

= Create error-free scripts by navigating the object model and double-clicking the
applicable methods and properties.

2-18 Brio Intelligence Object Model

Scripting EIS Controls

The previous chapter introduced the Brio Intelligence object model and

explained how to use the built-in scripting tools to quickly add JavaScript to a

document. This chapter shows how to associate simple scripts to various EIS
control objects using the Script Editor and the Object browser. It contains:

Scripting Control Objects

Associating Scripts with Command Buttons
Associating Scripts with Radio Buttons
Associating Scripts with Check Boxes

Associating Scripts with List Boxes

31

Scripting Control Objects

Section
Pane

Catalog

This chapter explains how to associate JavaScript scripts with four of the EIS
control objects: command buttons, radio buttons, check boxes, and list boxes.
The exercises in this chapter guide you through inserting a new EIS section in
Sanpl e3. bqy, adding control objects to the new section, and associating
scripts with the controls.

Creating a New EIS Section

To insert a new EIS section in Sanpl 3. bqy and rename it:
Open the Sample3.bqy file from within Brio Intelligence Designer.

Choose Insert — New EIS to add a new EIS section to the document.

Inserting a new EIS section changes the document to Design mode. The
Content is blank and the Catalog pane displays the sections, graphics, and
control objects available for embedding in an EIS.

g3 Sample3.bay [|O] x| l

Content
Pane

==} J
Ei Planéctualluery AI)

-B PlandctualResults

Pane

3
4

@ FevByTime -
@ FevByLocale B
@ FevByStore -
(B UnitsS oldPlan o
: @ UnitsS oldfctual B
@ OLAPGuery -
Eﬂ Graphics -

'@Eontrols B -
e ﬂ_‘

In the Section pane, double-click EIS to open the Section Label dialog box.

Type Controls in the Label field and then click OK to close the Section Label dialog box.

3-2

Scripting EIS Controls

Changing a Control Object’s Title

When working with control objects, change the default title to a title the user
understands.

D Note The exercise in this section assumes that you have previously inserted a new EIS section in
Sanpl e3. bagy and renamed the new section Controls.

To change an object’s title:

1 Expand the Controls folder in the Catalog pane.

D Note The Controls folder is only visible in Design mode.

Controls

Sections

-
E'i Plandctuallueny — I

PlanéctualResults
(N RevByTime

(N RevByLocale
(N RevByStare

(N UritsSoldPlan
(N UritsSoldbctual
@ OLAPQuery

Eﬂ Graphics

= Contrals

1 Coammand Buttan
{2 Radio Button
~[¥] Check Box

~[E8 List Box

-2 Drop Down

~[abl Text Box

Scripting Control Objects 3-3

2 Drag the desired control object (command button, text box, and so on) to the Content

pane.

[m

‘ CommandButton

3 Double-click the control object to display the Properties dialog box.

4 Type a new entry in the Title field and click OK to view the results.

Properties - CommandButtonl

Obiect | Font |

~ Object
M ame:

Title:

Name on the Script Editor Title Bar

IEommandB uttor

and in the object model.

IHesuIts

Title on the Button

I~ Settings

I isible
¥ Enable
™ Locked

QK I Cancel Help

The entry in the Title field appears as a label on the control object. The entry in

the Name field appears on the Title bar in the Script Editor and in the object

model.

3-4

Scripting EIS Controls

Associating Scripts with Command Buttons

A command button is typically used to initiate or activate a process or action.

D Note The exercise in this section assumes that you have previously inserted a new EIS section in
Sanpl e3. bagy and renamed the new section Controls.

To associate a script with a command button:
1 Drag a command button control from the Catalog pane to the Content pane and use the
Properties dialog box to specify its title as RevSummary.

(See “Changing a Control Object’s Title” on page 3-3 for detailed
instructions.)

[bioGueny Somperbw ________ EmmK|
@ File Edit “iew |nsert Format EIS Toolz ‘window Help ;Iilll
| [anal s ZA & n;g|§§§|4vgvgv‘

D@ ®E|& 0| x B[00 7 B [D

Controls

Sections

E‘ RevSummary]
O 0]

i Plan.
i,

@ UnitsS oldfctual

@ OLAPGuery f-"ﬂ '
% Graphics)
EHEG Controls - -
’;l Zn:nrnrnaru:l Eutton SRS PR E | Ll—‘
| [Zoom 100%
2 With the RevSummary object’s selection handles visible, choose EIS — Scripts. [F8]

Associating Scripts with Command Buttons ~ 3-5

The objects name (as show in the Name field of the Properties dialog box)
appears on the Title bar of the Script Editor, and the default event for the
object (Ond i ck) appears in the Event drop-down box.

3 Use the Object browser to navigate to:
ActiveDocument — Sections — RevSummary — Methods, then double-click Activate.

Object Name Object Event

Script Editor

-8 ActiveDocument d Obiject: Ewent Trigger.
B Methods IEDmmandButtom j IEInEIch j Line rumber: IT GoTa
E-_] Properties J
E-E% Sections & | B Ml
[#_] Methods - - - ——
_] Propeities ActiveDocument. Sections[" RevBummar\/].AcINated J
- @ RevSummary
[=1_] Methods
: i\ chivate
B Copy
% CustomS(LFrom
% CustomS ALwWhere
Duplicate
Export ﬂ
ImportSQLFile 7
7~ Description
woid Activate]] =
Kl _>IJ
Help Check Syntax | QK Cancel

Brio Intelligence automatically enters the correct command in the Script

Editor.
4 Click OK to save the script and close the Script Editor.
J‘“_*’ 5 Toggle to Run mode and click the RevSummary button. [CtrI+D]
The RevSummary section displays, as dictated by the script.
You have just learned to associate a script with a command button. You can
review your script by activating the Controls EIS section, toggling to Design
mode, and opening the Script Editor for the command button.
Exercise Create another button. Associate the button with a script that duplicates the

RevSummary section. You can also try this on other BQY documents

Act i veDocument . Secti ons[“RevSummary”]. Duplicat e()

3-6

Scripting EIS Controls

Associating Scripts with Radio Buttons

[] Note

[z
—

Radio buttons are typically used to allow a user to select one option from a
group of options; for example, to select one type of chart over another.

The exercises in this section assume that you have previously inserted an EIS section in
Sanpl e3. by and renamed it Controls. These exercises show you how to embed a chart and
add radio buttons for user-control of the chart type.

To embed a chart in an EIS section:

In the Controls section, toggle to Design mode.

When in Design mode, the Catalog pane appears below the Section pane as a
hierarchical structure of available EIS objects.

Drag the chart named RevbyTime from the Catalog pane to the Content pane.

The script in this exercise changes the chart type to a line chart. Before
changing the chart with the script, verify that RevbyTime is a vertical bar chart.
To verify and change the chart type, activate the RevByTime section and
choose Format — Chart Type — Vertical Bar, then return to the Controls
section.

To associate a script with a radio button:
Drag a radio button control from the Catalog pane to the Content pane and use the
Properties dialog box to specify its title as Line.

(See “Changing a Control Object’s Title” on page 3-3 for detailed
instructions.)

Associating Scripts with Radio Buttons ~ 3-7

J | arial

B 7 U

% BrioQuery - S5ample3.bqy =] E3 I

@ File Edit “iew |nsert Format EIS Toolz ‘window Help

s A &

==l x|

v&.&.‘

Controls

Sections

D@ HE &0 | x =|m-&

Eﬂ Graphics
E-@ Contrals

@ UnitsS oldfctual
@ OLAPGuery

[Command Buttan
[OF:

=8 List Box

S

|B’Process '|gg)|4= = ﬁ|®

R

:

’EE Dirop Down - -
Texlthox | Ll—‘
RadioButton | T [Zoom: 100%
2 With the Line object’s selection handles visible, choose EIS — Scripts. [F8]

3 Use the Object browser to locate and expand the RevByTime section of ActiveDocument.

4 Expand the RevbyTime Properties folder, then double-click ChartType.

Brio Intelligence automatically enters the first part of the script in the Scripting
pane. Property ChartType as BqChartType appears in the Description pane.
BgChart Type is a constant whose values appear in the Constants collection
of the Object browser.

3-8

Scripting EIS Controls

Script Editor

=

EJ Properties

~Er" RefreshData

&' Show3D0bjects

- ShowB ackPlane

- ShowBarder
ShowHorizontalPlane
Showlegend
ShowOutiner
ShowSubTitle

-2 ShowTite

~E2 ShowerticalPlane

- SubTitle

|

KD

7~ Description

Property ChantType as BqChatType

Help

Object: Event Trigger:

=] [onCick

=

IHadlaE uttaril

#| =] @] Al

Line number: |1— ﬂl

ActiveDocument.Sections["RevByTime"].ChariType

4]
Check Spntax

0K Cancel

=

i

5 To select the applicable BqChar t Type, use the Object browser to scroll down to

Constants and expand

it, then expand the BqChartType collection.

Script Editor - RadioButton1

E-& Canstants

[+-2F BghdaptiveState
F-ZP Bobpi

27 BgBarLineShift
+-2F BoBarLineType
27 BaChartbxisType
[

=@ BaChartType
baChartTypedrea

6

t-2F BgChartLabelOrientation

bgChartTypeClusterE ar

|

-

baChartTypedrealine
bgChartTypeBarLine

=
Z

In the Scripting pane, type and equals sign (=) immediately after ChartType.

7 Double-click bqChartTypeLine.

Brio Intelligence adds the rest of the script to the Scripting pane.

Associating Scripts with Radio Buttons

3-9

Script Editor

B2 BaCharType +| Object Event Trigger:

- J baChart Typedrea |Eummand8uttun1 j |EInEI|ck ﬂ Line number: |1 ﬂl

baChartT ypedrealine

(&) baCharTypeBarLine %l | El Ml
5 baChatTypeClusterBar AcliveD 1 Sections[RevByTime'].C harType=hgCharTypeLine| =]
5 byChatT ypeHozortalar cliveDocument Sections['RevByTime"].ChariType=bgChartTypeLing

boChartTypeHorizontalS tackB ar

=) bgChartTypeNons [
(=) baChartTypeFie
& baChartTypeRibbon
(& baChartT ypeStackarea
- E baChartT ypeWerticald ar
- E baChartT ypeWerticalstackBar
2P BqClusterBarType

RN

7~ Description

Const baChartTypeline =9

Read Only -~
L »

Help Check Syntax oK Cancel

8 Click OK to save the script and close the Script Editor.

B9 Toggle to Run mode and click the Line radio button.

The chart changes to a Line chart.

Exercise Create a second radio button with the title Vertical Bar by toggling to Design
mode and working through the preceding exercise.

Add a script to this radio button to change the chart type to vertical bar
(bgChart TypeVertical Bar).

[] Tip Radio buttons work in groups: when one button in the group is selected, the
others in the same group are cleared. Set the group name in the Properties
dialog box for each button. The default group name is RadioGroup.

3-10 Scripting EIS Controls

Associating Scripts with Check Boxes

[] Note

A check box is typically used to indicate whether an option should be turned
on/oft or is true/false.

The exercise in this section usesan i f . . . el se control structure. Chapter 6,
“JavaScript Control Structures,” goes into more detail on control structure
syntax and usage.

The exercise in this section assumes that you have previously inserted a new EIS section in
Sanpl e3. bqgy and renamed the new section Controls. If you have been following the tutorial
in sequence, you might try to associate a script to a check box on your own. The steps in the
following procedure are very similar to the steps in the previous sections.

To add a check box to the Controls section:

Drag a check box control from the Catalog pane to the Content pane and use the
Properties dialog box to change the Name and Title properties as follows:

= Name — chk_IntervalValues

= Title — Show/Hide Dollars

(See “Changing a Control Object’s Title” on page 3-3 for detailed
instructions.)

Associating Scripts with Check Boxes 3-11

% BrioQuery - S5ample3.bqy =] E3 I

@ File Edit “iew |nsert Format EIS Toolz ‘window Help ;Iilll
| [anal o A & B 1 U |£V&vév‘
losdlal x [Eo-E o | PR S @D

Controls

Sections

; [ml iml a
B @ Line EIE ShowiHide DollarsE

M UnisSoldPlan & || -
@ UnitsS oldfctual o
@ OLAPDuery B
Eﬂ Graphics -
E'@ Controls -
[Command Buttan

&) Radio Button

QTR heck Box
=Bl List Box B
’EE Dirop Down - -
“[aBl Text Box | 4] | Ll—‘
| T [Zoom: 100%

The Name chk_IntervalValues is used in the script for the Show/Hide Dollars
check box.

D Note The rest of this exercise associates a script with the check box. The script turns on or off the
display of revenue values (the Show nt er val Val ues property) of the RevByTime chart.

Consider that a check box has two conditions: checked and unchecked (or
cleared). Hence, the JavaScript needs to perform an action when a given
condition is true and negate that action if it is false. “If” a condition exists, then
a given action occurs; “else” the reverse happens.

To associate the Showl nt er val Val ues property with the check box:

1 With the Show/Hide Dollars check box object’s selection handles visible, choose
EIS Scripts. [F8]

2 Type the following into the Script Editor:

3-12

Scripting EIS Controls

4

if ()
{

el se

= The parentheses enclose a statement that tests the checked property of the
check box (chk_I nt erval Val ues).

= The first set of curly brackets, after the if, encloses the statement to execute
if the test is true.

= The second set of curly brackets, after the else, encloses the statement to
execute if the test is not true.

Click in the parentheses after i f, navigate to

Controls Objects — chk_IntervalValues — Properties, and then double-click Checked.

i f (chk_Interval Val ues. Checked)

Type ==true after Checked.

i f (chk_lInterval Val ues. Checked==t rue)

Use “=="to mean is equal to or matches.
Click on the line between the curly brackets and add the statement to execute if the test
is true.

a. Use the Object browser to navigate to
Application — ActiveDocument — Sections — RevByTime — ValuesAxis —
Properties, and then double-click ShowIntervalValues.

You can see more of the object model by dragging the striped arrow at the
bottom of the Object browser’s scroll bar.

b. Type =true and a semicolon (;) at the end of the line in the Scripting pane.

i f (chk_lInterval Val ues. Checked==t rue)

{

Act i veDocunent . Secti ons[" RevByTi ne"]. Val uesAxi s. Showl nt er val Val ues=tr ue;

}

6

Click on the line between the curly brackets (after else) and add the statement to
execute if the test is false.

a. Use the Object browser to navigate to
Application — ActiveDocument — Sections — RevByTime — ValuesAxis — Pr
operties, and then double-click ShowIntervalValues.

Associating Scripts with Check Boxes ~ 3-13

b. Type =false and a semicolon (;) at the end of line in the Scripting pane.
el se

Acti veDocunent . Secti ons[" RevByTi ne"]. Val uesAxi s. Showl nt er val Val ues=f al se;

Script Editor

1 Propetties ;I Object: Ewent Trigger:
B ShowlntervalTickmarks [CheckBox1 =] [onCick = Line number. [1 GoTo
ShowValueséFight 3| e &l
@ Lefthyis -
& Rightdsis ;f (chk_Intervalalues. Checked==true) ;I
@ Legend ActiveDocurment Sectinns['RevByTime"] ValuesAxis ShowlntervalValues=true;
F @ Table 1
- @ Report glse
&1 @ Limis E1S {
ActiveDocument Sections['RevByTime"] ValuesAxis ShowlntervalValues=false;
@ LastSaved
[H- @ ActiveSection [
-3 Toolbars
-3 RecentFiles LI
- @ Console v
7~ Description
Froperty Showlntervalialues as Boolean -
L >

Help | Check Spntax ag | Cancel

7 Click OK to save the script and close the Script Editor.

J‘“_*’ 8 Toggle to Run mode and test how the check box works. [CtrI+D]

Revenue By Time Revenue By Time

RevByTime Section with RevByTime Section with
Show/ Hide Dollars Check Box Show/Hide Dollars Check Box
Selected Not Selected

You have just learned to associate a script with a check box.

Exercise Create another check box. Associate the check box with a script that shows/hides
another property of the chart.

3-14 Scripting EIS Controls

Any property in the chart’s Property dialog (in the chart section) can be accessed
through the object model and JavaScript. To view RevByTime chart properties,
activate this section by clicking the title in the Sections pane, click in white space
close to the chart, right-click, and then select Properties from the menu that
appears.

You can also try the exercise on some other BQY document.

Associating Scripts with List Boxes

[] Note

1
2

A list box is typically used to list multiple values from which users can make
one or more selections. This section introduces the list box with an exercise
limited to creating the list values and displaying an alert with a single selection
as the alert message. For more detail on scripting a list box, see Chapter 7,
“Drop-Down and List Boxes.”

The exercise in this section assumes that you have previously inserted a new EIS section in
Sanpl e3. bagy and renamed the new section Controls.

Exercise: Associating a Script with a List Box

To associate a script with a list box:
Drag the list box icon from the Catalog pane to the Content pane of the Controls section.

With the list box control selection handles visible, choose EIS - Properties.

The Properties dialog box appears.

Associating Scripts with List Boxes 3-15

Properties - Time

Walues] Fant]

~ Object
Name: [Time Name Appears in the
Object Browser
Title: |
I~ Settings
V| wisible IV Allow Multiple Selections Turns Multiple
IV Enable Selections On and Off
I Locked

QK I Cancel Help

3 Enter Time in the Name field and then clear the Allow Multiple Selections check box.

When Allow Multiple Values is not selected, only one selection is allowed.

4 Click the Values tab, add the values Today, Tomorrow, and Yesterday, and then click OK.

Properties - Time

Object] Fant]

List % alue:
| Add |
Tod - i |
TEm?now _I ik
“r'esterday Mave Up |

Ifaye Mo |

[~
QK I Cancel Help
5 In the Content pane, select the Time list box control and choose EIS — Scripts. [F8]

6 Use the Object browser to navigate to Application — Methods, and then double-click
Alert.

Application. Alert()

3-16

Scripting EIS Controls

This method displays an alert box. The content of the alert is controlled with
arguments added between the parentheses.

7 Click in the parentheses after Alert and use the Object browser to navigate to
Controls Objects — Time — SelectedList — Methods, and then double-click ltem.

Application. Alert(Time. Sel ectedList.ltem())

The Sel ect edLi st object contains the list of user selections.

Ti me. Sel ect edLi st. |t en() needs a number as the argument to point to
the specific item in the list of user selections.

8 Type 1 between the parentheses after Item.

Script Editor

@ Constants d Dbject: Event Trigger
T o et [Tme =] |onCick = Line rurnber: [1 GoTo
=@ Time
& e 4] | 8] a

L] Propetizs Application Alert(Time Selectedlist tem{1)) =]

+- @ Font

E- @ Selectedlist
EI |_1 Methods
T emm

: = |temindex
|1 Properties J
[H-@ chk_ntervalvalues
[+ @ CheckBox1
[+ @ RadicButton1 =
[+ @ Chartl v
7~ Description
String Item[Mumber nlndex] =
K| _>IJ
Help Check Syntax | QK Cancel

9 Click OK to save the script and close the Script Editor.

J‘“_*’ 10 Toggle to Run mode and select an item in the Time list box. [Ctrl+D]

An alert appears, displaying the selection.

Associating Scripts with List Boxes 3-17

ShowiHide Dollars

[Today]

Tomorrows

esterday

You have just learned to associate a script with a list box.

Exercise Edit the Alert to say What a wonderful day! after the selected item. Type a plus
sign (+) in the parentheses after Item(1), and enclose the new phrase (a string) in
quotes.

Application. Alert(Time. SelectedList.ltem(1)+" Wiat a
wonder ful day!")

3-18 Scripting EIS Controls

Summary
When adding scripts to EIS controls, remember these points:

= Select the control and choose EIS - Scripts (or press [F8]) to open the Script
Editor.

= The object label (or title), displayed in Run mode, is set in the object’s Properties
dialog box. One way to access the Properties dialog box is by double-clicking the
object.

= The object name, displayed in the Object browser, is set in the Properties dialog
box.

= Brio Intelligence constants (for example BqChartlype) are accessible through the
Object browser in the Constants collection.

Associating Scripts with List Boxes 3-19

3-20 Scripting EIS Controls

PART 11

Brio JavaScript Tutorials

JavaScript Syntax

The previous chapters introduced the Product Name Variable object model,

EIS sections and controls, and adding JavaScript scripts to enhance the
functionality of a Product Name Variable document.

This chapter reviews JavaScript syntax. It contains:

Basic JavaScript Syntax

= JavaScript Code Structure
= JavaScript Operators

= Variables

= Reserved Words

41

Basic JavaScript Syntax

JavaScript is a powerful programming language with three basic syntax rules,
shown in Table 4-1.

Table 4-1 Basic Syntax

Rule Example
JavaScript is case sensitive. Alert is not the same as alert.
Strings must be in quotes. The following two statements define a variable n as the string Brio, and then insert the

string value as an argument for the Alert method. The alert says Bri o.
var n="Brio";
Application.Alert(n);

The following two statements define n without quotes. The alert generates the error
Brio is not defined because Brio is not a recognized JavaScript term.
var n=Bri o;

Application.Alert("The conpany nane is "+n);

Legal names (for variables, func- The first character nust be a letter or an underscore(_),
tions, and objects): not a nunber. Subsequent characters may be any letter or
digit or an underscore, but not a hyphen, period, or

= Start with a letter and con- space.

tinue with only letters, num-
bers, or an underscore sample legal name: _| ett er s123

Do not use reserved words . . .
- Names need to be unique in context. An EIS section cannot have two drop-down boxes

= Are unique in context with the same name, a function cannot have two variables with the same name, a docu-
ment cannot have two sections with the same name

See “Reserved Words” on page 4-17 for a complete list of reserved words.

JavaScript Code Structure

JavaScript uses dot notation or obj ect . met hod(') syntax. There is a dot, or
period, between each model path segment and before the method or property.
Methods always have parentheses. When there is a choice of Properties, they
are specified with square brackets, or with square brackets and quotes when
the choice is a string or name.

Table 4-2 summarizes the parts of a JavaScript.

4-2 JavaScript Syntax

Table 4-2

JavaScript Statement Elements

Parts of Code

Examples

Object Model Paths:
= Start with an uppercase letter

= Separate path segments with a
period (.)

Act i veDocunment . Secti ons. Count

is the correct syntax to access the Count property of the Sections in Active Docu-
ment, while
Act i veDocunent Sect i ons. Count

generates the following error because the separator between ActiveDocument and
Sections is missing:
Act i veDocurent Sections i s not defined

Methods (and Functions):

= Separate from the object path with
a period (.)

= Include parentheses for arguments

Activate() does not take arguments, but the parentheses are still required.
Act i veDocunment . Secti ons["RevSummary"] . Acti vat e()

The Add() method requires a single argument, included in the parentheses.
Ti me. Add(Text Box1. Text)

The Alert() method requires at least one argument and allows for multiple optional
arguments. Multiple arguments are separated by commas.

Application. Al ert (Text Box1. Text, " Text Box")

Properties:

= Separate properties from objects
with a period (.)

= Refer to one of a collection of prop-
erties, by number, in brackets []

= Referto one of a collection of prop-
erties, by name, in brackets, with
quotes [""]

When referring to the Count property of document sections, use:
Act i veDocunent . Secti ons. Count

When referring to the first section (not the name, but the position in the section
array in the object model), use:
Act i veDocunent . Secti ons[1]

When referring to a specific section named RevSummary, use:
Act i veDocurent . Secti ons[" RevSunmary"]

Statement Separators:

= Statements must end with a return
[Enter]

= End statements with both a semico-
lon (;) and a return [Enter] to avoid
JavaScript errors

m Separate short statements on one
line with a semicolon (;)

Statements can be on separate lines:
Ti me. Add(Text Box1. Text);
Dr opTi me. Add(Text Box1. Text);

Multiple statements can be on one line, with a semicolon separating them:
Ti me. Add(Text Box1. Text); DropTi me. Add(Text Box1. Text);

Comments
= Use // for single line or inline
= Use /* and */ for multiple lines

Ti me. Add(Text Box1. Text) // this is a comrent
/1 DropTinme. Add(Text Box1. Text)
// this line and the |ine above are both comments

/*

Everything in here is a comment until
mar ker .

*/

the end coment

JavaScript Code Structure

43

JavaScript Operators

JavaScript provides one- or two-character symbols (operators) for use in
assigning values, performing math, increasing and decreasing counters, and
making comparisons. Table 4-3 lists available JavaScript operators.

It is important to use operators correctly to avoid JavaScript errors. Many
errors can be avoided if you understand:

= Assignment versus comparison operators
» How to use operators as characters in strings

= Concatenation versus addition

Table 4-3 JavaScript Operators

Type of Operator Symbol Operation Performed

Assignment Operator
returns the assigned value

Assign a value

Arithmetic Operators + Addition or Concatenate
return the resulting value += Addition (or Concatenate) and assign resulting value
- Subtraction

-= Subtraction and assign resulting value

* Multiplication

*= Multiplication and assign resulting value

/ Division

/= Division and assign resulting value

% Modulus (integer remainder of dividing 2 operands)
%= Modulus and assign resulting value

++ Increment by 1 (x=x+1 is the same as x++)

-- Decrement by 1 (x=x-1 is the same as x--)

4-4 JavaScript Syntax

Table 4-3 JavaScript Operators (Continued)

Type of Operator Symbol Operation Performed
Comparison Operators == Test if Equal
return a Boolean value
trueorfal se 1= Test if Not Equal
> Test if Greater Than
< Test if Less Than
>= Test if Greater Than or Equal To
<= Test if Less Than or Equal To
Logical Operators && And (test if both operands are true)
return a Boolean value
trueorfal se || Or (test if one or the other operand is true)

Using Assignment versus Comparison Operators

JavaScript makes a distinction between assignment (=) and comparison (==
operators, as seen in Table 4-3.

= Use = to assign the value on the right to the object on the left.

s Use == to test if the values on both sides match (the result is true if they
match).

D Note The following exercise uses the Product Name Variable file Sanpl e3. bqy and the RevByTime

Example

chart used in “Associating Scripts with Radio Buttons” on page 3-7. You can use any
Product Name Variable document that includes a chart.

Insert a new EIS section in Sanpl e3. bqy. Add a line chart and two buttons
titled Comparison and Assignment.

Add a JavaScript script to the Comparison button to compare the type of chart to
bgChart TypeVerti cal Bar and open an alert that displays the result of the
comparison. Test the comparison button. What does the alert say?

Script the Assignment button to change the chart type to bqChar t TypePi e. Try
the comparison button again. What does the alert say now?

JavaScript Operators 4-5

L] Tip

a &5 w N

mv]

=]

: a3 =%
Assighment

04

Figure 4-1 Assigning and Comparing chart type

Both JavaScript scripts act on the actual chart, not the view of the chart in the
EIS section.

The script for the Comparison button uses == to test if ChartType matches
bqChartTypeVerticalBar. The alert displays true if they match, false if they
don’t match.

The Assignment button’s script uses = to set RevByTime’s ChartType property
equal to bqChartTypePie. The chart changes to a pie chart.

Exercise: Adding Comparison and Assignment Buttons
To add a chart, and Comparison and Assignment buttons:

Open Sample3.bqy and insert a new EIS section. Rename it Equal EIS.

Refer to“Creating a New EIS Section” on page 3-2 for information on
renaming a section.

Add two command buttons by dragging them from the Catalog pane to the Content pane.
Double-click one button and change the Title to Comparison.
Double-click the other button and change the Title to Assignment.

Drag the RevByTime chart from the Catalog pane to the Content pane.

Verify that the chart is a vertical bar chart. (To verify and/or change the chart
type, choose Format — Chart Type — Vertical Bar in the RevByTime section.)

Exercise: Using the Comparison Operator

To script the Comparison command button to make a comparison and return
an alert:

Select the Comparison button and choose EIS - Scripts. [F8]

Use the Object browser to navigate to Application — Methods, and then double-click
Alert.

4-6

JavaScript Syntax

Click in the parentheses of the Alert method.

Navigate to ActiveDocument —. Sections —. RevByTime — Properties, and then double-
click ChartType.

Your script should look like this:

Application. Al ert (ActiveDocument. Secti ons["RevByTi me"]. Chart Type)

5 Type the comparison operator (==) after the property ChartType.

6 Navigate to Constants — BqChartType, and then double-click bqChartTypeVerticalBar.

Your script should now look like this:

Application. Al ert (ActiveDocunent. Secti ons["RevByTi me"]. Chart Type==bqgChart TypeVert

i cal Bar)

Click OK to save the script and close the Script Editor.

The Comparison button is ready to test.

In Run mode, click the Comparison button. The alert displays true if the chart
is a vertical bar chart, false if the chart is any other chart type.[Ctrl+D]

Exercise: Using the Assignment Operator
To assign a specific chart type with the Assignment command button:

In Design mode , select the Assignment button and choose EIS — Scripts. [F8]

Navigate to ActiveDocument - Sections —. RevByTime — Properties and double-click
ChartType.

The script should look like this:

Act i veDocurent . Secti ons[" RevByTi ne"]. Chart Type

Type the assignment operator (=) after the ChartType property.
Navigate to Constants —. BqChartType and double-click bqChartTypePie.

The script should now look like this:
Act i veDocurent . Secti ons[" RevByTi ne"]. Chart Type=bqChart TypePi e

Click OK to save the script and close the Script Editor.

Toggle to Run mode and click the Assignment button, then click the Comparison button.

JavaScript Operators ~ 4-7

Clicking the Assignment button assigns the chart type Pie to the RevByTime
chart. Subsequent clicks on the Comparison button displays the alert false
because the chart type is not vertical bar.

Including Operators in Strings

When JavaScript sees an operator, it performs the operation, even in strings. To
tell JavaScript to treat an operator as a character, add the “escape” character,
the backslash (1), in front of the operator.

D Note The following exercise adds a script to the file Sanpl e3. bqy to open the Bri o

Example

Enterprise 6 - What's New. bqy file. You can use any two Product Name Variable
documents for this exercise.

Add a command button and a script to open a specific BQY document.

Verify where the file is on your system, and copy the path to this file from your
desktop. Escape the backslash in the directory path.

Exercise: Using Operators as Characters

To create a command button that opens a file:

Open Sample3.bqy and insert a new EIS section. Rename it Strings EIS.

Refer to“Creating a New EIS Section” on page 3-2 for instructions on
renaming a section.

Drag a command button from the Catalog pane to the Content pane.

Select the command button and choose EIS - Scripts.

Use the Object browser to navigate to Application —. Documents — Methods and double-
click Open.

The Description pane shows that the arguments for the Open method are
strings: Document Qpen(String Filename, [optional] String

D spl ayNane) . The second argument is not required and this script does not
include it. Step 6 through Step 7 adds the St ri ng Fi | enanme argument to the
Open method.

4-8

JavaScript Syntax

Caution!

Strings must be quoted! The Documents.Open() method requires string
arguments.

Switch to the desktop and find and copy the path (not the file name) to the file you wish
to open.

FortheBrio Enterprise 6 - What’'s New bqy document, the default
path is C: \ Program Fi | es\ Bri o\ Bri oQuer y\ Sanpl es.
Add the path to the file inside the parentheses.

a. Click inside the parentheses, type quotes, and paste the path plus an ending
slash between the quote marks.

b. Type a backslash (\) in front of each slash in the file path.

The script should look similar to

Docunent s. Qpen(" C:\\ Program Fil es\\ Bri o\\ Bri oQuery\\ Sanmpl es\\")
Copy the file name and paste it at the end of the path in the current script.

a. Switch back to the desktop and copy the exact file name.

b. Return to Product Name Variable and open the Script Editor on the
command button.

c. Click after the last slash in the path, before the ending quote mark, and
paste the file name.

The script should look similar to:

Docunent s. Qpen(" C:\\ Program Fil es\\ Bri o\\Bri oQuery\\ Sanpl es\\Brio Enterprise 6 -

What's New. bgy")

8 Click OK to save the script and close the Script Editor.

£ 9 Toggle to Run mode and click the command button to open the file.

Concatenating versus Adding

JavaScript recognizes several types of data including: strings of characters
(letters and numbers) and real or integer numbers. The data type affects the
results of expressions using the + and += operators. If all the values in the
expression are numeric, + performs addition. If one value is a string value, +
concatenates.

JavaScript Operators ~ 4-9

[] Note

Example

n
w
]

Concatenation of Strings |3 + | |3

Addition of Strings [3 _| [3

n
=]

Figure 4-2 Concatenation and addition of strings

Text boxes, list boxes, and drop-down boxes return string values, not numbers.
If these strings are to be treated as numbers, JavaScript needs to be told to
“parse” (change the value of) the string into a number.

JavaScript has two methods for parsing strings into numbers:
= parselnt() convertsa string into an integer

= parseFl oat () converts a string into a floating point number

Any Product Name Variable document can be used for the following exercise.

In Design mode, add three text boxes and a command button to a new or existing
EIS section in Sanpl e3. bqy, similar to Addition of Strings in Figure 4-2. Script
the command button to add the values of the first and second text boxes, return-
ing the result in the third text box.

Enter numbers in both the first and second text box and click the button. What is
the result?

4-10

JavaScript Syntax

a B w N

L] Tip

Exercise: Concatenating Values
To concatenate the values of two text boxes to a third text box:

In Design mode, drag a text box from the Catalog pane to the Content pane of a new or
existing EIS section.

Double-click the text box and change the Name to operand1.
Add a command button to the right of operand1.
Double-click the command button and change the Title to +.

Copy and paste the operand1 text box, move it to the right of the + button.

The new text box is automatically renamed operand2 by
Product Name Variable.

Product Name Variable allows copying and pasting of control objects only
when the Console window is closed, and only within the same document
section.

Copy and paste the operandl text box again and move it to the right of operand2.

Product Name Variable automatically renames the new text box operand3.
Change the Name of operand3 to txt_result.

Select the + button and choose EIS - Scripts.

Add the following JavaScript:

t xt _resul t. Text =operandl. Text +oper and2. Text

To avoid typing errors, use the Object browser to navigate to EIS Objects, and
then select the Text property for each text box. Type only the = and +
operators.

Click OK to save the script and close the Script Editor.

In Run mode, type numbers in operandl and operand2. They concatenate to
txt_result after you click the + button.[Ctrl+D]

JavaScript Operators 4-11

D Note The following exercise continues from the previous one, but changes the script to add instead
of concatenate strings.

Exercise: Summing Values
To sum the values in two text boxes to a third text box:

1 In Design mode, select the + button and choose EIS — Scripts. [F8]

2 Add the parselnt() method around operand1.Text.

t xt _resul t. Text =par sel nt (oper andl. Text) +toper and2. Text

3 Add the parselnt() method around operand2.Text.

t xt _resul t. Text =par sel nt (oper andl. Text) +par sel nt (operand2. Text)

Caution! The method par sel nt is lowercase, with the I capitalized.

Script Editor

@ Application d Obiject: Ewent Trigger.
e Constants | Commandeutton2 =] [onCick | Line rurnber: [1 GoTo
[#|_] Resource Objects
& | B M|
ted-result Text=parseint{operand! Texd)+parselntioperand2 Text)| d
- |
A
7~ Description
Deescription text =
K| _>IJ

Help Check Syntax | QK Cancel

4 Click OK to save the script and close the Script Editor.

4 In Run mode, the sum of the numbers in operandl and operand2 appears in
txt_result after you click the + button.

4-12 JavaScript Syntax

Variables

[] Note

Variables are user-defined names that temporarily store data such as numbers,
strings, or other objects (a string, a limit, a chart, a pivot, and so on.). Variables
can be created and defined when the variable is needed, or formally declared at
the beginning of the script. Variables can be either local or global and have two
important characteristics:

= Name — Word used to identify the variable. A variable name must not be a
reserved word and must start with a letter. Letters, numbers, or an
underscore can be used in the the name. Do not use periods, spaces or
hyphens.

» Data Type — Type of information stored in the variable, including:

O

O

O

Numbers — For example, 1 or 6.5777
Booleans — True or false
Strings — For example, Brio Technology

null — Keyword which denotes a null value. The null value is also a
primitive value.

undefined — Top-level property whose value is undefined. The
undefined value is also a primitive value.

m There is no method to distinguish explicitly between integer values (for example, 2) and
real (floating point) numbers (for example, 3.14.). In addition, there is no dat e data type.
However, you can use the Date object to handle date manipulations.

Chapter 5, “JavaScript Basics” introduces the use of variables in JavaScript
scripts.

Variables 4-13

Caution!

[] Note

Declaring Local Variables
Use the term var to declare a new local variable.

var vari abl e

A local variable is available only to the function or event handler script that
defines it, and cannot be accessed by another function or event. Once a name is
declared, it is assigned a value of null or undefined unless you assign a specific
value when declaring the variable name.

In the Product Name Variable object model, it is helpful to adopt a naming
convention that starts with the type of object and includes the action or value.
For example, a list box containing StoreType data values could be named
Lbx_storeType.

JavaScript is case sensitive. A variable named Lbx_St or eType is not the same
as| bx_StoreType.

Declaring Global Variables

Global variables are available throughout Product Name Variable and include
document and custom scripts, all EIS control and section scripts, the Report
Designer section, the computed items features of the Results, Chart, and Pivot
sections, and other BQY documents opened in the same instance of

Product Name Variable.

Global variables are not available between BQY documents when using the Web client (that is,
the Insight plug-in) because Web browsers do not support them. Cookies should be used to
write variables shared between documents.

A global variable is defined outside of a function or event and once defined,
can be accessed by other functions and events. You must assign a specific value
to global variable when you declare it. If you type:

gvari abl e

you get a run-time “not defined” error because global variables can not have a
value of null or undefined.

4-14

JavaScript Syntax

var

var

D Note There is no way to bypass a “not defined” error, not even by using try-catch syntax since itis a

Resul t

Resul t

15

run-time error. The JavaScript engine halts execution before “try” has a change to “catch” an
exception. This is expected behavior of the JavaScript language.

To prevent this error, assign a specific value to the global variable when
declaring it:

gvari abl e=25

You should consider some naming convention to distinguish global variables

from local variables, such as an extra “g” at the beginning of the global variable
name.

Dynamically Declaring Variables

You can also dynamically declare a variable by creating a new property on an
object, for example:

Act i veDocunent . MyNanme = " Dan"

These variables are similar to global variables but they can be seen only within
the scope of the object with which they are associated, and they exist only as
long as the object exists. To access this variable you need to include the object
name as well as the variable name, for example:

Consol e. Witel n(ActiveDocument. MyNang)

Assigning Values

The JavaScript assignment operator (=) assigns a value to a variable. The type
of data can be a number (the number of items or the result of a calculation), an
object (a string or an object path), or a boolean (true or false).

/'l The value 15 is assigned to
the variabl e named Result

Result + 2 // The variable Result is incremented by 2

The data type can be changed at any time. For local variables, the data type is
null or undefined until a value is assigned. Once a value is assigned, the
variable’s data type defines whether the + operator concatenates or adds; to
add, all values must be numeric. See “Concatenating versus Adding” on

page 4-9 for converting a string to a number.

Variables 4-15

JavaScript is a dynamically typed language. This means that you do not need to
specify the data type of a variable when you declare it. Data types are converted
automatically as needed during script execution. This allows you to reuse
variables with different data types. For example, if you define a variable, such
as:

var version = 6.5

Later, you can assign a string value to the same variable:

version = "Product Name Variable 6.6"

Since JavaScript is dynamically typed, this assignment does not cause an error

message.

In expressions involving numeric and string values with the + operator,
JavaScript converts numeric values to strings. For example, consider the
following statements:

/'l returns The version is 6.5

X = "The version is " + 6.5

In statements that involve other operators, JavaScript does not convert
numeric values to strings, for example:

"50" - 5 // returns 45
"60" + 5 // returns 65

4-16

JavaScript Syntax

Reserved Words

JavaScript sets aside certain words that have a unique meaning and cannot be

used as function or variable names, or method and object names. Some of the

reserved words are in use in the current version of JavaScript or are intended

for use in a future version.

Table 4-4 lists JavaScript’s reserved words.

Table 4-4 Reserved Words in JavaScript

abstract do if

boolean double implements
break else imports
byte extends in

case false instanceof
catch final int

char finally interface
class float long
const for native
continue function new
default goto null

package
private
protected
public
return

short

static

super
switch
synchronized

this

throw

throws

transient

true

try

var

void

while

with

Reserved Words

4-17

Summary
When creating JavaScript scripts, remember the following points:

Avoid the JavaScript error “...is not defined” by clicking through the Object browser
to generate statements and typing quotes around string values.

The “=" operator means “equal” and assigns a value. The “==" operator means
“matches” and compares values.

Escape special JavaScript characters with the backslash (\).

The “+” and “+=" operators concatenate when any value is a string. When all
values are numeric, they perform addition.

4-18

JavaScript Syntax

JavaScript Basics

The previous chapter covered JavaScript terminology, variables, and operators.
This chapter associates a script to a drop-down box, and the exercises in this
chapter introduce the use of variables for more flexible scripts, shorter codes
lines, and clearer logic. This chapter contains:

s Using Drop-Down Boxes
» Modifying Limits

» Finishing the Document

D Note The exercises in this chapter use the file Sanpl elnod. bqy and the Limits EIS, Limits Query,

Limits Results, and Limits Chart sections.

5-1

Using Drop-Down Boxes

Drop-down boxes are typically used to list multiple values from which users
can make one selection.

You can use limits that were set in other sections to limit the values available in
drop-down boxes.

For example, Activate the Limits Results section of Sanpl elnod. bgy and
double-click Territory on the Limit line. There are seven available Territory
values in the database, but only three are selected in the Show Values list (Asia,
North America, and South America). This means the Results section displays
only products sold in Asia, North America, and South America.

4 Options |

Sections s J Lirnit |
T T T
Gume: tomoy |
= Mame: ITenitory ak. I
_ ™ Include Nulls Cancel |
: ™ Mot |=Equal = lgnare |
= | Show Values | B —
Help
I~ Custom Values _I
_ Select Al
= Transfer

In the Limits EIS section, the territories shown in the drop-down box also are
limited to these three selected values.

Total Unit Sales

Books
Morth America
South America

“ddeos

husic

5-2

JavaScript Basics

[] Note

o1

This chapter shows you how to create a script that allows the user to view the
pie chart according by territory as selected from the drop-down box .

The exercises in this section add a script to a drop-down box to display an
alert. The exercises introduce two concepts:

= Accessing a Drop-Down Selection

= Using a Variable for the Selection

Use the file Sanpl elnod. bqy to add a script to DropDown1 in the Limits EIS section.

Accessing a Drop-Down Selection

To add a JavaScript script to the drop-down box to display the selection in an
alert:

Open Samplelmod.bqy, activate the Limits EIS section, and change to Design mode.

2 Samplelmod.bqy

Limits EIS

Sections

Total Unit Sales :ﬂ:

Books

Il Books
O husic
M “Adeos

“ddeos

husic

Using Drop-Down Boxes 5-3

2 Double-click DropDown1 to display the Properties dialog box, change the Name field to

drp_Territory, and then click OK.

Properties - DropDownl

Object I Walues] Font I

~ Object

Mame: Idrp_T enitory

Tite: |

I~ Settings
I isible
¥ Enable
™ Locked

QK I Cancel Help

[] Tip To clarify the purpose of control objects when viewed through the object

model, adopt a naming convention that includes the type of object (dr p_ fora
drop-down box) and the type of information or action associated with the
object (Terri t ory for database Territory options).

Open the Script Editor for the drop-down box.

Right-click drp_Territory (changed from DropDown1)—which should still
have handles around the box—and select Scripts from the shortcut menu.

Cut

Copy
a erritary Delete

‘ Froperties...

D Note This rest of this exercise shows how to click through the object model to associate a script to

drp_Territory, a Limits EIS object. The script will apply the | t emmethod, using a pointer to the
selected item (SelectedIindex) as the method argument.

54

JavaScript Basics

4

7

8

Expand Methods and Properties for Limits EIS Objects — drp_Territory.

Script Editor - drp_Termritory

7 Documents ;I
ActiveDocument

ActiveSection
*] Toolbars

*] FiecertFiles
Conzole

- @ Session |
#-ZP Constants

=[] Limitz EIS Objects
= drp_Territory
1 Methods
B[] Properties

NI

To see both methods and properties for drp_Territory, scroll down, or click the
striped arrow below the scroll bar to expand the catalog pane.

Double-click the Item method to enter drp_Territory.ltem() in the Script Editor.
drp_Territory.ltem()

Place the cursor inside the parentheses of the Item method, and then double-click
Selectedindex from the Properties folder.

Type a semicolon (;) and a return [Enter] at the end of the line.

The line now reads:

drp_Territory.ltem(drp_Territory. Sel ect edl ndex);

The Sel ect edl ndex property of a drop-down box is the index number (or
position number) of the selected value. | t en() uses this argument to return
the text the user selected.

Add a new statement using the Alert method with the drop-down selection as its
argument.
a. Type Alert() or double-click Alert from within Application — Methods.

b. Copy the first JavaScript statement and paste it inside the Alert method’s
argument parentheses.

c. Delete the semicolon from within the argument.

d. Type a semicolon (;) and return [Enter] at the end of the statement.

Using Drop-Down Boxes 5-5

" Desciiption

"_| Properties d Object Event Trigger
Eii dip_Tenitory Idlp_Tenilmy j IDnSeIectmn j Line ruher h_ GoTo
[+ Methads
EI_I Properties M g m
5 ligrment . :
drp_Tenitory. tern{drp_Territory. Selectedindes, ﬂ

Application Alert{drp_Tetritory. Rerm {drp_Territoty Selectedindes));

Type
Werticaldlignment J

@ Font -
[@ CommandButtar v

Property Selectedndex as Number

f o

Help

Check Syntax | i[9 Cancel

9 Click OK to save the current script and close the Script Editor.

E 10 Toggle to Run mode , click the arrow in the drp_Territory drop-down box and select an

item.

Selecting an item causes a popup message to appear.

Morth America

INonh Ametric: 'l

The Alert method displays a popup message that contains the name of the item
selected from the drop-down box.

5-6

JavaScript Basics

Table 5-1

Using a Variable for the Selection

A variable is a temporary holder of information, such as the user’s selection in
a drop-down box. Using variables clarifies the programming logic, making it
easier to troubleshoot. Table 5-1 lists the characteristics of a variable.

Variable Characteristics

Characteristic

Explanation

Name

Value

Names must start with a letter or underscore. Subsequent characters may include letters,
numbers, or the underscore (dr p_Terri t ory is a legal name). A variable name cannot be a
reserved word (new s a reserved word, but newVar i abl e is not).

Use a JavaScript var statement to declare a variable name before it is used. For example:
var newvari abl e;

In the above statement, JavaScript reserves the name newVar i abl e, with a value of null or
undefined.

Values are assigned to variables with the JavaScript assignment operator (=). Any type of data
can be assigned to a variable: an object (a string, a user selection, an object path), a boolean
(true or false), or a number. For example:

var newvari abl e;

newVar i abl e=t r ue;

The value can be assigned in a separate statement like above, or in the same statement that
declares the variable name. For example:
var newvari abl e=tr ue;

newVar i abl e (and its value) is available only within the script or function that declares it, pre-
venting accidental changes from other scripts using the same variable name.

[] Note

This exercise uses a variable to hold the user’s selection (the first line of the
script from the preceding exercise). A variable can be declared in one statement
and the value assigned in another:

var Sel ection;
Sel ection=Territory.ltem(Territory. Sel ectedl ndex);

or the statements can be combined:

var Sel ection=Territory.ltenm(Territory. Sel ectedl ndex);

The following exercise continues from the previous section. This exercise alters the script in the
drop-down box (renamed drp_Territory) in the Limits EIS section of Sanpl elnod. bgy.

Using Drop-Down Boxes 5-7

o1
2
3
4

B 5

Exercise: Declaring a Variable
To declare a variable and assign the drop-down selection:

Toggle to Design mode , open the Script Editor on drp_Territory.

Type var Selection= at the beginning of the first line of the existing script.

var Sel ection=drp_Territory.lten(drp_Territory. Sel ectedl ndex);
This declares a new variable Selection, and assigns the user’s selection to it.

Replace the argument for Alert with the variable Selection.

var Sel ection=drp_Territory.lten(drp_Territory. Sel ectedl ndex);
Al ert (Sel ection)

Click OK to save the script and close the Script Editor.

Test the script by toggling to Run mode and selecting an item from the drop-down box.

An alert containing the name of the selected item should appear.

If the alert displays “undefined”, the alert argument has not been assigned a
value. This is most likely a typo: If the variable is defined with a capital “S” for
Selection, the variable in the alert argument must also have a capital “S”.

The exercises in this section used JavaScript and the Brio object model to
access a user’s selection in a drop-down box. The | t emmethod, with

Sel ect edl ndex as the argument can be acted on directly, or a variable can
hold the selection, clarifying the JavaScript logic: get the selection, act on it.

5-8

JavaScript Basics

Modifying Limi*

Statements to modify
an existing limit. Each
statement ends with a
semicolon.

Commented statements
ignored by JavaScript.
Multi-line comments
start with /* and end
with */

Caution!

[] Note

var Selection;
Selection=drp_Territary.temidrp_Territary. Selectedindeax);

IDnSeIection j Line number: I‘I_ GoTo |
2 elnod. bqy displays

. Continuing from the
ActiveDocument. Sections['Limits Results"] Limits[1].5electedvalues RemoveAll();

ActiveDocument. Sections['Limits e drop—down SCl‘lpt SO
Results"] Limits[1].SelectedValues AddiSelection); . .
ActiveDocument Sections['Limits Results section 1nstead
Results"]. Limits[1].Operator=bgLimitOperatarEqual; .

L__| ActiveDocument Sections['Limits Results"]. Recalculated); ecalculates, the p1e
i

var newChaoice;

newChoice=ActiveDocument Sections['Limits Results"].Limits[1]; . L . .
newChoice. Selectedvalues RemaveAlld; dlfY an eXlSUng hmlt
newChoice. Selectedvalues Add{Selection);

newChoice. Operator=hgLimitOperatorEqual;
ActiveDocument Sections['Limits Results"] Recalculated;
=

I

var newChaoice;

newChoice=ActiveDocument Sections['Limits Results"];
newChoice. Limits[1].SelectedValues RemaveAlld;
newChoice Limits[1].SelectedValues Add{Selection);
newChoice Limits[1].Operator=hgLimitOperatorEqual;
newChoice Recalculated;

L] =
Check Syntaxl QK | Cancel |

Figure 5-1 Script to Modify the First Limit (Limit 1) with a Drop-Down Selection

Modifying a Results Limit

The advantage of modifying a Results section limit is that it excludes data from
the display without affecting the local data set and without a database
connection. Processing Query section limits requires a database connection.

There must be a limit on the Limit Line for the script to execute. If there is no
existing limit, an “uncaught exception” error will be recorded in the Console
window and the rest of the script will not execute.

This exercise assumes that the Script Editor for the drop-down box drp_Territory is open. If it is
not, open the file Sanpl elnod. bgy and activate the Limits EIS section. In Design mode,
select the drop-down box drp_Territory, and then right-click to select Scripts.

Modifying Limits ~ 5-9

3

To modify an existing limit with the drop-down selection:

Delete the Alert line in the existing JavaScript.
There should be one statement left in the scripting pane.

var Sel ection=drp_Territory.lten(drp_Territory. Sel ectedl ndex);

Use the Object browser to navigate to Application . ActiveDocument — Sections —
Limits Results — Limits — 1 — SelectedValues — Methods), and double-click RemoveAll.

The Limits Results section is low in the object model hierarchy because it is the
result of a second query (every section that pertains to the first query comes
before it).

The RemoveAl | method deletes any current values, making “room” for the
new selection.

Type a semicolon (;) at the end of the statement, and then press [Enter].

Acti veDocunent . Sections["Limts Results"].Limts[1]. Sel ectedVal ues. RemoveAl | ();

4

5

JavaScript recognizes an end-of-statement when it sees a return [Enter] or a
semicolon (;). It is good practice to end statements with both, especially when
a long line wraps and starts looking like several lines in the Script Editor.

Add the user’s selection as the next statement in the script.

a. Double-click the Add method (in the same Methods folder as RemoveAll).

b. Type the variable Selection as the argument for Add (inside the
parentheses).

c. Type a semicolon (;) at the end of the statement, and then press [Enter].

Act i veDocunent . Sections["Limts
Resul ts"].Limts[1]. Sel ect edVal ues. Add(Sel ecti on);

This step adds the selection the user chose as the value for the limit.

For the next statement, add the limit operator.

a. Navigate up the object model to object 1, expand the Properties folder, and
then double-click Operator.

5-10

JavaScript Basics

EN-Y
--J Methods
E|J Froperties
. CustomSOL
Dizplayt ame
FullH ame
1 gnore

IncludeMulls
Megate
Operator

b. Type = after Operator.
The Brio Intelligence object model includes a collection of Constants. Use
the BgLi m t Oper at or constant to set the Operator value in the next step.
c. In the object model Constants collection, open BqLimitOperator, and

double-click bqLimitOperatorEqual.

You may want to close all expanded folders to access Constants more easily.

E-&® BqlimitOperator ;I
=1 baLimitd peratorB eginsiith
bqLimitD peratorB etween

baLimitD peratorContains

=1 hglLimitdperatorCustomS QL
baLimitD peratorE nds'with
boLirnitD peratork qual
baLimitD peratorGreaterT han

1 baLimitD peratorGreaterT hanDrE_I
baLimit0 peratorl shull

baLimitD peratorLessThan

- E) bglimitdperatorLess ThandiE qu. W

d. End the statement with a semicolon (;) and a return [Enter].
Act i veDocurent . Sections["Limts
Resul ts"]. Li mts[1]. Operator=bqgLi m t Oper at or Equal ;

Double-click the Recalculate method from ActiveDocument — Sections — Limit Results
— Methods.

E| & Limits Results
=] Methods

B Recalculate

Modifying Limits ~ 5-11

=
oo ~

Act i veDocurent . Sections["Limts Results"].Recal cul ate()

The Recal cul at e method instructs Brio Intelligence to recalculate the
results data. It takes no arguments, but still has parentheses because it is a
method.

Click OK to save the script and close the Script Editor.

Toggle to Run mode and select a different item in the drop-down box.

In Run mode, selecting an item in the drop-down box changes the limit value
and operator, and recalculates the results to include data for a Territory equal
to the selection. The pie chart updates with the current results data.

5-12

JavaScript Basics

Using a Variable for an Object
The JavaScript script for modifying a limit with the drop-down selection is:
var Sel ection=drp_Territory.lten(drp_Territory. Sel ectedl ndex);

Act i veDocunent . Sections["Limts Results"].Limts[1]. Sel ectedVal ues. RemoveAl | ();
ActiveDocunent. Sections["Limts Results"].Limts[1]. Sel ectedVal ues. Add(Sel ecti on);
Acti veDocunent. Sections["Limts Results"].Limts[1].Operator=bqgLi m tOperatorEqual ;
Act i veDocurent . Sections["Limts Results"].Recal cul ate()

Several words in the last four statements are repeated in each line—the path to
Limits[1] and the path to Limits Results section. A variable can hold these
objects (the repeated words), which makes the JavaScript logic easier to read.

D Note This following exercise edits the JavaScript associated with drp_Territory from the previous
exercise (in the Limits EIS section of Sanpl elnod. bqgy) to use a variable for the object path.

Exercise Refer to Figure 5-1 on page 5-9 and study the last two sets of statements—using a
variable for the object (path). Select one of the sets to enter in Design mode.

Start by commenting out the last four statements in your current script by typing
| * before the first Acti veDocunent . Secti ons statement and */ after the
fourth one. This will make the four lines comment lines that JavaScript does not
execute.

Enter one set of statements with a variable newChoice holding the object path. Do
not enclose these statements in comments.

Test the new statements in Run mode. Selecting an item in the drop-down box
should still change the pie chart results.

Caution! Don’t end an object path value with a period. The syntax error “missing name
after . operator” refers to an incomplete object model path.

Modifying Limits ~ 5-13

The first set of commented statements in Figure 5-1 creates a variable equal to
navigating from ActiveDocument to Limits[1].

E- @ Limits Results
] Methods
1 Properties
B Columns _I
=& Limits
--J Methods
--J Froperties
Hod 1

NI

var newchoi ce;

newChoi ce=Act i veDocument . Sections["Limts Results"].Limts[1];
newChoi ce. Sel ect edVal ues. RenoveAl | ();

newChoi ce. Sel ect edVal ues. Add(Sel ecti on);

newChoi ce. Oper at or =bqgLi mi t Oper at or Equal ;

Act i veDocurnent . Sections["Limts Results"].Recal cul ate()

The second set creates a variable equal to navigating from ActiveDocument to
the Limits Results section (one step up in the hierarchy).

var newChoi ce;

newChoi ce=Act i veDocunment . Sections["Limts Results"];

newChoi ce. Li mi ts[1]. Sel ect edVal ues. RenoveAl | ();

newChoi ce. Li mi ts[1]. Sel ect edVal ues. Add(Sel ecti on);
newChoi ce. Li mi ts[1] . Oper at or =bgLi mi t Oper at or Equal

Modifying a Query Limit

The same JavaScript logic modifies a Results and a Query limit, except a query
uses Process instead of Recalculate to update the data with the new limit value.
Processing a query requires a database connection.

Exercise Change the existing limit in the Limits Query section based on the drop-down
selection. Use the Process method instead of the Recal cul at e method to
update the query results.

Act i veDocument . Sections["Limts Query"].Process()

To test the script, a database connection is needed. Use Brio 6.0 Sanple
1. oce. Leave the Host Name and Host Password blank.

The exercises in this section modified a limit according to a user’s selection.
Variables were used to hold the user’s choice and to hold the object model path
to the limit line object.

5-14 JavaScript Basics

Finishing the Document

The Limits EIS section contains an active pie chart and a drop-down box that
allows the user to choose limit options. To “finish” this document as a user
interface, set Limits EIS as the section that displays when the document is
opened (refer to “Sample JavaScript Script” on page 2-11). Additional features
to add are:

= Setting a Chart Fact
» Hiding Toolbars

Setting a Chart Fact

A chart in an EIS section can be passive (View-only), can activate the chart
section when clicked (Hyperlink), or can access drill down options when right-
clicked (Active). The pie chart in the Limits EIS section is set to Active in the
Properties dialog box, which allows direct access to underlying Product Line
data.

When the user drills down into underlying data, the chart section’s
X-Categories are changed to reflect this action. With JavaScript, the chart can
be returned to the top level (Product Line).

The following script executes when the Limits EIS section is activated.

Script Editor

7~ Description

void Add[String lkemM ame]

Ethl %Categories d Object. Ewent Trigger
B Methods ILlrmts EIS =l IEInAcllvata | Line number: IT— GaTa
“em Lsere |
% AddComputediten M g ﬂ

war topDril="Product’, d
J ActiveDocuments. Sections'Limits Chatt'l XCategories RemaveAll],
- Removed] ActiveDocuments Sections['Limits Chart'] ¥Categaries AdddopDrill),
[#-|_] Properties
- @ Product Line
|1 Methads
|_1 Properties
[@ Year
- Facts
-} ZCategories ﬂ
- @ HLabels

Ly o

Help

Check Syntax | QK Cancel

Finishing the Document ~ 5-15

D Note This following exercise sets the XCategory of the Limits Chart section to display the top level
fact: Product Line. The script is added to the Limits EIS section of Sanpl elnod. bqgy.

To script an EIS section to set a chart to a specific fact:
1 Activate the Limits EIS section by clicking the title in the Section pane.

2 Toggle to Design mode and choose EIS — Scripts to open the Script Editor on the active
section.

3 Declare a variable topDrill and assign the string Product Line.

var topDrill ="Product Line";

The variable topDrill now holds the chart fact Product Line.

4 RemoveAll XCategories from the Limits Chart section.

Acti veDocunent . Sections["Limts Chart"]. XCat egories. RemoveAl | ();
5 Add topDrill to the XCategories of the chart section.

Acti veDocunent . Sections["Limts Chart"]. XCat egories. Add(topDrill);
6 Click OK to save the script and close the Script Editor.

In Run mode, when the user selects Limits EIS in the Section pane, or the
document automatically activates this section (see “Sample JavaScript Script”
on page 2-11 for setting a section to activate when the document is opened),
the chart shows Product Line data.

The same JavaScript can be added to a command button, so the user can
choose to return the chart to Product Line at any time.

5-16 JavaScript Basics

Hiding Toolbars

JavaScript scripts can be added to the document itself, executing OnStartup or
OnShutdown. Add scripts to these events to perform any startup and shutdown
tasks.

D Note The following exercise hides the application Status bar, the Format toolbar, and the document
Section/Catalog pane. There are other toolbars accessible in each of these areas of the Brio
Intelligence object model. Use this exercise as a starting point to accessing the various
toolbars.

To hide toolbars:
1 Choose File - Document Scripts to open the Script Editor on the document.

2 Use the Object browser to navigate the object model, and set the property for the Status
bar, the Formatting toolbar, and the Section/Catalog pane to false.

a. In Application - Properties, double-click ShowStatusBar, and then type
=false. End the statement with a semicolon and a return.

Appl i cati on. Showst at usBar =f al se;
The menu bar can be accessed at this level of the object model, with
ShowMenuBar property.

b. In Application - Toolbars — Formatting - Properties, double-click Visible,
and then type =false. End the statement with a semicolon and a return.

Tool bar s["Formatting"]. Visi bl e=f al se;

Several other toolbars are accessible under Application - Toolbars.

c. InApplication - ActiveDocument — Properties, double-click ShowCatalog,
and then type =false. End the statement with a semicolon and a return.
Act i veDocunent . ShowCat al og=f al se;

The Section title bar can be accessed at this level of the object model with
the ShowSect i onTi t | eBar property.

Finishing the Document ~ 5-17

Summary
When scripting EIS controls, remember these points:

Separate JavaScript statements with a semicolon and a return.

Adopt a naming convention to simplify selection of the correct EIS control object in
the Object browser.

Before adding new values, use the RenmoveAl | method to clear any existing
values.

Use the Recal cul at e method to update results data. Use the Pr ocess
method to update query data.

Variables are temporary names for specific values or data. Two example uses for a
variable are (1) to hold the use selections and access the selection by name; and
(2) to shorten a long object model path and ease logic verification.

Results and Table section limits do not require a database connection; Query
section limits do.

5-18

JavaScript Basics

JavaScript Control Structures

The scripts in previous chapters execute each statement in sequence—from the
first to the last. The power and utility of JavaScript includes the ability to
change the statement order with control structures.

Control structures allow the execution order to change based on the state of
objects or the user selection. This chapter introduces control structures. It
contains:

» Understanding Control Structure Syntax
= About if...else Statements

= About switch Statements

6-1

Understanding Control Structure Syntax

The basic syntax of a control structure is:

type of control (control statement)
{ block of statements to execute, based on the value of the control statement ; }

= Parentheses hold the control statement and are a required part of the
control structure syntax.

= Curly brackets delineate the control statement block or control body.

= Each statement in the body of the control structure ends with a semicolon.

The result of the control statement defines whether or not the statements in
the control block are executed. Statements outside the control block are always
executed. Table 6-1 describes three JavaScript control structures and their
syntax.

Table 6-1 JavaScript Control Structures

Control Explanation Syntax

If An if tests the condition of a control statement, if (condition returning true or false)
using the comparison or logical operators in {
Table 4-3 on page 4-4. statenents;

The body statements execute only if the condition ~ Statenents executed after control;

tests true.

If...else An if...else tests the condition of a control state- if (condition returning true or false)
ment, using the comparison or logical operators in ~ {
Table 4-3 on page 4-4. statements;

}
The body of the if executes only when the condition €l S€
tests true. The body of the else executes if the con- {

dition tests false. Statenents;

statenents executed after control ;

6-2 JavaScript Control Structures

Table 6-1 JavaScript Control Structures (Continued)
Control Explanation Syntax
Switch A switch compares an expression to multiple case swi tch (expression returning a val ue)

values. Statements within a case execute only if
the case value matches the expression value.

Each case can end with an optional break state-
ment which breaks out of the switch control block
and continues execution with statements that
follow the end of switch.

An optional default statement executes only if
none of the case values match the expression
value.

If there is no default statement, and no matching
case value is found, execution continues with the
statement that follows the end of switch.

case val ue :
statenents;
br eak;

case val ue :
statenents;
br eak;

def aul t
st at enent s;

statenents executed after control ;

O husis
B ‘oz

“ddeos
husic

[T Show Chart as a Bar Chart

eck box s,got
ontrols” mntrod

Total Unit Saes Sta Eﬁ c]
4 -k box (checked or unc
W Books State 2: Check box is.

cheRgrc1ses 1n this chap
: Figure 6-1).

500,000 - "
400,000 - e
300,000 4
200,000

2

husic “ddeos

Total Unit Sales

Books

¥ Show Chart as a Bar Chart

Figure 6-1 Check Boxes Used to Change Between Two States: Pie Chart and Line Chart

4 Unit Sales

Understanding Control Structure Syntax

6-3

About if...else Statements

The JavaScript logic to set the ChartType to a Line if the check box is checked
is:

if (the checked property of the Check Box==true)

set the chart type to a line chart

}

JavaScript tests whether the Checked property of the check box matches frue.
When the condition test returns true (yes, the Checked property matches
true), it executes the body of the if statement block. When the condition test
returns false (no, the Checked property does not match true), it skips the if
statement block.

With this JavaScript logic, when the check box is selected, the pie chart changes
to a line chart. When the check box is cleared, the chart does not change
because the condition test (chk_ChartType.Checked==true) is false.

Use an if...else statement to expand the if to change the chart back to a pie chart
when the condition test is false. JavaScript tests the Checked property of the
check box. When the check box is checked, the body of the if executes. When
the check box is not checked, the body of the else executes.Brio Intelligence

Script Editor
=@ chk_ChartType «| Object Ewvent Trigger
] Methods [k CharType] fonCick El Line rumber 1 GoTo

Properties M g ﬂ

if ichk_ChartType.Checked==true)

{

ActiveDocurnents Sections['Limits Chart'] ChanType=thhartTypeLIne;
}

else

Werticalllignment i . " . :
ActiveDocument Sections['Limits Chart']. ChanType=hgCharTypePie;

: Wisible J }
- @ Fil

- @ Font
[+ @ RadicButton1
[+ @ Chartl

N

7~ Description

Property Checked az Boolean

Help Check Syntax | QK Cancel

D Note The following exercise adds scripts to new control objects in the Limits EIS section of
Sanpl elnod. bay.

6-4 JavaScript Control Structures

Exercise: Using an if...else Statement to Change Chart Types

To display a line chart if the check box is checked, otherwise (else) display a pie
chart:

Add a new check box to Limits EIS, change the Name to chk_ChartType, and change the
Title to Show Chart As A Line Chart (use the Properties dialog box).

Open the Script Editor on the new Show Chart As A Line Chart check box. [F8]

Type if (), a return [Enter], an open curly bracket ({), two returns [Enter], and a close
curly bracket (}).

it O
{

}

The parentheses hold the controlling condition test. The curly brackets are for
the body of the if, executed only when the condition tests to true.

Click inside the control part of the if, then use the Object browser to navigate to Limits
EIS Objects — chk_ChartType — Properties and double-click Checked.

i f (chk_Chart Type. Checked)
{

}

The Description pane shows Property Checked as Boolean. There are two
Boolean values: true and false.

After the chk_ChartType.Checked property, type ==true.
i f (chk_ChartType. Checked==tr ue)
{

}

Verify that there are two equal signs, meaning match true, not assign the value
true. Condition statements use the comparison or logical operators in
Table 4-3 on page 4-4.

Add a statement in the body of the if statement to change the Limits Chart to type Line.

a. Click inside the body of the if (on the blank line between the curly
brackets), then use the Object browser to navigate to
Application — ActiveDocument — Sections — Limits Chart — Properties
and double-click ChartType.

About if...else Statements 6-5

if (chk_Chart Type. Checked==true)

Act i veDocurnent . Sections["Limts Chart"]. ChartType

}
The Description Pane shows Property ChartType as BqChartType. Find the
collection for BqChartType in the object model under Constants.

b. After ChartType, type an equal sign (=), navigate to
Constants — BqChartType, and double-click bqChartTypeLine.

c. Type a semicolon (;) at the end of the statement.

if (chk_Chart Type. Checked==true)

{
ActiveDocunent . Sections["Linits Chart"]. Chart Type=bqChart TypelLi ne;

}

The semicolon clarifies where the statement ends and is recommended
practice.

On a new line, after the close curly bracket for the if, type else, a return [Enter], an open
curly bracket ({), two returns [Enter], and a close curly bracket (}).

}

el se

{

}

The curly brackets are for the body of the else, executed only when the
condition tests false.

Click in the body of the else and use the Object browser to add a statement to change
the Limits Chart to a pie chart.

el se

{

Acti veDocunent . Sections["Limts Chart"]. Chart Type=bqChart TypePi e;
}

The statement should end with a semicolon.
Click OK to save the script and close the Script Editor.

Toggle to Run mode to test the script.

When Show Chart As Line Chart is checked, the chart type changes to Line.
When it is not checked, the chart type is Pie. The on/off (checked/unchecked)
states of the check box controls two chart type options.

6-6

JavaScript Control Structures

Exercise

Caution!

L] Tip

Add a new check box to the Limits EIS section of Sanpl elnod. bqy. Add an if
statement that shows the chart legend when the check box is selected, and hides it
when the check box is not selected.

ShowLegend requires a Boolean (true or false) assignment. The statement to
show the chart legend is:
Act i veDocurent . Sections["Limts Chart"]. ShowLegend=true;

The JavaScript script to show a chart legend if chk_ShowLegend is true is:

i f (chk_ShowLegend. Checked==t rue)
{

Act i veDocurent . Sections["Limts Chart"]. ShowLegend=true;

}

el se

{

Act i veDocunent . Sections["Limts Chart"]. ShowLegend=f al se;

}

Use one equal sign when assigning a value, use two equal signs when testing if
the value matches true.

The check box and its script show the chart legend when the check box is
selected and its state becomes “checked.” Since the chart legend is already
showing, the check box must be cleared to hide the legend the first time the EIS
section is used.

The initial state of the chart and the check box can be set with JavaScript
statements associated with the OnActivate event of the EIS section:

Act i veDocurent . Sections["Limts Chart"]. ShowLegend=true;
chk_ShowlLegend. Checked=t r ue;

These two statements set both ShowLegend and the check box Checked
properties to true when the section is activated.

About if...else Statements 6-7

About switch Statements

switch statements use expressions, or cases, to control statement execution.
Each case holds one possible value and includes the statements to execute
when the value matches the expression result. Table 6-2 compares the control
logic of a switch to an if...else.

Table 6-2 switch versus If...else

switch if...else

swi tch (CheckBox. Checked) i f (CheckBox. Checked==tr ue)

{ {

case true : set the chart type to a line chart
set the chart type to a line chart }

case fal se : el se
set the chart type to a pie chart

} set the chart type to a pie chart

}

JavaScript evaluates the expression in a switch, then compares the expression
value to each case until it finds a matching value. The statements in the
matching case are executed and the next case is compared. If the matching case
ends with a break statement, JavaScript skips the rest of the cases (conserving
execution time).

Script Editor

@ Application ~| Objest Ewvent Trigger
@ onstans IChk_EhartTypeZ j IUHEI'CK j Line rumber: I'\— GoTa
[#_] Limits EI5 Objects

4] | B &l

gwilch (chk_ChartType2. Checked) d
(

case true
ActiveDocument Sections['Limits Chart'.CharType=hgChariTypeLine;
break;

case false:

ActiveDocument Sections['Limits Chart.CharType=hgChariTypeFie;
break;

}

El
A
7~ Description
Deescription text =
K| _>IJ
Help Check Syntax | QK Cancel

6-8 JavaScript Control Structures

[] Note

—_

Add a check box to the Limits EIS section of Sanpl elnod. bgy. Use switch logic instead of
if...else logic to change the chart type.

Exercise: Using a switch Statement to Change Chart Types
To switch to a line chart when Checked is true, or to a pie chart when Checked

is false:

Add a new check box to Limits EIS, and use the Properties dialog box to change the Title
to Switch Chart To Line Chart and the Name to chk_ChartType2.

Open the Script Editor on the new Switch Chart To Line Chart check box. [F8]
Type switch (), a return [Enter], an open curly bracket ({), two returns [Enter], and a

close curly bracket (}).
switch ()

}

The parentheses are for the expression. The curly brackets are for the body of
the switch.

Click inside the expression parentheses, and then use the Object browser to navigate to
Limits EIS Objects — chk_ChartType2 Properties) and double-click Checked.

swi tch (chk_Chart Type2. Checked)
{

}

The Description pane shows Property Checked as Boolean. Since there are two
Boolean values (frue and false), we will provide two case values.

In the body of the switch, add the case for a value of true, and the statement to change
the Limits Chart to a Line chart.

a. Click inside the body of the switch (on the blank line between the curly
brackets), type case true : and a return [Enter].

b. Navigate to Application — ActiveDocument — Sections — Limits Chart —
Properties and double-click ChartType.

The Description pane shows Property ChartType as BqChartType. Find the
collection for BqChartType in the object model under Constants.

About switch Statements 6-9

c. After ChartType, type an equal sign (=), then navigate to
Constants — BqChartType and double-click bqChartTypeLine.

d. Type a semicolon (;) at the end of the statement, and a return [Enter].

e. Type break; and two returns [Enter].

swi tch (chk_Chart Type2. Checked)
{

case true :
ActiveDocunent . Sections["Linits Chart"]. Chart Type=bqChart TypelLi ne;
br eak;

}

The case for true changes the chart to a line chart and ends with a break
statement so other cases are ignored. The extra return is for readability.

Add the case for a value of false, and the statement to change the Limits Chart to a pie
chart.

a. Click inside the body of the switch (on the blank line above the closing
curly bracket), type case false : and a return [Enter].

b. Use the Object browser to navigate to Application — ActiveDocument —
Sections — Limits Chart — Properties and double-click ChartType.

c. After ChartType, type an equal sign (=), and then navigate to
Constants — BqChartType and double-click bqChartTypePie.

d. Type a semicolon (;) at the end of the statement, and a return [Enter].

e. Type break; and a return [Enter].

swi tch (chk_Chart Type2. Checked)

{

case true :

ActiveDocunent . Sections["Linits Chart"]. Chart Type=bqChart TypelLi ne;
br eak;

case fal se :
Acti veDocurent . Sections["Limts Chart"]. Chart Type=bgChart TypePi e;
br eak;

}

Verify that there is a close curly bracket after the last case.

7 Click OK to save the script and close the Script Editor.

J“_*’ 8 Toggle to Run mode to test the script.

6-10

JavaScript Control Structures

Example

The chart should work the same with the switch as with the if...else logic.
When the check box is selected, the chart is a line chart; when the check box is
cleared, the chart is a pie chart.

DropDownl (under Select View)

of The Plan and Actual section of

Sanpl e2nod. bqy allows the user to change the Costs, Sold, and Revenue charts
to display results in terms of Planned vs. Actual, Planned, or Actual.

g2 Sample2-03. bgy

Plan and Actual

H[= E3

| s ¥

Planned vs. Actual Outcome

Select View:

DropDown1
selection options

Line Chart 'I

Planned vs. Actual 'l

/l v |
£0,000,000
0,000,000 —ﬁ ———— —#
30,000,000
20,000,000 -
10,000 000 -f

o]

Q

5.000,000 —
4,000,000 4
3,000,000
2.000,000 -

Costs

4 Costs Plan
< Costs Aetual

1 a2 oz a4

1,000,000

;% 4 Units Sold Flan
i < Units Sold Actual

o Q2 o2 o4

100,000,000
75,000,000
50,000,000
25,000,000

o

Revenu

- Revenue Flan
< Revenue Actual

The OnClick event for DropDownl creates a variable for the user choice. Then,
depending on the value of choice, the JavaScript goes through each chart and
removes all facts, and adds the appropriate facts. This is done with an if...else
control structure.

In Design mode, with the Console window closed, copy and paste DropDownl
and rename the new one DropDownl1_switch. Change the if...else control struc-
ture to a switch. (See “Controlling Chart Facts with if...else” on page 6-12 and
“Controlling Chart Facts with switch” on page 6-13 for the finished JavaScript

scripts.)

About switch Statements

6-11

Controlling Chart Facts with if...else

The JavaScript script for DropDownl, Plan and Actual section of
Sanpl e2nod. bqy is:

var choi ce=Acti veDocunent. Secti ons["Pl an and
Actual "] . Shapes. Dr opDownl[Dr opDownl. Sel ect edl ndex] ;

if (choice=="Planned vs. Actual')

{

Acti veDocunent .
Acti veDocunent .
Acti veDocunent .

Acti veDocunent .
Acti veDocunent .
Acti veDocunent .

Acti veDocunent .
Acti veDocunent .

Acti veDocunent .
}

el se

if (choice=="PI
{

Acti veDocunent .
Acti veDocunent .
Acti veDocunent .
Acti veDocunent .
Acti veDocunent .
Acti veDocunent .

}

el se

Secti
Secti
Secti

Secti
Secti
Secti

Secti
Secti
Secti

ons[" Pl anActual CostsChart"]. Facts. RenoveAll ();
ons[" Pl anActual CostsChart"]. Facts. Add(' Costs Pl an');
ons[" Pl anActual CostsChart"]. Facts. Add(' Costs Actual');

ons[" Pl anAct ual Sol dChart"] . Facts. RenoveAl | ();
ons[" Pl anAct ual Sol dChart"]. Facts. Add(' Units Sold Plan');
ons[" Pl anActual Sol dChart"].Facts. Add(' Units Sol d Actual');

ons[" Pl anAct ual RevenueChart"]. Facts. RemoveAl | () ;
ons[" Pl anAct ual RevenueChart"]. Facts. Add(' Revenue Pl an');
ons[" Pl anAct ual RevenueChart"]. Facts. Add(' Revenue Actual');

anned')

Secti
Secti
Secti
Secti
Secti
Secti

ons[" Pl anAct ual CostsChart"]. Facts. RenoveAl | ();

ons[" Pl anActual CostsChart"]. Facts. Add(' Costs Pl an');
ons[" Pl anAct ual Sol dChart"]. Facts. RenmoveAl | ();

ons[" Pl anAct ual Sol dChart"]. Facts. Add(' Units Sold Plan');
ons[" Pl anAct ual RevenueChart"]. Facts. RemoveAl | ();

ons[" Pl anAct ual RevenueChart"]. Facts. Add(' Revenue Pl an');

if (choice=="Actual")

{

Acti veDocunent .
Acti veDocunent .
Acti veDocunent .
Acti veDocunent .
Acti veDocunent .
Acti veDocunent .

}

Secti
Secti
Secti
Secti
Secti
Secti

ons[" Pl anActual CostsChart"]. Facts. RenoveAl | ();

ons[" Pl anActual CostsChart"]. Facts. Add(' Costs Actual');
ons[" Pl anActual Sol dChart"] . Facts. RenmoveAl | ();

ons[" Pl anAct ual Sol dChart"]. Facts. Add(' Units Sold Actual"');
ons[" Pl anAct ual RevenueChart"]. Facts. RemoveAl | ();

ons[" Pl anAct ual RevenueChart"]. Facts. Add(' Revenue Actual');

6-12 JavaScript Control Structures

Controlling Chart Facts with switch

The JavaScript for DropDown1_switch, Plan and Actual section of
Sanpl e2nod. bqy is:

var choi ce=Acti veDocunent. Secti ons["Pl an and
Act ual "] . Shapes. DropDownl_swi t ch[Dr opDownl_swi t ch. Sel ect edl ndex] ;

switch (choice)

{

case ' Pl anned vs.

Act i veDocunent .
Act i veDocunent .
Act i veDocunent .

Act i veDocunent .
Act i veDocunent .
Act i veDocunent .

Act i veDocunent .

Act i veDocunent .

Act i veDocunent .
br eak;

Secti
Secti
Secti

Sect i
Secti
Secti

Secti
Secti
Secti

case 'Planned':

Act i veDocunent .

Act i veDocunent .

Act i veDocunent .

Act i veDocunent .

Act i veDocunent .

Act i veDocunent .
br eak;

case ' Actual
Act i veDocunent
Act i veDocunent .
Act i veDocunent .
Act i veDocunent .
Act i veDocunent .
Act i veDocunent .

br eak;
}

Secti
Secti
Secti
Secti
Secti
Secti

. Secti

Secti
Secti
Secti
Secti
Secti

Act ual ' :

ons[" Pl anAct ual CostsChart"]. Facts. RemoveAl |l () ;

ons[" Pl anAct ual CostsChart"]. Facts. Add(' Costs Pl an');
ons[" Pl anAct ual CostsChart"]. Facts. Add(' Costs Actual');

ons[" Pl anAct ual Sol dChart"]. Facts. RenoveAl | ();
ons[" Pl anAct ual Sol dChart"] . Facts. Add(' Units Sold Plan');
ons[" Pl anAct ual Sol dChart"] . Facts. Add(' Units Sold Actual');

ons[" Pl anAct ual RevenueChart"]. Facts. RenoveAl | ();
ons[" Pl anAct ual RevenueChart"]. Facts. Add(' Revenue Plan');
ons[" Pl anAct ual RevenueChart"]. Facts. Add(' Revenue Actual');

ons[" Pl anAct ual CostsChart"]. Facts. RemoveAl |l ();

ons[" Pl anAct ual CostsChart"]. Facts. Add(' Costs Pl an');
ons[" Pl anAct ual Sol dChart"] . Facts. RemoveAl | ();

ons[" Pl anAct ual Sol dChart"] . Facts. Add(' Units Sold Plan');
ons[" Pl anAct ual RevenueChart"]. Facts. RenoveAl | ();

ons[" Pl anAct ual RevenueChart"]. Facts. Add(' Revenue Plan');

ons[" Pl anAct ual CostsChart"]. Facts. RemoveAl |l ();

ons[" Pl anAct ual CostsChart"]. Facts. Add(' Costs Actual');
ons[" Pl anAct ual Sol dChart"] . Facts. RemoveAl | ();

ons[" Pl anAct ual Sol dChart"]. Facts. Add(' Units Sold Actual');
ons[" Pl anAct ual RevenueChart"]. Facts. RenoveAl | ();

ons[" Pl anAct ual RevenueChart"]. Facts. Add(' Revenue Actual ');

Controlling Chart Facts with switch

6-13

Summary

When writing scripts for multiple possible object states or user selections, remember
these points:

= Use if...else or switch logic to control which statements execute.

= Add JavaScript to the EIS section to initialize EIS control objects and their
properties.

6-14 JavaScript Control Structures

Drop-Down and List Boxes

This chapter introduces the JavaScript for loop to manipulate multiple objects
with minimal scripting statements. It contains:

Using for Loops

» Filling Boxes with Multiple Values
= Accessing Selected Values
» Creating Results Limits

s What’s Next

71

Using for Loops

List boxes and drop-down boxes contain multiple values. These values can be
added at design time or with a JavaScript script and the Add method. For
example, to add the number 1 to a DropDownl, the JavaScript statement is:

DropDownl. Add(1);
To add the numbers 1 through 4 to DropDown1, the script might be:

DropDownl. Add(1);

Dr opDownl. Add(2) ;

Dr opDownl. Add(3) ;

DropDownl. Add(4);

This script repeats the same object model method until all the values are
added—with a different value each time. This could also be accomplished with
a for loop:

for (var i=1; i<=4; i=i+1)

I{JropDownl. Add(i);

}

The variable i holds the first value (or a pointer to the first value). It is then
tested against the total number of values. The test, is i less than or equal to the
total number of values (with a true or false result), controls whether the
statements inside the curly brackets execute. The Add method uses i as the
argument: the first time use the first value, the second time use the second
value, and so on. Once the statements in the body execute the first time, i is
then incremented by 1 with i =i +1 and retested. The Add statement executes
only while i <=4.

A JavaScript for loop (spelled with a lower-case “f”), and its three control
statements, uses this syntax:

for ([counter]; [condition-test]; [counter-increnent])

obj ect _nodel _pat h. net hod(counter);

}

= Parentheses hold three control statements and are a required part of the
syntax. Control statements are separated with a semicolon.

= Curly brackets delineate the control statement block (the body of the loop).

= Each statement in the body of the for ends with a semicolon. There can be
multiple statements.

7-2

Drop-Down and List Boxes

The counter statement executes once, usually initializing a variable to point to
the first value. The condition-test executes after the counter is initialized, and
every time it is incremented. The counter-increment executes after the body
statements, incrementing the counter by 1.

[] Tip Typinga comma instead of a semicolon, or testing a condition that will never
be false causes an infinite loop. To stop an infinite loop, type [Alt+End]
simultaneously.

Filling Boxes with Multiple Values

The exercises in this section use the file Sanpl e2nod. bqy and the MyEIS
section. This EIS section contains an empty list box and drop-down box, with
command buttons for the script to fill each box with multiple available values.
The values to add to the boxes are the available values from the limit line of the
PlanActualQuery section. There are two limits on the Limit line of
PlanActualQuery: Store Type and Territory.

The general steps to fill a drop-down or list box with multiple values are:

1. Get the total number of available values.
Assign the Count property of an object’s AvailableValues to a new variable.
The for loop’s control-test is i >=vari abl enane.

2. Remove all values from the box to make room for the current values.

Use the RemoveAll method for the box.

3. Starting with the first available value, add it to the box. Repeat until all
values are added.

Control the loop with (i =1; i >=vari abl enane; i ++).The increment
statement, i ++, increments the value of i by 1. It is the same as saying
i =i +1.

Filling Boxes with Multiple Values 7-3

Filling a List Box with Available Values

The JavaScript script to fill the list box List_StoreType with available values
from the first limit on the Limit line of the PlanActualQuery section is:

/* Create a local variable for the count of values */

var count;

count =Act i veDocunent . Secti ons[" Pl anAct ual Query"].Limts[1]. Avai |l abl eVal ues. Count ;

/* Test the variable to conpare with the nunmber of values added to box */
Console. Witeln("total avail abl e val ues "+count);

/* Renmpve any existing values in the box*/
Li st _StoreType. RemoveAl | ();

/* Repeat for the total nunber of values*/
for (i=1; i<=count; i++)

/* Add avail abl e values to box */
Li st _StoreType. Add(Acti veDocunent . Secti ons["Pl anActual Query"].Limts[1].
Avai | abl eVal ues[i]);
}
This script uses Consol e. Wi t el n to verify the value of the variable. The list

box should be filled with the same number of values.

Writeln is pronounced Write Line and spelled with a lower-case “L”. In
previous exercises, Alert was used for testing the state of objects and variables.
Writing messages to the Console window does not require user interaction and
keeps a record of each line as it is written.

The Console window can also be used to track the execution of the script.
Adding console messages before and/or after each step can be helpful in
troubleshooting a script that is not working.

[] Tip There are two methods to send messages to the Console window: Write and
Writeln. Writeln ends each message with a line return. The Write method does
not end with a new line; each message starts immediately after the preceding
one.

D Note The following exercise uses the MyEIS section in Sanpl e2nod. bqy. The exercise adds a
JavaScript to the Fill List Box button to “fill” the list box List_StoreType with available values
from the first limit (Limits[1]) of the PlanActualQuery section.

7-4 Drop-Down and List Boxes

Caution!

var count;

There must be an existing limit on the Limit line for the JavaScript to execute.
If no limit exists, an “uncaught exception” error will be displayed in the
Console window and the rest of the script will not execute.

Exercise: Using a for Loop to Fill a List Box with Limit Values

To fill a list box with available limit values:

In Design mode, open the Script Editor on the Fill List Box command button. [F8]
Declare a variable count and assign the Count property of AvailableValues from the first
limit in the PlanActualQuery section.

a. Type var count to declare the variable name.

b. End the statement with a semicolon (;) and a return [Enter].

c. Type count= to assign the property in the next step.

d. Use the Object browser to navigate to Applications —» ActiveDocuments —
Sections — PlanActualQuery - Limits - 1 - AvailableValues - Properties)
and double-click Count.

e. End the statement with a semicolon (;) and a return [Enter].

count =Act i veDocunent . Secti ons[" Pl anAct ual Query"].Limts[1]. Avail abl eVal ues. Count ;

3 Write the count of values to the Console window.

a. Navigate to Applications — Console — Methods and double-click Writeln.
b. Asthe method argument, type the string total available values in quotes.
c. Type +count after the string message.

This concatenates the string total available values and the value of count into
one argument for the Writeln method.

d. End the statement with a semicolon (;) and a return [Enter].
Console. Witeln("total available values "+count);
The message in the Console window displays the number of items that should

be added to the box.

Navigate to MyEIS Objects — List_StoreType — Methods and double-click RemoveAll.
Li st _StoreType. RemoveAl | ();

Before adding a new set of values to the list box, old values are deleted.

Filling Boxes with Multiple Values ~ 7-5

5 Type a for loop with i =1, the condition test i<= count, and the increment statement i++.
Separate the control statements with a semicolon (;).

for (i=1; i<=count; i++)

{
}

The value of i is set to correspond to the first item in the AvailableValues array.
The condition test verifies that i is <= to the total number of items.

6 Click in the body of the for loop (between the curly brackets), and enter the statement to
add (to the list box) the available values from the first limit.

a. Navigate to MyEIS Objects — List_StoreType — Methods and double-click
Add.

b. Asthe argument for the Add method, navigate to
Applications - ActiveDocuments — Section — PlanActualQuery - Limits
-1 - AvailableValues and double-click 1.

Li st _StoreType. Add(Acti veDocunent . Secti ons[" Pl anActual Query"].Limts[1].Avail able
Val ues[1]);

c. Change the pointer to the first AvailableValue to i.

Li st _StoreType. Add(Acti veDocunent . Secti ons["Pl anActual Query"].Limts[1].Avail able
Val ues[i]);

7 Click OK to save the script and close the Script Editor.

k8 Toggle to Run mode, display the Console window (View — Console Window), and then
click the Fill List Box button.

When the button is clicked, the Console window displays the message:

total available values 3

and three values are added to the list box.

7-6 Drop-Down and List Boxes

Filling a Drop-Down Box with Available Values

The exact same JavaScript logic is used to fill a drop-down box or a list box
from an existing limit on the Limit line of a Query or a Results section.

Exercise Fill the drop-down box in MyEIS section of Sanpl e2nod. bqy with the available
values from the second existing limit (Limits[2]) of the PlanActualQuery section.

The script to fill a drop-down box is associated with the Fill Drop-Down Box
button and shown below.

/* Create a local variable for the count of values */

var count;

count =Act i veDocunent . Secti ons[" Pl anAct ual Query"].Limts[2]. Avail abl eVal ues. Count ;
/* Test the variable to conpare with the nunmber of values added to box */
Consol e. Witeln("total available values "+count);

/* Renpve any existing values in the box*/
drp_Territory. RemoveAll ();

/* Repeat for the total nunber of val ues*/
for (i=1; i<=count; i++)

/* Add avail abl e values to box */
drp_Territory. Add(ActiveDocunent. Secti ons["Pl anAct ual Query"].
Lim ts[2]. Avai | abl evVal ues[i]);

Filling Boxes with Multiple Values ~ 7-7

Accessing Selected Values

L] Tip

The Itern method accesses the user selection(s) from a drop-down box or a list
box. Because a drop-down box allows one selection and a list box allows
multiple selections, the argument for Item is different for each object.

Drop-Down Item Argument

A drop-down box (an object) allows the user to select one item in the list. This
selection is stored in the object’s SelectedIndex property. This property is the
argument for the object’s Itern method:

dropdownobj ect . |1t en{ dr opdownobj ect. Sel ect edl ndex)
where dr opdownobj ect is the name of the drop-down box.

“Accessing a Drop-Down Selection” on page 5-3 provides step by step
procedures for accessing a drop-down object’s selected value. The following
JavaScript script writes the selected value from drp_Territory to an alert when a
selection is made.

/* Define a local variable for the drop down sel ection */

var drp_sel ect ed;

drp_selected=drp_Territory.ltem(drp_Territory. Sel ect edl ndex);

/* Display a "Selection" alert with the selected value */
Application. Alert(drp_sel ected, "Sel ection")

List Box Item Argument

A list box can allow multiple user selections. Each selection is added to an array
object SelectedList. The Item method (for SelectedList), with a number 1 as the
argument, accesses the first item in the array:

i stboxobj ect. Sel ectedList.|tem(1)
where :

i st boxobj ect is the name of the list box

1 is the first item in the SelectedList array.

It does not matter what order the list box values are selected in, SelectedList
stores them in the same order they appear in the list box, not in selection order.

7-8

Drop-Down and List Boxes

Use a JavaScript for loop to access each value in SelectedList. Initialize the
control variable to i (to match the first position in the array). Set the condition
to test if the variable is less than or equal to the count of values.

The JavaScript script to write the selected values from List_StoreType to an alert
is:
/* Define a local variable for the count of selections */

var count Sel ecti ons;
count Sel ecti ons=Li st_St oreType. Sel ect edLi st. Count ;

/* Display a "Selection" alert with the selected value */
for (i=1; i<=countSel ections; i++)

Application. Al ert(List_StoreType. Sel ectedList.Iten(i),"Selection");

A list box has two event handlers: OnClick and OnDoubleClick. When multiple
selections are allowed in a list box, either attach the script to the
OnDoubleClick event handler (the user double-clicks the last selection to
activate the JavaScript) or to a command button. With a command button, the
user clicks in the list box to make selections, and then clicks the button when
all selections are made.

What if there are no selections when the button is clicked?

If nothing is selected when the the JavaScript is activated, the Console window
displays the message “an uncaught exception error: Item not found”. To avoid
this error, execute the script if the Count property of SelectedList is greater than
zero. The following script writes the selected values from List_StoreType to an
alert (if a selection was made). The script is associated with the OnClick event
of the Display Selections button.

/* Define a local variable for the count of selections */
var count Sel ecti ons;
count Sel ecti ons=Li st_St oreType. Sel ect edLi st. Count ;

/* If selections were made in the list box */

if (countSel ecti ons>0)

{
/* Display a "Selection" alert displaying the selected value */
for (i=1; i<=countSelections; i++)

Application. Al ert (List_StoreType. Sel ectedList.Iten(i),"Selection");

Accessing Selected Values ~ 7-9

D Note The following exercise assumes the list box List_StoreType (in the MyEIS section of
Sanpl e2nod. bgy) contains three values. See “Filling a List Box with Available Values” on
page 7-4 for the JavaScript to add the values.

If you have not already done so, it is best to save the document before starting this exercise.

Exercise: Using Loops to Access List Box Selections
To access list box selections and write them to an alert:

1 In Design mode, open the Script Editor on the Display Selections button. [F8]

2 Define a local variable (countSelections) for the total count of selected items.
Use the Count property of SelectedList under List_StoreType.

var count Sel ecti ons=Li st_St or eType. Sel ect edLi st. Count;

The value of countSelections serves as the condition test in the if and the for
statements.

D Note The following step is an additional statement providing feedback on the number of selected
items—even if the Alert does not display.

3 Add a Console.Writeln statement that displays the number of selected items.

Console is in the Application collection.

Consol e. Witel n("nunber of selected itens: "+count Sel ections);
This Console message always displays, even when no alert appears.

4 Add an if control block to execute when countSelections>0.

i f (countSel ecti ons>0)

{
}

7-10 Drop-Down and List Boxes

=

o ~

In the body of the if, add a for loop with a control variable (i) set to 1, a condition test
i<= countSelections, and an increment for i (i++).

var count Sel ecti ons=Li st_St or eType. Sel ect edLi st. Count;
i f (count Sel ecti ons>0)

for (i=1; i<=countSelections; i++)

{

}
}

The control variable i starts at 1 (which is less than or equal to countSelections)
and increments by 1 after each pass through the body of the loop.

In the body of the for loop, add an Alert statement, with each SelectedList value as the
argument.

a. Navigate to Application — Methods and double-click Alert.
Application.Alert()

b. Click in the parentheses of the Alert method, then navigate to MyEIS
Objects - List_StoreType — SelectedList - Methods and double-click Item.)
Application. Alert(List_StoreType. SelectedList.lten())

c. Typeiin the Item argument parentheses.

Application. Alert(List_StoreType. SelectedList.lten(i));

Click OK to save the script and close the Script Editor, then toggle to Run mode.

Display the Console window (View — Console Window) and test the script by clicking on
the Display Selections button.

If nothing is selected in the list box when the button is clicked, the Console
window displays the message “number of selected items: 0”.

If multiple items are selected in the list box (hold [Shift] or [Ctrl] to select
multiple items), the Console window displays the number of selections and an
alert displays the first value in the SelectedList array. Click OK in the alert to
display the next item in the array, until all selections have been displayed.

Accessing Selected Values ~ 7-11

[] Tip When using list boxes for user selections, offer the capability of clearing the

selections. Use one of the following scripts with the OnClick event of a new
command button or a text label (set the Font property of a text label to
Underline):

To clear selections in a list box:

var cl ear=Li st_StoreType. Sel ect edLi st. Count;
for(i=1; i<=clear; i++)

Li st _StoreType. Unsel ect (Li st_St oreType. Sel ect edLi st.
Item ndex(1));

}
OR

Li st _StoreType. Enabl ed=fal se; List_StoreType. Enabl ed=tr ue;

The statements above disable the list box which clears all selections, then
enable it.

Creating Results Limits

User selected values can limit results data for closer analysis. Applying the limit
to a results set, or to a table, does not require a database connection.

The steps to create a Results limit are:

1. Remove current limits from the limit line.
2. Create a limit object with the column name.
Add a value.

Assign an operator.

Add to the limit line.

AN L

Recalculate.

Refer to “Modifying Limits” on page 5-9 for a comparison of the steps.
Creating a new limit (versus changing an existing limit) requires three
additional steps:

» Remove existing limits from the limit line (versus removing all current limit
values).

Use the RemoveAll method for the section’s Limits collection.

7-12

Drop-Down and List Boxes

= Create a new limit object, with the name of the database object (the results
or table column name).

The name must match an existing data column name. Use a variable to hold
the Name property of the column. Use another variable to hold the new
limit object with the method CreateLimit and the column name as the
method argument.

= Add new limits to the limit line (after adding a value and an operator).

Use the Add method for the section’s Limits collection. The new limit
object is the argument.

The JavaScript script to add a new limit to the PlanActualResults section with
the selection from drp_Territory is:

/* remove limts fromthe limt line */
Act i veDocunent . Sections[" Pl anActual Resul ts"].Limts. RenmoveAll ()

/* create a variable to hold the colum name, create a newlinmit with the name */
var nanmeLimt; var newLimt;

nanmelLi m t =Acti veDocument . Secti ons[" Pl anAct ual Resul ts"]. Col ums["Territory"]. Nane;
newlLi m t =Acti veDocument . Secti ons[" Pl anActual Results"].Limts. CreateLimt
(naneLinmt);

/* add the selected value to the new limt */
newLi mt. Sel ect edVal ues. Add(drp_Territory.Item(drp_Territory. Sel ect edl ndex));

/* assign an operator to the new limt */
newli m t. Oper at or =bqgLi m t Oper at or Equal ;

/* add the limt to the limt line */
Act i veDocunent . Sections[" Pl anActual Resul ts"].Limts. Add(newLi mt)

/* update results */
Act i veDocunent . Secti ons[" Pl anAct ual Resul ts"] . Recal cul at e()

D Note The following exercise uses the MyEIS section in Sanpl e2nod. bqy to create a single limit on
the Limit line of PlanActualResults section. This exercise assumes the drop-down box
drp_Territory contains seven Territory values. See “Filling a Drop-Down Box with Available
Values” on page 7-7 for the JavaScript to add the values.

It is best to save this document before starting this exercise.

Creating Results Limits ~ 7-13

Exercise: Using JavaScript to Clear and Assign New Results
Limits in Drop-Down Boxes

To create a new Results limit with a drop-down selection:
In Design mode, open the Script Editor on the drp_Territory drop-down box. [F8]

Remove all existing limits from the Limit line of the PlanActualResults section.

a. Use the Object browser to navigate to ActiveDocument — Sections —
PlanActualResults — Limits — Methods and double-click RemoveAll.

b. Type a semicolon (;) and a return [Enter] at the end of the statement.

This statement removes all limits from the Limit line.

Acti veDocunent . Sections[" Pl anActual Resul ts"].Limts. RemoveAll ();

3

Declare two new variables, nameLimit and newLimit, ending each declaration with a
semicolon (;).

var nanmeLimt; var newLimt;
Troubleshooting is easier if all variables are declared in one place. The variable

nameLimit holds the name of the results data column. The variable newLimit
holds the new limit object.

Using the Object browser, assign the Name property of the PlanActualResults Territory
column to nameLimit.

a. Type nameLimit=, then navigate to PlanActualResults » Columns -
Territory — Properties and double-click Name.

b. Type a semicolon (;) and a return [Enter] at the end of the statement.

nanelLi m t =Acti veDocument . Secti ons[" Pl anAct ual Resul ts"]. Col ums["Territory"]. Nane;

5 Create a new limit object, with nameLimit as the argument.

a. Type newLimit=, then navigate to PlanActualResults - Limits — Methods
and double-click CreateLimit.

b. Type nameLimit as the argument for the CreateLimit method.

c. Type asemicolon (;) and a return [Enter] at the end of the statement.

newLi m t =Acti veDocunent . Secti ons[" Pl anActual Resul ts"].Limts. CreateLimt(naneLim

t);

7-14 Drop-Down and List Boxes

The CreateLimit method creates a new limit object with the same methods and
properties that all limit objects have.

The new limit is not visible in the Object browser (until the script executes).
Step 6 and Step 7 use the SelectedValues.Add method and Operator property
common to all limit objects.

6 Add the drp_Territory selection to newLimit as a SelectedValues.
a. Type newLimit.SelectedValues.Add() .

b. Click inside the parentheses, then use the Object browser to add the
selected value from drp_Territory to the Add method’s argument.

Use the Item method with the SelectedIndex property of drp_Territory.
newlLi mt. Sel ectedVal ues. Add(drp_Territory.ltem(drp_Territory. Sel ect edl ndex)) ;

c. Type asemicolon (;) and a return [Enter] at the end of the statement.

7 Assign the bgLimitOperatorEqual Operator to newLimit.
a. Type newLimit.Operator=.
b. Double-click bqLimitOperatorEqual (from the Constants collection).
newLi m t . Oper at or =bqgLi m t Oper at or Equal ;

c. Type asemicolon (;) and a return [Enter] at the end of the statement.

8 Add the new limit object (newLimit) to the limit line of the PlanActualResults section.

a. Navigate to ActiveDocument — Sections — PlanActualResults - Limits —
Methods and double-click Add.

Act i veDocurent . Secti ons[" Pl anActual Resul ts"].Limts. Add();

b. Type the new limit object (newLimit) as the argument to the method.
Act i veDocurent . Sections[" Pl anActual Resul ts"].Limts. Add(newLinit);
c. Type asemicolon (;) and a return [Enter] at the end of the statement.
The PlanActualResults section now has one limit with an operator and a user-
selected value.
9 End the script with a statement to recalculate the section PlanActualResults.

a. Navigate to ActiveDocument — Sections — PlanActualResults — Methods
and double-click Recalculate.

b. Type a semicolon (;) and a return [Enter] at the end of the statement.

Act i veDocurent . Secti ons[" Pl anActual Resul ts"] . Recal cul ate();

Creating Results Limits ~ 7-15

o 10 Click OK to save the script and close the Script Editor, then toggle to Run mode and test.

Making a selection from the drop-down box creates a new limit, and
recalculates the results. The limited results data is reflected in the chart.

Recalculating results (or tables) updates the displayed results according to the
local Limit line parameters. A local limit does not delete data from the local
data set (resulting from the original query), it just limits the display of the data.

The same basic steps are used to create a new local limit from list box
selections. Since a list box allows multiple selections, the script uses a for loop
to add all the selections to the limit.

D Note The following exercise uses the MyEIS section in Sanpl e2nod. bqy to create a single limit on
the Limit line of PlanActualResults section. This exercise assumes the list box List_StoreType,
contains three Store Type values. See “Filling a List Box with Available Values” on page 7-4 for
the JavaScript to add the values.

It is best to save this document before starting the exercise.

Exercise Add a script to the Calculate Limit button that adds the selections from the list
box, List_StoreType, to a new Store Type limit for PlanActualResults.

Consider what would happen if there are no selections in the list box when the
button is clicked. The script should execute the limit statements if the count of
selections is >0.

7-16 Drop-Down and List Boxes

The script for adding multiple selections from List_StoreType is:

/* Assign the nunber of selections to a local variable */
var count Sel ecti ons=Li st_St or eType. Sel ect edLi st. Count ;

/ *

If there are selections in the list box */

i f (count Sel ecti ons>0)

{

/* remove limts fromthe limt line*/
Acti veDocunent. Secti ons[" Pl anAct ual Resul ts"].Limts. RenmoveAl | ()

/* create a limt object with the col um nanme */

var naneLimt; var newLimt;

nameli m t =Act i veDocunent . Secti ons[" Pl anAct ual Resul ts"]. Col ums["Store Type"]
. Nane;

newlLi mi t =Acti veDocunent . Secti ons["Pl anAct ual Resul ts"].Limts.CreateLinit
(nameLimt);

for (i=1; i<=countSelections; i++)

/* add the selected values to the new limt*/
newlLi mit. Sel ect edVal ues. Add(drp_Territory.lten(drp_Territory. Sel ect edl ndex))
}

/* assign an operator to the new limt*/
newli m t. Qper at or =bqLi m t Oper at or Equal ;

/* add the limt to the limt line */
Acti veDocunent. Secti ons[" Pl anAct ual Resul ts"]. Limts. Add(newLimt)

/* update results after adding limts */
ActiveDocunent. Secti ons[" Pl anAct ual Resul ts"]. Recal cul at e()

Creating Results Limits

7-17

What’s Next

Part IT of this manual provides reference information on JavaScript and the
Brio Intelligence object model, including documentation for specific
Objects,Brio Intelligence Methods, and Properties. It also introduces more
advanced JavaScript logic, offers troubleshooting tips and tricks, and
documents the statement structure and syntax covered in this tutorial.

Summary
When manipulating multiple objects, remember these points:

= Use JavaScript for loops to execute the same statements with multiple values.

= Use if statements to skip value manipulation statements when there are no values,
thus avoiding JavaScript errors.

= Send messages to the Console window to pinpoint exactly what the script is doing;
and which statements are executing with what values.

7-18 Drop-Down and List Boxes

PART 111

Brio Scripting Reference

General Scripting Reference

This chapter provides reference information on using JavaScript with Brio

Intelligence. It contains:

Scripting Applications in Brio Intelligence

Understanding Functions

Using JavaScript Statements

Manipulating Objects with JavaScript

Using JavaScript to Open Web and OnDemand Server Documents
Microsoft Automation Interfaces and the Object Model

OLE Automation Controller within JavaScript

Exporting Scripts to Text Files

Troubleshooting Scripts

81

Scripting Applications in Brio Intelligence

When you use Brio Intelligence to create an application, the application can
comprise one or more Brio Intelligence documents and may contain one or
more of the components listed in Table 8-1.

Table 8-1 Components of Scripted Applications

Component Description

Startup/Shutdown Scripts Scripts that run when a document is opened or closed.

To prevent a startup script from running, hold down [Ctrl] while
opening the document.

EIS Shapes and Controls User Interface components that enable users to interact with the

application.

Computed Columns Scripts that run within the context of a Results or Table section
column.

Custom Menu ltems Special menu items that allow scripts to run from any section.

On Windows platforms, you can launch script commands from the command
line. Script commands launched from the command line require the

-j scri pt cnd flag. For example, to launch the Brio Intelligence application,
you would type:

briogry.exe —jscriptcnd "Application. Docunments. Open ("c:\\tenp\\briodoc. bgy")"

8-2 General Scripting Reference

Understanding Functions

Functions are one of the fundamental building blocks of JavaScript. A function
is a JavaScript procedure: a set of statements that performs a specific task. To
use a function, you must define it before your script can call it.

Defining Functions

A function definition consists of the function keyword, followed by:
= The name of the function

= A list of arguments to the function, enclosed in parentheses and separated
by commas

= The JavaScript statements that define the function, enclosed in curly
braces { }

For example, to define a simple function named squar e, enter:

function square(nunber) {
return number * nunber;

}

The function squar e takes an argument called number. The function consists
of one statement that indicates to return the argument of the function
multiplied by itself. The return statement specifies the value returned by the
function, for example:

return number * nunber

All parameters are passed to functions by a value. The value is passed to the
function, but if the function changes the value of the parameter, the change is
not reflected globally or in the calling function. If you pass an object as a
parameter to a function and the function changes the object’s properties, that
change is visible outside the function. For example:

functi on myFunc(theObject) {
t heObj ect . make="Toyot a"
}
mycar = {make: "Honda", nodel:"Accord", year: 1998}
x=nycar. make // returns Honda
myFunc (mycar) // pass object mycar to the function
y=mycar.nake // returns Toyota (property was changed by the function)

Understanding Functions 8-3

Calling Functions

In a Brio Intelligence analytical application, you can call any function that is
defined in the current script context. You can also use functions that have been
defined globally or at a higher scope than the current context.

Defining a function does not execute it. Defining the function simply names
the function and specifies what to do when the function is called. Calling the
function actually performs the specified actions with the indicated parameters.
For example, you would call the f unct i on square as follows:

squar e(5)

The preceding statement calls the function with an argument of 5. The
function executes its statements and returns the value 25.

The arguments of a function are not limited to strings and numbers. You can
also pass whole objects to a function.

A function can be recursive, that is, it can call itself. For example, here is a
function that computes factorials:

function factorial (n) {
if ((n==20) || (n==1))
return 1
el se {
result = (n * factorial (n-1))
return result
}
}

You could then compute the factorials of 1 through 5 as follows:

a=factorial (1) // returns 1
b=factorial (2) // returns 2
c=factorial (3) // returns 6
d=factorial (4) // returns 24
e=factorial (5) // returns 120

8-4

General Scripting Reference

Example 1

Function Scope

Functions are accessible within the scope in which they are created unless they
are explicitly defined in a different scope. This means that a function which is
defined in the OnClick() event handler of a command button can only be
called by other statements in the same event handler. Example 1 shows two
command buttons in an EIS section, MyButton and YourButton.

/1 MyButton
function square(val ue)

return val ue*val ue;

Alert (‘'The square of 3 equals ‘’'+ square(3))

/1 YourButton

var retVal = square(3)

/1 generates a runtinme error

Alert (‘'The square of 3 equals ‘’'+ retVal)

The square function is only visible in the context of MyButton. As a result, a
call to the square function from YourButton generates a runtime error.

Defining Functions in Different Scopes

To make your functions visible to other scripts throughout the application, you
must explicitly define the scope in which your function will be visible. This can
be accomplished a number of different ways:

1. Using the with statement to set the current scope of a script.
2. Dynamically adding methods to objects.
3. Assigning a function to a global variable.

When you use the with statement to set the current scopes, functions defined
within the with statement become visible for that object. Example shows one
method for expressing the two command buttons.

Understanding Functions 8-5

/1 MyButton
Wth (YourButton)

function square(val ue)
{

return val ue*val ue;

Alert (“The square of 3 equals “+ square(3))

}
/1 YourButton
var retVal = square(3)

Alert (“The square of 3 equals “+ retVal)

By explicitly defining the square function within the context of the YourButton
object, you make the function visible to the scripts that are running behind
that button. Using this syntax is not restricted to objects within EIS. Any object
from the object model can be used in conjunction with the with statement.

Example shows another way to accomplish the same behavior as Example .

/1 MyButton
Functi on square(val ue)

{

return val ue*val ue;
Alert (“The square of 3 equals “+ square(3)) YourBut-
ton.square = square;

/' YourButton
var retVal = square(3)
Alert (“The square of 3 equals “+ retVal)

In Example , a new method is dynamically added to the YourButton object.
Any scripts running in the context of this object will have access to the
dynamically created square function.

Taking this one step further, you could create a global variable that is
associated with the function as shown in Example .

/1 MyButton
Functi on square(val ue)

{

return val ue*val ue;

8-6 General Scripting Reference

}
Alert (“The square of 3 equals “+ square(3)) Myd obal Func-
tion = square;

/1 YourButton
var retVal = Myd obal Functi on(3)
Alert (“The square of 3 equals “+ retVal)

In Example, creating a variable named MyGlobalFunction without using the
var statement places that variable in the topmost scope. This makes it global.

D Note Use caution when working with global variables. These are visible throughout Brio Intelligence,
including to computed column calculations and Report section expressions.

Using JavaScript Statements

This section explains how JavaScript uses conditional and loop statements to
allow the execution order of a script to change based on the state of objects or
the user selection. It also discusses how to use break statements to alter the
execution of these control structures.

Conditional Statements

A conditional statement is a set of commands that executes if a specified
condition is true. The conditional statements supported by JavaScript are:

» if...else Statements
= Inline if Statements

= switch Statements

Using JavaScript Statements ~ 8-7

[] Note

if...else Statements

If a logical condition is true, use the i f statement to perform certain actions. If
a logical condition is false, use the optional el se clause to perform other
action. Example shows a typical if statement.

if (condition) {
statenmentsl

el se {
stat ements2

}

The condition can be any JavaScript expression that evaluates to true or false.
The statements to be executed can be any JavaScript statements, including
deeper nested if statements. If you want to use more than one statement after
an if or else statement, you must enclose the statements in curly braces {}.

Do not confuse the primitive Boolean true and false values with the Boolean
object true and false values. Any object whose value is not undefined or null,
including a Boolean object whose value is false, evaluates to true when passed
to a conditional statement, for example:

var b = new Bool ean(fal se);
if (b) // this condition evaluates to true

The words if and else must be in lowercase. If you type an uppercase “i” or “e”, you get a
“missing syntax” error. A then statement is implied for values enclosed in the curly braces “{ }".
If you type the word “then” in a statement, an error message is returned.

8-8

General Scripting Reference

Inline if Statements

The inline if statement is an alternative to the if...else statement. It uses the
conditional operator (?) to represent the “if” portion of the statement; the (:)
implies the “else” portion. It takes these three operands:

condition ? exprl : expr2

where:

= condi tion— An expression that evaluates to true or false

= exprl, expr2d- Expressions with values of any type.

If condi ti on is true, the operator returns the value of expr 1; otherwise, it
returns the value of expr 2.

You should place the condition in parentheses, with each expression in single
or double quotes:

((condition == value)? exprl' :'expr2')

D Note You can eliminate the condition parentheses as shown below, but omitting the quotes for
strings may lead to problems:

(condition? exprl':'expr2')

It is not necessary to place quotes around numbers.
(condi tion?2:10)

For example, to display a different message based on the true or false value of
the isMember variable, you could use this statement:

(isMenber ? ' Menmber' : 'Not a nmenber')

In this case, if the i sMenber variable evaluates to true, then the operator
returns the string Menber . If isMember does not evaluate to true, then the
operator returns the string Not a Menber.

You can also use the comparison operator:

((i sMenber == "Yes') ? 'Menber' : 'Not a nmenber')

Using JavaScript Statements 8-9

In this case, if the value of the variable isMember evaluates as equal to the string
Yes, then the operator returns the string Menber . If isMember does not
evaluate as equal to the string Yes, then the operator returns the string Not a
Menber.

If you want to nest inline if statements, (that is, use an inline if statement as an
expression for another inline if statement), enclose the nested inline if
statements in parentheses:

(1'=17? "Not Equal' : (1 <1 ? 'Less Than': 'Equal'))

In this case, if 1 evaluates as not equal to 1, the second inline if statement is
evaluated as part of the first inline if statement’s else clause. If 1 evaluates as less
than 1, the operator returns the string Less Than. Since 1 is equal to 1, the
operator returns the string Equal from the else clause of the second inline if
statement.

D Note When you open a version 5.5 document in the 6.2 version of Brio Intelligence and the
document contains computed columns with nested if...else statements, the Brio JavaScript
engine will convert the if...else syntax to the inline if statement syntax. The conversion process
will not alter the meaning or value of the original if...else statement.

switch Statements

A switch statement allows a program to evaluate an expression and attempts to
match the expression’s value to a case label. If a match is found, the program
executes the associated statement. Example shows an example of a swi t ch
statement.

switch (expression){
case | abel
st at enent ;
br eak;
case | abel
st at enent ;
br eak;

default : statenent;

}

8-10 General Scripting Reference

The program first looks for a label matching the value of the expression and
then executes the associated statement. If no matching label is found, the
program looks for the optional default statement. If a matching label is found,
the program executes the associated statement. If no default statement is
found, the program continues execution at the statement following the end of
switch.

The optional break statement associated with each case label ensures that the
program breaks out of Swi t ch once the matched statement executes and
continues execution at the statement following swi t ch. If br eak is omitted,
the program continues execution at the next statement in the switch statement.

In Example, if expr evaluates to “Bananas,” the program matches the value
with case Bananas and executes the associated statement. When br eak is
encountered, the program terminates SWi t ch and executes the statement
following swi t ch. If br eak were omitted, the statement for case

Cher ri es would also be executed.

switch (expr) {

case "Oranges" :
Consol e. Witeln("Oanges are $0.59 a pound.");
br eak;

case "Appl es" :
Consol e. Witel n("Apples are $0.32 a pound.");
br eak;

case "Bananas"
Consol e. Witel n("Bananas are $0.48 a pound.");
br eak;

case "Cherries" :
Console. Witeln("Cherries are $3.00 a pound.");
br eak;

def aul t
Console. Witeln("Sorry, we are out of " + i + ".");

Console. Witeln("lIs there anything else you'd like?");

Using JavaScript Statements ~ 8-11

Loop Statements

Al oop is a set of commands that repeatedly executes until a specified
condition is met. JavaScript supports the following Loop statements:

= for Statements

» do...while Statements
= while Statements

= label Statements

= continue Statements

D Note J/abel is not itself a looping statement, but is frequently used with these statements. In
addition, you can use the break and continue statements within loop statements.

The for...in statement executes statements repeatedly but is used for object manipulation. For
more information, see “Manipulating Objects with JavaScript” on page 8-17.

for Statements

The for loop repeats until a specified condition evaluates to false. The
JavaScript for loop is similar to the Java and C for loop.

for ([initial Expression]; [condition];

[increnment Expression]) {
statements
}

When a for loop executes, the following occurs:

1. The initializing expression i ni t i al EXpr essi on, if any, is executed. This
expression usually initializes one or more loop counters, but the syntax
allows an expression of any degree of complexity.

2. The condition expression is evaluated. If the value of condition is true, the
loop statements execute. If the value of condition is false, the for loop
terminates.

3. The statements execute.

4. The update expression i ncr ement Expr essi on executes and control
returns to Step 2.

8-12 General Scripting Reference

do...while Statements
The do. . . whi | e statement repeats until a specified condition evaluates to
false. A do. . . whi | e statement looks as follows:
do {

st at ement
} while (condition)
The statement executes once before the condition is checked. If the condition
returns true, the statement executes again. At the end of every execution, the
condition is checked. When the condition returns false, execution stops and
control passes to the statement following do. . . whi | e.

In the following example, the do. . . whi | e loop iterates at least once and
reiterates until it is no longer less than five.
do {
i +=1;
Console.Witeln(i);
} while (i<5);

while Statements

A while statement executes as long as a specified condition evaluates to true,
for example:
while (condition) {

stat enents

}

If the condition becomes false, the statements within the loop stop executing
and control passes to the statement following the loop.

The condition test occurs before the statements in the loop are executed. If the
condition returns true, the statements are executed and the condition is tested
again. If the condition returns false, execution stops and control is passed to
the statement following whi | e.

In Example , the while loop repeats as longasn < 3:

O OO

§_><3
S 70
+
+

(n<3){

X +=n

Using JavaScript Statements ~ 8-13

With each iteration, the loop increments n and adds that value to x. Therefore,
X and n take on the following values:

= After the first passsn=1andx =1
= After the second pass:n =2 and x =3
= After the third passsn=3and x=6

After completing the third pass, the condition n < 3 is no longer true, so the
loop terminates.

In Example , the while loop is an infinite loop that never terminates; that is, it
executes forever because the condition never becomes false.

while (true) {
Alert("Hello, world") }

label Statements

A label provides a statement with an identifier that lets you refer to it elsewhere
in your program. For example, you can use a label to identify a loop, and then
use the break or continue statements to indicate whether a program should
interrupt the loop or continue its execution.

The syntax of the label statement looks like this:

| abel
st at ement

The value of label may be any JavaScript identifier that is not a reserved word.
The statement that you identify with a label may be any type.

In Example , the label mar kLoop identifies a while loop.

mar kLoop:

while (theMark == true)
doSonet hi ng();

}

8-14

General Scripting Reference

continue Statements

The continue statement can be used to restart a while, do...while, for, or label
statement.

In a while or for statement, continue terminates the current loop and continues
execution of the loop with the next iteration. In contrast to the break
statement, continue does not entirely terminate the execution of the loop. In a
while loop, it jumps back to the condition. In a for loop, it jumps to the
increment expression.

In a label statement, continue is followed by a label that identifies a label
statement. This type of continue restarts a label statement or continues
execution of a labeled loop with the next iteration. The continue statement
must be in a looping statement identified by the label used by continue.

The syntax of the continue statement looks like this:
1. continue
2. continue [l abel]

Example shows awhi |l e loop with a cont i nue statement that executes
when the value of I is three. Thus, n takes on the values one, three, seven, and

twelve.
i =0
n=20
while (i < 5) {
| ++
if (i == 3)
conti nue
n += |
}

In Example , a statement labeled checkiandj contains a statement labeled checkj.
If cont i nue is encountered, the program terminates the current iteration of
checkj and begins the next iteration. Whenever cont i nue is encountered,
checkj reiterates until its condition returns false. When false is returned, the
remainder of the checkiandj statement is completed, and checkiandj reiterates
until its condition returns false. When false is returned, the program continues
at the statement following checkiand;.

Using JavaScript Statements ~ 8-15

If cont i nue had a label of checkiandj, the program would continue at the top
of the checkiandj statement.

checki andj :
while (i<4) {

Console. Witeln(i + "");

i+=1;

checkj :

while (j>4) {
Console. Witeln(j + "");
j-=1
it ((j%®)==0);
conti nue checkj ;

Consol e. Witeln(j + " is odd.");

Console. Witeln("i ="
Console. Witeln("j =

}

break Statements
Use the break statement to terminate a loop, switch, or label statement.

When you use break with a while, do...while, for, or switch statement, break
terminates the innermost enclosing loop or switch immediately and transfers
control to the following statement.

When you use break within an enclosing label statement, it terminates the
statement and transfers control to the following statement. If you specify a
label when you issue the break, the break statement terminates the specified
statement.

The syntax of the break statement looks like this:
1. break
2. break [l abel]

The first form of the syntax terminates the innermost enclosing loop,
switch, or label; the second form of the syntax terminates the specified
enclosing label statement.

Example iterates through the elements in an array until it finds the index of an
element whose value is t heVal ue.

8-16 General Scripting Reference

for (i =0; i <a.length; i++) {
if (a[i] = theValue);
br eak;

Manipulating Objects with JavaScript

JavaScript uses for...in and with statements to manipulate objects.

for...in Statement

The for...in statement iterates a specified variable over all of the properties of an
object. For each distinct property, JavaScript executes the specified statements.
A for...in statement looks like this:
for (variable in object) {

statenents }
The function in Example takes as its argument an object and the object’s
name. It then iterates over all the object’s properties and returns a string that
lists the property names and their values.

function dunp_props(obj, obj_nane) {
var result =""
for (var i in obj) {
result += obj_name + "." + i + " =" + obj[i] +""
}

result += "<HR>"
return result

For an object car with properties make and model, the result would be:

car.make = Ford
car.nodel = Mistang

Manipulating Objects with JavaScript ~ 8-17

with Statement

The with statement establishes the default object for a set of statements.
JavaScript looks up any unqualified names within the set of statements to
determine if the names are properties of the default object. If an unqualified
name matches a property, then the property is used in the statement;
otherwise, a local or global variable is used.

A with statement looks like this:

with (object){

statenents
}
In EXAMPLE, the with statement specifies that the Math object is the default
object. The statements following the with statement refer to the PI property
and the cos and sin methods without specifying an object. JavaScript assumes
the Math object for these references.

var a, X, Yy
var r=10
with (Math) {

a=P *r *r
X =r * cos(Pl)
y =r * sin(Pl/2)

}

8-18

General Scripting Reference

Using JavaScript to Open Web and OnDemand Server Documents

[] Note

You can use the Shel | or OpenURL methods to open Web and ODS
documents since commands given through Insight to the OnDemand Server
are interpreted by the ODS administrator and are not made visible to the
object model. For example, you could create a separate command button for
each query document that you want to open. Or you could populate a
drop-down box or a list box with user-friendly document names. When a user
selects a document name from the control object, it could invoke the Shel | or
OpenURL method.

In Brio Intelligence and Insight, you can download a document from a Web
site or the ODS with the Shel | method. For Insight (but not for Brio
Intelligence), you can use the QpenURL method.

Shell() Method

The Shel | method takes the form of Shel | (App, Ar gs) where App is the
application such as Netscape or MSIE, and Args is a document or URL for the
application. The Shel | method always opens a new instance of the browser.
For example, you could open MS Internet Explorer to the Brio Web site with:

Shel | ("i expl ore", "www. brio.cont)

If you do not have the path fir the application specified in the Win 95/98 aut oexec. bat
file, or Windows NT environment variables, then you must specify the full path to the
application, which limits the portability of the code. If the application path is specified in the
your aut oexec. bat file or environment variables, you can just use the name of the
application’s executable file. It is recommended that you specify the browser executable path
in your aut oexec. bat or environment variables.

Using JavaScript to Open Web and OnDemand Server Documents ~ 8-19

OpenURL() Method

To avoid specifying a browser path or to use the same browser window, you can
use the OpenURL method.

The syntax for OpenURL is QpenURL(ur |, type of w ndow) where urlis
your ODS document, and type of window is either the current browser window
or a new browser window.

The code in Example opens a new browser window.

Console.Witeln("Start OpenURL new script")
Application. QpenURL("http://ww. brio.cont', "_new")
Consol e. Witel n("End OpenURL new script")

The code in Example uses the browser window that is currently open.

Console. Witeln("Start OpenURL self script")
Application. OpenURL("http://ww. brio.cont', "_self")
Console. Witeln("Start OpenURL self script")

D Note If you don't fully qualify your URL with ht t p: / /, the QpenURL method assumes you are
looking for something on your OnDemand Server and fills in
http://webserver nane/ ods-i sapi/ (orods- nsapi orods-cgi depending on how
your ODS is set up).

Normally, when the OnDemand Server returns the document list, the
Dochane= parameter is a long string of what appears to be arbitrary
characters. This string is an encoded representation of the document name on
the server. The encoding is performed to support double-byte document
names for Asian languages. The OnDemand Server also supports an English
readable format in which to specify the document to load. The generic format
is:

http://webserverusernane/ ods-i sapi/ ods. ods?Met hod=get Docunent &Docnanme=M/+document

. bgyMy/+docunent +di spl ay+nane&JScri pt =enabl e

8-20 General Scripting Reference

The format consists of the physical name of the document as stored in the
OnDemand Server documents directory, followed immediately by the display
name the document uses (with no space between these two names). Any spaces
in either name are replaced with plus (+) signs. In the example above, the
physical document name is My docunent . bqy and the name displayed in the
document listis My docurent di spl ay nane. The names are case sensitive
and must exactly match exactly the name the OnDemand Server uses for the
documents to load. These names correspond to the File Name and Unique
Name fields given when registering the document for OnDemand Server
access.

To get the encoded document name, simply go into the ODS document list,
right-click a document, and select Copy Link Location. When you paste the
link, you see the actual name on the server. You can paste this name into the
Docnhane= part of your URL.

If you use the Shel | method to move up an ODS document in the client
version of Brio Intelligence, Insight opens unless you have Quickview specified
in the pl ugi ns directory.

Bypassing the Userid and Password

You can bypass the user ID and password login by passing them in the URL as
follows:
http://webserver nane/ ods-i sapi/ ods. ods?

Met hod=Il ogi n&User name=user name&Passwor d=passwor d&
Docname=docunent . bgydocunent di spl aynane&JScri pt =enabl e

Using JavaScript to Open Web and OnDemand Server Documents ~ 8-21

Including Limit Values in the URL Submitted to the ODS

The basic procedure for including limit values in the URL submitted to the
ODS is:

1. Include the column name in which the limit value will be applied in the
startup script. In this case, the column is “Store_ID.”

with (Application){passedStore_ld=Session. URL["Store_1d"]};

2. Make sure the URL incudes:

http://webservernanme/ ods-i sapi/ ods. ods?
Met hod=get Docunent &Docnanme=docunent nane. bqydocdi spl aynane&St ore_| d=2&
JScri pt=enabl e

3. Make sure the EIS control button includes:

Acti veDocunent . Sections["Query"]. Li mts[1].CustonVal ues. RenoveAll ()
Acti veDocurent . Sections["Query"].Limts[1].CustonVal ues. Add(passedStore_Id)
Acti veDocurent . Sections["Query"].Limts[1]. Sel ectedVal ues. Add(passedSt ore_Id)

4. The URL which sets multiple limits should include:

Ahtt p: // webser ver name/ ods-i sapi / ods. ods?
Met hod=get Docunent &Docnane=Qdsarray. bqyODSArray&l i m t 1=M\- NY- | A&
limt2=4/10/95-7/10/97& i m t3=5-10- 15&JScri pt =enabl e

Passing Parameters to OnDemand Server Documents Using
Browser Cookies or URL Parameters

OnDemand Server documents have powerful mechanisms in which to pass
values between the browser and the OnDemand Server. These mechanisms
include browser cookie values and URL parameters and may be accessed via
JavaScript inside a Brio document that has been served up from the
OnDemand Server. This capability allows expanded flexibility in designing
custom solutions that include the OnDemand Server.

The techniques described here are implemented in both HTML and in Brio
JavaScript inside a document registered to the OnDemand Server. The sample
documents used include a simple query, with a query limit on a column named
“Region.” This limit accepts the values “Americas,” “Asia Pacific,” or “Europe.”
One of these sample documents has been registered to the OnDemand Server
with a startup script that collects a value from a browser cookie, sets the value
of the “Region” limit to the value of that cookie, and then processes the query.
The second sample document was registered to the OnDemand Server with a

8-22 General Scripting Reference

document startup script that accesses a parameter passed on the URL string,
sets the value of the limit to the value of this parameter, and finally processes
the query.

Accessing Cookies

Cookies are a common way to store bits of information to be used across
browser sessions and across different browser pages. A cookie is set by defining
a name and value for that cookie. (For a complete discussion of cookies, and
how to set them, refer to the Netscape Web site or any of the numerous general
JavaScript books available at most bookstores.) The following sample HTML
code displays a text entry box on an HTML page, and when pressing the link it
sets a cookie named ‘Region’ to hold the value entered into the text box. The
hr ef in the link sends a message to the OnDemand Server to load the named
Brio document.

<htm >

<script>

function set Cooki e(cooki eNanme, cookieVal ue) {

docunent . cooki e = cooki eName + "=" + cooki eValue + "; path=/"

</script>

<body>

<f orm name=cooki eFor n>

Regi on = <input name=Region> (clicking the link will set the cookie to whatever
you type in)

<A href="http://djewett/ods-

i sapi / ods. ods?Met hod=get Docunment &Docnane=Cooki e+passi ng+sanpl e. bqyCooki e+passi ng+
sanpl e&JScri pt =enabl e’

onCl i ck="set Cooki e(' Regi on', document. cooki eForm Regi on.val ue)">click here to

| oad the docunent </ a>

</fornp

</ body>

</htnm >

The Brio document loaded from the server has a document startup script that
reads the value from the cookie, sets the limit on the Region column to that
value, and processes the query.

with (ActiveDocunment. Sections["Query"].Limts[1]. Sel ectedVal ues) {
RemoveAl | ()

Add(Sessi on. Cooki es[" Regi on"])

}

Act i veDocurent . Sections[" Query"]. Process()

Act i veDocurnent . Sections["Results"]. Activate()

Using JavaScript to Open Web and OnDemand Server Documents ~ 8-23

Accessing URL Parameters

A URL may include optional parameters passed to the Web server for
processing. These parameters are passed as name=value pairs at the end of the
URL, and are convenient ways to pass values into OnDemand Server
documents. These values may be collected on HTML forms, built dynamically
using Active Server Pages, or as shown in this sample, simply hard-coded into
HTML links. The following sample HTML code displays a page with three
links, each of which directs a request to the OnDemand Server to retrieve the
same document but with a different parameter string to indicate the value of
the Region limit.

<htm >

<body>

<A href="/ods-

i sapi / ods. ods?Met hod=get Docunent &Docname=Ur | +passi ng+sanpl e. bqyur | +passi ng+sanpl e
&JScri pt =enabl e&Regi on=Anericas' >Get Aneri cas Dat a</ a>

<A href="/ods-

i sapi / ods. ods?Met hod=get Docunent &Docname=Ur | +passi ng+sanpl e. bqyur | +passi ng+sanpl e
&JScri pt =enabl e&Regi on=Asi a+Paci fic' >Get Asi a Pacific Data

<A href="/ods-

i sapi / ods. ods?Met hod=get Docunent &Docname=Ur | +passi ng+sanpl e. bqyur | +passi ng+sanpl e
&JScri pt =enabl e&Regi on=Eur ope' >Get Eur ope Dat a</ a>

</ body>

</htm >

The Brio document loaded from the server has a Document Startup Script that

reads the value from the URL parameter, sets the limit on the Region column
to that value, and processes the query.

with (ActiveDocunment. Sections["Query"].Limts[1]. Sel ectedVal ues) {
RemoveAl | ()

Add(Sessi on. URL["Regi on"])

}

Acti veDocurent . Sections[" Query"]. Process()

Acti veDocurent . Sections["Results"]. Activate()

8-24 General Scripting Reference

Microsoft Automation Interfaces and the Object Model

The object model is typically manipulated by the JavaScript language from
inside an EIS section to build self-contained analytical applications.

Because Brio Intelligence is an OLE Automation server, on Microsoft Windows
systems, the object model can be addressed by Microsoft Automation
Interfaces.

You can use Microsoft Automation Interfaces to control Brio Intelligence in
external applications such as Excel, Visual Basic, C++, or any application that

can make OLE Automation calls. The object model is exposed through the
Bri oQuery. tbl filelocated in the syst enB2 directory.

@ Microsoft Visual Basic - Book1 - [Object Browser]
”%’ File Edit Wew Insert Format Debug Run Tools Window Help = |ﬁ'| ﬁl
a L = L] X
[ai@-E| B oo), @ a|HEFE2 0
x
- e
E-& VBAProject (Book1) | = #hl v
E]-"Eﬂ Microsoft Excel Objects | Classes Members of Application’
B8] Sheet1 (Sheet1) @ =globals= «||e& ActiveDocument &
187 ThisWorkbook Application E& ActiveSection
21 AreaChart = Alert
B Axisltem & Application
B Axisltems & Console
B AxisLabels =% CreateConnection
Properties - Sheetl 1 BarChart &' CurrentDir
|5heet1 wWarksheet ;| 1 BarLineChart E&' Documents
. - =F BnAdaptiveState =@ ExecuteBScript
Alphabetic | cak d

I ateqorize I = BoApi & Help |
w =F BrBarLineShif =% |oadSharedLibrar
DisplayPageBreat False =F B :

: =& BoBarLineType & Mame
E“ag:egulmf"tt‘?r ?a'se 2@ BoBorderEffect +® OpenURL
E::hI:Oz;;;;rF;T:e =F BpBorderStyle E& Parent
EnablePivotTable False = chmmlsﬁp?] @; Pat_hSeparatnr
EnableSelection 0 - xiNoRestrict | (2 Btha”Labemr'Entat'Uj =B Quit |

=& AnChadTene r ParantFilac
Mame Sheetl
Scrollarea Class nﬂﬂlicaﬂﬂn
Standardwidth 5.38 MIEAEEY 30 ST
Wisible -1 - xISheetisit

Microsoft Automation Interfaces and the Object Model 8-25

PRODUCTION NOTE:

PRODUCTION NOTE:

e Conslant j
] Pofs el y
- Descrntion)
production note.
Descilon et I rioQuery object
j wcel 97 is shown

ﬂl (Check Syl il ﬂl

Figure 8-1 Using the BrioQuery object model from the Visual Basics for Applications editor within
Excel 97

Above graphic needs replacing: VBdatamodel.tif (original) Current file created from original PDF
file - save as eps, scaled 72%. Scroll bars print badly in PDF and this eps art is CMYK. Can be
used as documentation of what art should contain....

OLE Automation Controller within JavaScript

L] Tip

Brio Intelligence is an OLE Automation controller. On Windows systems, Brio
Intelligence can control external applications that are OLE Automation servers.
By making OLE Automation calls, Brio Intelligence can access functionality
exposed by other OLE Automation Servers. Examples of OLE Automation
Servers include MS Excel and MS Visual Basic.

You cannot embed OLE objects inside a Brio Intelligence document. Likewise,
Brio Intelligence is not an OLE Server that produces OLE objects you can
embed in OLE Containers.

Example shows you how to invoke a new Excel Worksheet from a command
button created in an EIS section and write “Hello World” to rows 2 and 3 in
column B.

oExcel = new JOOLEODbj ect ("Excel . Application");

oExcel . Visible = true;

oExcel . Wor kbooks. Add;

oExcel . Sheets.ltem(1).Cells.ltem(2).ltem2). Value = "Hell 0";
oExcel . Sheets.ltem(1).Cells.ltem(2).1tem3). Value = "Wrld";
Print (oExcel . Sheets.ltem(1).Cells.ltem(2).lten(2). Val ue);

8-26

General Scripting Reference

Exporting Scripts to Text Files

Use the Export Scripts To Text File feature to export JavaScript code and
associated events contained in a BQY file into a text file (. t xt). Brio
Intelligence categorizes the text file by object name and events, and includes
document and custom menu item scripts.

To export a script to a text file:

1 cChoose File — Export — Scripts To Text File.
The Export Script dialog box appears.

2 Specify the file name and location, and then click Save.

Exporting Scripts to Text Files 8-27

Troubleshooting Scripts

When a script fails to execute due to a syntax or runtime error, you need to
debug the code. Finding errors may take time depending on the length and
complexity of the code. One way to prevent errors is by observing the protocols
that JavaScript requires. This section explains what you need to know to help
prevent and locate errors in your scripts.

Space-Saving Variables

One exception to the Code Entry rule is: If you plan to repeatedly use an object
model path, define it as a variable to save space and keep your script compact.

For example, instead of typing:

Acti veDocunent . Secti ons[" Query"]. Dat aModel . Connecti on. Username = "brio"
Acti veDocunent . Sections[" Query"]. Dat aModel . Connect i on. Set Password("bri 0") Acti veDo
cunent . Secti ons[" Query"]. Dat aMbdel . Connect i on. Connect

try this:

DMPat h = ActiveDocunent. Secti ons["Query"]. Dat aMbdel . Connecti on
DMPat h. User nane = "bri o"

DMPat h. Set Passwor d("bri 0")

DMPat h. Connect

You must remember to treat space-saving variables like the actual object model
paths. That is, insert periods between object model segments and do not add
unnecessary spaces.

Also, it is generally a good idea to only include objects as part of the path. That
is, make sure that your variable does not have any methods or properties
segments for the object with which you want to work. For example:

LPath = ActiveDocunent. Sections["Query"].Limts
LPat h. Acti vat e()

is incorrect because Act i veDocunent . Sections["Query"].Limts
does not have an Activate() method.

However, this script is correct:

LPath = ActiveDocunent. Sections[" Query"]
LPat h. Acti vat e()

8-28

General Scripting Reference

Case-Sensitive Code

JavaScript is case sensitive and distinguishes between uppercase (capital) and
lowercase (small) letters. Rules to remember include:

= All JavaScript statements (for example, var,i f ..el se,whil e,swi tch,
and so on) start with a lowercase letter. This script will fail because var is
capitalized:

Var StringNane = "John Smith"

= All JavaScript core operators start with an uppercase letter, for example
new Dat e(). This script fails because Date is in lowercase.
new dat e()

= All object model Path segments start with a capital letter, for example
Act i veDocunent . Sections["ElI S"]. Activate().

Both of these commands will cause the script to fail because the
Act i veDocument segment is not properly capitalized.
acti veDocunent . Sections["El S"]. Acti vat e()
Act i vedocunent . Sections["ElI S"]. Activate()
= You must refer to variables exactly as you define them. If you define a
variable as:
var StringName

then you must always refer to it as St ri ngNane, not St ri ngnane or
st ri ngName or stri ngnane.

Troubleshooting Scripts ~ 8-29

Assignment Operators Versus Comparison Operators
JavaScript makes a distinction between Assignment and Comparison
Operators.

This is an assignment operator:

myvar = 5

This is a comparison operator:

if (nyvar == 5)

A common error is to switch the two. Keep them separate. Be particularly
careful when you are assigning argument values to methods.

DMPat h = ActiveDocunent. Secti ons[” Query”]. Dat aMbdel . Connecti on
/1 This works...
DMPat h. Set Passwor d(“bri 0”)

/1 This does not!!!!

DVvPat h. Set Password = "bri o"

The last line of script assigns the value “brio” to DMPat h. Set Passwor d,
which is probably not what you want to do.

Conditional Tests

When using if statements, avoid impossible conditional tests. For example, the

following script will always return “myvar is not 5!” even though myvar is 5.
This is because the condition will always evaluate to false. In this case, 5 is not

the same as “five.”

var nyvar = 5

if (myvar == "five")
{
Alert("myvar = 5!")
}

el se

Alert("myvar is not 5!")

It is especially important to know exactly how a variable reports in your
condition. The Consol e. Wi tel n() and Al ert () methods are especially
useful in diagnosing problems like this. Note that the JavaScript core operator
String is used only to format myvar for the Console window:

var nyvar = 5
Consol e. Witeln(String(myvar))

8-30

General Scripting Reference

if (myvar == "five")

Alert("myvar = 5!")
}

el se

Alert("myvar is not 5!")

If you are comparing the value you selected in a list box or a drop-down box to
another value, make sure you know what value you are getting back before you
compare it to something else. You especially want to avoid mixing up the
placement of the item you selected in the control with the item’s actual value.

Sometimes it is a bit tricky to get the value you want back from one of these
control boxes. Remember that list boxes have selected lists that may contain
multiple values, while drop-down boxes have a selected that can contain only
one value.

For example, if you have values of 4, 9, 15, 25, and 36 in your drop-down box,
and you select 36, the script below returns myvar i s 5!, which seems wrong.

This happens because the DropDown1.SelectedIndex returns the placement in
the drop-down box of the item you selected. Your choice of 36 is the fifth item
in the drop-down box. Note that the console window reports “5”.

var nmyvar = DropDownl. Sel ect edl ndex

Consol e. Witeln(String(myvar))
if (nyvar == 5)

Alert("myvar = 5!")

el se

{
Alert("myvar is not 5!")

}
Now let’s say you have a drop-down box that contains the values of “one,”
three,” “four” and “five.” The script below returns myvar = five!
when you select “five.” However this is only because your choice “five” is the

» «

“two,

fifth choice in the drop-down box. However, the fifth choice is not necessarily
equal to five. You can end up comparing the wrong things.

DropDownl = ActiveDocunent. Sections["ElIS"]. Shapes. Dr opDownl
var nmyvar = DropDownl. Sel ect edl ndex

Consol e. Witeln(String(myvar))

if (nyvar == 5)

Alert("myvar = fivel")
}

Troubleshooting Scripts ~ 8-31

el se

Alert("myvar is not fivel")

}

The script below returns the actual value you see in the drop-down box. Let’s
assume again that you have a drop-down box that contains the values of “one,”

» «

“two,” “three,” “four” and “five:”

DropDownl = ActiveDocunent. Sections["ElIS"]. Shapes. Dr opDownl
var nmnyvar Dr opDown1[Dr opDownl. Sel ect edl ndex]

Consol e. Witeln(String(myvar))

if (myvar == "five")

Alert("myvar = 5!")
el se

{
Alert("myvar is not 5!")

Syntax Reference

On the bottom left of the Script Editor, directly above the Help button, is the
Description pane. The Description pane shows you the necessary syntax for
any item you select in the Object browser.

For example, in the Object browser, navigate to
Application — ActiveDocument — Sections - Query — Methods, then select the
Activate(). The Description pane reads:

void Activate()
This indicates that the Act i vat e() method does not take any arguments.

Now click on the Expor t () method. The Description pane reads:

void Export(String Filenane, BgExportFil eFormat FileFornat, [optional] Bool ean

I ncl udeHeader s)

This indicates that the Export () takes three arguments, two required
arguments and an one optional.

For more detailed information, click Help to open the online help for the
Export() Method topic.

8-32 General Scripting Reference

Recalculating Results

A script that includes limits may execute slowly because it has to recalculate a
complete data set each time there is a modification. You can use the
SuspendRecal cul at e property to prevent a Results limit from recalculating
after each modification.

In the following example, limit values are dynamically selected at a list box, but
the recalculation occurs only after the last value is selected.
Sections[sect_nane].Limts[limt_col].SuspendRecal cul ation = true;

Sections[sect_nane].Limts[limt_col]. Sel ect edVval ues. RemoveAl | ();
for(l = 1; | <= ListBox2. Sel ectedLi st. Count; | ++)

{
NewLi mi t Val ue = ListBox2. Sel ectedList[I];

newname += ListBox2.Sel ectedList[I]
Sections[sect_nane].Limts[limt_col]. Sel ect edVal ues. Add(NewLi m t Val ue);

}
Sections["Results"].Limts["1"]. SuspendRecal cul ati on = fal se;
Sections[sect_nane].Limts[limt_col].lgnore=false; // Trigger recal cul ati on now

Designing Your Script

JavaScript is an interpreted, not a compiled, language and it evaluates and runs
each line of code in sequence. If JavaScript finds a problem with a line of code
as it attempts to run it, it simply stops. Although the Brio Intelligence Script
Editor syntax checker catches some obvious syntax errors, many errors may go
unnoticed until run time.

You should identify whether each line of code will execute or fail. While it may
seem like a lot of work to identify each line of code in this fashion, it pays off in
time saved developing your scripts. It is also an essential technique for
identifying problems in your scripts. You can check the legitimacy of your
scripts using the Console window.

The Console window is used to display error messages and alert values
generated by the JavaScript interpreter. During a script debugging cycle, you
can write messages to the Console window to track the state of variables and
the progress of the script. If a syntax error is detected (and not a runtime
error), the error and the line number in which it has occurred appear in the
console window. Use the line number to move directly to the line where the
error has occurred in the Script Editor.

You can access the Console window from any section within the document; it
it remains open until you close it.

Troubleshooting Scripts 8-33

[] Note

The Console window also displays the buffer of all error messages that occur
from when Brio Intelligence is started. Thus, the Console window may display
information that is no longer of value to you. You can choose Edit - Clear to
clear the buffer contents. When the Console window is closed, the buffer size is
1,000 bytes. When the Console window is open, the buffer size is 641 bytes.

There are two major techniques to write to the Console window: the
Consol e. Wite()/Console. Witel n() methods, and the Al ert ()
method.

The Consol e. Wite() and Consol e. Wi tel n() methods are essentially
identical. Both write to the Console window, which you can open by choosing
View — Console Window. Consol e. Wit e() does not add a carriage return
at the end of a line, while Consol e. Wi t el n() does add a carriage return.

Console.Writeln() is spelled with a lowercase L and N, which is an abbreviation for Write Line.

Consol e. Wi tel n() is the preferred technique for most users. It allows the
script to run without user interaction, and the Console windows keeps a record
of each line as it is written to the Console.

In some cases, the Consol e. Wit el n() method is less desirable. Quickview,
for example, does not have a Console window. Additionally, Insight’s Console
window must be closed when a script runs.

If you wish to step through a tricky section of code in your script, you should
use the Alert() method.

Whichever method you use, you need to identify the beginning and end of
each script as well as each line of code before it executes. In the following
example, the script moves to the Query section and removes any limits.

Console. Witeln("Start Query Script")

Consol e. Witel n("Stepl")

Act i veDocunent . Sections[" Query"]. Activate()

Consol e. Witel n("Step2")

Act i veDocunent . Sections["Query"]. Limts. RenoveAl | ()
Consol e. Witel n("Step3")

Consol e. Witeln("End Query Script")

Based on the above script, the Console window displays:

Start Query Script
Stepl

8-34

General Scripting Reference

St ep2
St ep3
End Query Scri pt

Code Entry

Whenever possible, use the Object browser click to add code to the Script
Editor, rather than manually typing in the JavaScript. Sometimes errors occur
because you have typed an extra space or a period instead of a comma.

You can also use cut-and-paste to enter code. For example, if you define a
variable as EISName, and then later retype it as Eisname (see “Case-Sensitive
Code” on page 8-29 for more information), the difference in case will cause a
failure. Avoid such problems by carefully cutting and pasting whenever
possible.

Bypass Errors

The try-catch block is borrowed from Java and is used to bypass errors. general
syntax for a try-catch block is:

try

{do sonet hi ng}

cat ch(errornane)

{do something with the error}
finally

{do sonmething el se}

For example:

QPath = ActiveDocunent. Sections["Query"].Limts
try

{QPath. Activate()}

catch(e)

{Alert(e.toString())}

finally

{Alert("We're Done!")}

The try-catch block generally does not catch definition errors, but shows an
error in the Console window at the lowercase “d” in “date()”:

try

{Alert(new date())}
catch(e)
{Alert(e.toString())}
finally

{Alert("We're Done!")}

Troubleshooting Scripts 8-35

Getting Help with a Problem Script

If you have followed all the practices described in this section and you are still
not able to get your script to do what you want it to do, consider opening a call
with Brio Customer Support at 1-800-TRY-BRIO or email support@brio.com.

Brio Technical Support engineers will need to see your actual BQY document
that contains the script at issue. This is necessary due to the possibility of
typos, and because of the relationship between a script and an individual BQY
document.

If your data is confidential, consider duplicating your BQY file using the
sample Brio script that ships with Brio Intelligence. Alternatively, you might
consider saving the file without results, or if results are necessary to the
function of the script, you may consider limiting your results sets to only a few
rows. To set this option, choose Query — Query Options.

The sooner you can locate the problem and the exact point of failure in your
script, the sooner Brio Technical Support can analyze the issue and suggest
solutions.

Be sure to specify in which section of the BQY document the problem script
resides, and within which control it can be found.

Remember that a problem in one script may be as a result of something
defined in a different script.

Brio Customer Support may need to evaluate your document start up scripts
and your EIS section scripts, as well as the script in the particular control that
is causing the problem. For this reason, we strongly recommend you use the
Console.Writeln() method to identify each of your lines of code in each of your
scripts to the Console window. This may make the problem self-evident.

8-36

General Scripting Reference

Objects

All elements in Brio Intelligence documents are seen as objects, each of which
can have certain properties and methods. Objects also can be organized into
collections.This chapter provides an alphabetical reference to the objects and
collections available in Brio Intelligence documents.

9-1

AggregateLimits (Collection)

Member of: QuerySection Object, DataModel Object, TableSection Object

Description: The AggregateLimits collection represents those items that allow you to set a
limit on a Request item that was computed using a data function in the Query
section. The AggregateLimits collection is identical to the Limits collection
except it is used only for aggregate limits and the AvailableValues Collection is
not available for use. For more information on regular limits and computed
item limits, see the Limits Collection.

] Tip All collections have a method named “Item(NameOrIndex).” This is the
default method for all collections and returns an item in the collection at a
particular index or with a specific name. For simplicity, the “[]” can be used in
place of the call to the “Item()” method. For example, the following statements
are identical in behavior:

myl tem = Docunent s[1]
myl tem = Docunents. |tenm(1)
myl tem = Docunents["Start Up. bqy"]
myl tem = Docunents. |tem("StartUp. bay")
Example: The following example shows you how to create a query aggregate item limit,

add values to the aggregate limit through custom values and selected values,
and then add the limit to the limit line.

//Note that the string argunment for the CreateLinmt nmethod is a reference to the
/litem s DisplayName on the request line in the form of Request.Displ ayNane

myLi mi t =Acti veDocunent . Secti ons[" Sal esQuery"]. AggregateLimts. CreateLimt
("Request. Amount Sal es")

myLi mi t. Oper at or =bqgLi m t Oper at or Equal

myLi m t. Cust onVal ues. Add("50")

myLi m t. Sel ect edVal ues. Add("50")

Acti veDocunent . Sections[" Sal esQuery"]. AggregateLim ts. Add(nyLimt)

Methods: Add(Limit As Limit), CreateLimit(Limitltem As String) As Limit,
Item(NameOrIndex) As Limit, RemoveAll()

Properties: Read-Only Properties: Property Count As Number

Collections: SelectedValues As LimitValues, CustomValues As LimitValues

9-2 Objects

AppendQueries (Collection)

Member of: QuerySection Object

Description: The AppendQueries (Collection) represents those items that allow you to
merge multiple queries in a combined Results set.

[] Tip All collections have a method named “Item(NameOrIndex).” This is the
default method for all collections and returns an item in the collection at a
particular index or with a specific name. For simplicity, the “[]” can be used in
place of the call to the “Item()” method. For example, the following statements
are identical in behavior:

myl tem = Docunent s[1]
myl tem = Docunents. |tenm(1)
myl tem = Docunents["Start Up. bqy"]
myl tem = Docunents. |ltem("StartUp. bay")
Example 1: The following example shows you to how to append a query using the Union
operator.

Act i veDocunent . Secti ons[" Query"]. AppendQueri es. Add()
Act i veDocunent . Sections ["Query"].AppendQueries[1]. Uni onControl | er=bgUni on

Example 2: The following example shows you how to add "Periods" and "Quarters" to the
Request line, and how to remove the second request line item.

Act i veDocurent . Sections[" Query"]. AppendQueri es. Requests. Add(" Peri ods", "Quarters")
Act i veDocunent . Sections[" Query"]. AppendQueri es. Request s[2] . Renove()

Example 3: The following example shows you how to place a limit on the "Periods" request
line item and how to add the value "Quarter 1" to the limit value.

MyLi m t =Acti veDocunent . Sections[" Query"]. AppendQueries.Limts.CreateLinit
("Periods")

Act i veDocurent . Sections[" Query"]. AppendQueries. Linmts[1]. Sel ect edVal ues. Add(" QL")
Act i veDocunent . Sections[" Query"]. AppendQueries.Limts. Add(MyLimt)

Methods: Add (), Item(NameOrIndex As Value) As AppendQueries
Properties: Count As Number
Collections: Requests As Requests, Limits As Limit

AppendQueries (Collection) 9-3

Application (Object)

Description:

Example:

[] Note

Methods:

Properties:

Collections:

Objects:

This object represents the entire Brio Intelligence application. The Application
object contains:

» Application-wide settings and options
= Methods that return top level objects, such as ActiveDocument

= Properties that return top level objects, such as ActiveDocument

In this example, the quit method is called from the Application object.

Application. Quit()

The Application.Quit() method applies only to Brio Intelligence and not the Brio plug-ins.

Alert(Prompt As String, [Button1Text As String], [Title As String],
[Button2Text As String], [Button3Text As String]) As Number,
CreateConnection() As Connection, DoEvents(), ExecuteBScript(Script As
String), LoadSharedLibrary(Name As String) As SharedLibrary,
OpenURL(Location as String,Target as String), Quit([PromptBeforeQuitting
As Boolean]), SendSQL(OceName As String, Username As String, Password
As String, SQLString As String), Shell(Command As String) As Number

Read-Only Properties: Property Name As String, Property PathSeparator As
String, Property Version As String

Read-Write Properties: Property CurrentDir As String, Property
DisplayAlerts As BqAlertLevel, Property ShowMenuBar As Boolean, Property
ShowStatusBar As Boolean, Property StatusText As String, Property Visible As
Boolean, Property WindowState As BqWindowState

Documents as Documents, Toolbars as Toolbars, RecentFiles as RecentFiles

ActiveDocument as Document, Console as Console, ActiveSection As Section,
Session as Session

9-4 Objects

AreaChart (Object)

Member of: ChartSection
Description: The AreaChart object represents all of the properties of an area chart.
Example: The following script shows you how to set an Area chart to fill the area under

the Ribbon. The example assumes that “Chart” is the name of Chart report in
the active document.

Act i veDocunent . Sections["Chart"]. AreaChart. Fil | Under R bbon = true

Properties: Read-Write Properties: Property FillUnderRibbon As Boolean

AreaChart (Object) 9-5

Axisltems (Collection)

The AxisItems collection has been changed to the Categoryltems collection.
For more information, see Categoryltems (Collection).

9-6 Objects

AxisLabels (Collection)

Member of:

Description:

Example:

Methods:

Properties:

L] Tip

ChartSection Object

The AxisLabels collection is a collection of labels for a specific chart axis. It
maps directly to the Chart outliner.

The AxisLabels collection is instantiated three times for each Chart Section
Object in the form: XLabels, YLabels, and ZLabels.

All collections have a method named “Item(NameOrIndex).” This is the
default method for all collections and returns an item in the collection at a
particular index or with a specific name. For simplicity, the “[]” can be used in
place of the call to the “Item()” method. For example, the following statements
are all identical in behavior:

myl tem = Docunent s[1]

myl tem = Docunents. |tenm(1)

myl tem = Docunents["Start Up. bqy"]

myl tem = Docunents. |tem("StartUp. bay")

The following example shows you how to determine the number of labels on
the X-axis.

Act i veDocunent . Sections["Al | Chart"]. XLabel s. Count

Drilllnto(ItemNameOrIndex, DrillName As String),
FocusSelection(ItemArray), HideSelection(ItemArray), UnhideAll()

Read-Only Properties: Property Count As Number

AxisLabels (Collection) 9-7

BarChart (Object)

Member of: ChartSection Object
Description: The BarChart object represents all of the properties of a bar chart.
Example: This example shows you how to enable the bar values of a bar chart.

Acti veDocunent . Sections["Chart"]. Bar Chart. ShowBar Val ues = true

Properties: Read-Write Properties: Property ClusterBy As BqClusterBarType, Property
ShowBarValues As Boolean

9-8 Objects

BarLineChart (Object)

Member of:

Description:

Example:

Act i veDocunent .
Act i veDocunent .
Act i veDocunent .
Act i veDocunent .
Act i veDocunent .

Properties:

ChartSection Object

The BarLineChart object represents all BarLineChart properties.

The following example shows you how to change the properties of a barline

chart.

Sections["
Sections["
Sections["
Sections["
Sections["

Chart"
Chart"
Chart"
Chart"
Chart"

— e e

. Bar Li neChart
. Bar Li neChart
. Bar Li neChart
. Bar Li neChart
. Bar Li neChart

. ShowBar Val ues
. St ackCl ust er Type=bgBar Li neCl ust er
bgCl ust er ByY

.ClusterBy =
.lgnoreNulls
. ShiftPoints

= true

fal se
bgshi ft Center

Read-Write Properties: Property ClusterBy As BqClusterBarType, Property
IgnoreNulls As Boolean, Property ShiftPoints As BqBarLineShift, Property
ShowBarValues As Boolean, Property StackClusterType As BqBarLineType

BarLineChart (Object)

9-9

Categoryltems (Collection)

Member of: ChartSection Object

Description: The Categoryltems collection is a collection of items for a specific Chart axis. It
maps directly to the Chart outliner.

The Categoryltems collection is instantiated three times in a Chart Section in
the form: XCategories, Facts, and ZCategories.

[] Tip All collections have a method named "Item(NameOrIndex)." This is the
default method for all collections and returns an item in the collection at a
particular index or with a specific name. For simplicity, the "[]" can be used in
place of the call to the "Item()" method. For example, the following statements
are all identical in behavior:

myl tem = Docunent s[1]
myl tem = Docunents. |tenm(1)
myl tem = Docunents["Start Up. bqy"]
myl tem = Docunents. |tem("StartUp. bay")
Example: In this example, a chart is built from scratch using the request items specified

in the query. First, all the items in the outliner are removed, and then each
specific item is added to the outliner.

. XCat egori es. RenoveAl | ()
. Facts. RenoveAl | ()

. XCat egori es. Add(" Year")
.Facts.Add("Unit Sal es")

Acti veDocunent . Sections[" Chart"
Acti veDocunent . Sections[" Chart"
Acti veDocunent . Sections[" Chart"
Acti veDocunent . Secti ons[" Chart"

[y Sy —y—

or

for (1=1;1< ActiveDocunent. Sections["Chart"].XCategories. Count; |++)
Acti veDocunent. Sections["Chart"]. XCat egori es. Remove(l)
for (1=1;1< ActiveDocunent. Sections["Chart"].Facts. Count; |++)
Acti veDocunent. Sections["Chart"] . Facts. Renove(l)
Acti veDocurent. Sections["Chart"]. XCat egori es. Add(" Year")
Acti veDocurent. Sections["Chart"].Facts. Add("Unit Sal es")

Methods: Add(ItemName As String), AddComputedItem(Name As String, Expression
As String, [Index As Number]), Item(NameOrIndex) As Axisltem,
Remove(NameOrIndex), RemoveAll()

Properties: Read-Only Properties: Property Count As Number, Property AxisType As
BqChartAxisType

9-10 Objects

ChartSection (Object)

Member of: Sections Collection, Document Object (ActiveSection)
Description: The ChartSection object represents a chart section.
Example: The following example activates the “Sales Chart” section, turns on the legend,

changes the title to “International Sales Report”, changes the chart type to a
horizontal bar chart, and then exports the chart to an HTML file named
“intlchrt.htm.”

myChart = ActiveDocument. Sections["Sales Chart"]

myChart. Acti vate()

nyChart. ShowlLegend = true

myChart. Title = "International Sales Report"

nyChart. Chart Type = bgChart TypeHori zont al Bar

myChart . Export ("c:\\htm\\intlchrt. htnl, bgExport For mat HTM., t r ue)

Methods: Activate(), Copy(), Duplicate(), Export([Filename As String], [FileFormat As
BqExportFileFormat], [IncludeHeaders As Boolean], [Prompt as Boolean]),
PivotThisChart() As PivotSection,PrintOut([FromPage As Number], [ToPage
As Number], [Copies As Number], [Filename As String], [Prompt As
Boolean]), Recalculate(), RefreshDataNow(), Remove()

Properties: Read-Only Properties: Property Active As Boolean, Type As BqSectionType
Read-Write Properties: Property ChartType As BqChartType, Property
Name As String, Property RefreshData as BqRefreshData, Property
Show3DODbjects As Boolean, Property ShowBackPlane as Boolean, Property
ShowBorder As Boolean, Property ShowHorizontalPlane As Boolean, Property
ShowLegend As Boolean, Property ShowQutliner As Boolean, Property
ShowSubTitle As Boolean, Property ShowTitle As Boolean, Property
ShowVerticalPlane As Boolean, Property SubTitle As String, Property Title As
String, Property Visible As Boolean

Collections: XCategories As Categoryltems, Facts As Categoryltems, ZCategories As
Categoryltems, XLabels As AxisLabels, YLabels As AxisLabels, ZLabels As
AxisLabels

Objects: AreaChart As AreaChart, BarChart As BarChart, BarLineChart As

BarLineChart, LabelsAxis As LabelsAxis, LineChart As LineChart, PieChart As
PieChart , ValuesAxis As ValuesAxis, Legend As Legend

ChartSection (Object) 9-11

Column (Object)

Member of: TableSection Object, ResultsSection Object

Description: The Column object represents an individual column within a Table or Results
section.

Example 1: The following example shows how to populate a Dropdown list control in an

EIS section with data from a Results column. This example assumes that you
have two controls in your EIS section, a button named “CommandButton”
and a dropdown list named “Dropdown.”

/ | Code behind the "CommandButton"

var NumRows = ActiveDocunent. Sections["Resul ts"]. RowCount

for (I =1 ; | <= NunRows; | ++)

Dr opDown. Add(Act i veDocunent . Secti ons[" Results"]. Colums[1]. GetCel I (1))

Example 2: The following example shows how to change the number format of all
numeric columns in a Results section.

var NumCol utms=Act i veDocunent . Secti ons[" Sal esResul ts"]. Col utms. Count
for (1=1; |<=NumCol umms; | ++)

var M/Col =Acti veDocument . Secti ons[" Sal esResults"]. Colums. Iten(l)
MyCol . Resi zeToBest Fit ()
if (MyCol . Dat aType = bqgDat aTypeNunber)
M/Col . Nunber Fornat = "0. 00"

}
Methods: CreateDateGroup(), GetCell(nRow as Number), Remove(), ResizeTo BestFit()
Properties: Read-Only Properties: Property ColumnType As BqColumnType, Property

DataType As BqDataType, Property Index As Number, Property Name As
String

Read-Write Properties: Property Alignment As BqHorizontalAlignment,
Property NumberFormat As String, Property SupressDuplicates As Boolean,
Property TextWrap As Boolean, Property Visible As Boolean

9-12 Objects

Columns (Collection)

Member of: TableSection Object, ResultSection Object
Description: The Columns collection is a collection of columns within a Table or Results
section.

[] Tip All collections have a method named “Item(NameOrIndex).” This is the
default method for all collections and returns an item in the collection at a
particular index or with a specific name. For simplicity, the “[]” can be used in
place of the call to the “Item()” method. For example, the following statements
are identical in behavior:

myl tem = Docunent s[1]
myl tem = Docunents. |tenm(1)
myl tem = Docunents["Start Up. bqy"]
myl tem = Docunents. |ltem("StartUp. bay")
Example: The following example shows how to add a computed column, named

»

“MyComputed,” in the Results section. This example includes both strings and
numeric calculations in the same computed columns.

var M/Results = ActiveDocunent. Sections["Resul ts"]

var NunCol ums MyResul t s. Col ums. Count

var Expression ("Nunmber of Col ums="+Nunber (NunCol ums+1))
MyResul t s. Col ums. AddConput ed(" MyComput ed", Expr essi on)

Methods: Add(Name As String) As Column, AddComputed(Name As String,
Expression As String) As Column, Item(NameOrIndex) As Column,
ModifyComputed(NameOrIndex, Expression As String) As String,
RemoveAll()

Properties: Read-Only Property: Property Count As Number

Columns (Collection) 9-13

Connection (Object)

Member of: Global Object or Data Model Object

Description: The Connection object represents either a Connection File (OCE) or the
connection to a database. Each Data Model object has an associated
connection object that describes the Data Model’s connection to the database.
The connection object can also represent a Data Model’s MetaData connection
information. Lastly, a connection object can be a stand-alone object, which
represents an OCE. This object can be created by calling the CreateConnection
method.

Example 1 The following example shows you how to connect a Data Model to its
associated database and then process a query. This example assumes that a
connection file is already associated with the Data Model.

// Check to make sure the connection has an associ ated OCE

i f (ActiveDocunent. Sections["Query"]. DataMdel . Connection. Filename !="")

{

wi t h(Acti veDocunent . Secti ons[" Query"]. Dat aMbdel . Connect i on)

{

User name = "brio"

Set Passwor d(" Bri oBri 0")

Connect ()

}

Acti veDocurent . Sections[" Query"]. Process()

}

el se

Al ert("Your DataMdel does not have an OCE", "I nformation")

}

Example 2 This example shows you how to create an OCE from scratch and save it to a
local file.

var nyCon

myCon = Application. Creat eConnection()

myCon. Api =bgApi SQLNet

myCon. Dat abase = bqgDat abaseSQLSer ver

myCon. Host Nane ="Pl ut oSQLSVR'

myCon. SaveAs(" C:\\ Program Fi | es\\ Bri o\\Bri oQuery\\ Program\ Qpen Cat al og

Ext ensi ons\\ Pl ut o0SQ.. oce")

// Now use this connection in a datanodel

Acti veDocurent . Secti ons[" Sal esQuery"] . Dat aMbdel . Connecti on. Open(" C:\\ Program
Files\\Brio\\BrioQuery\\Program\ Open Catal og Extensions\\PlutoSQL. oce")

9-14 Objects

Method

Properties:

Connect(), Disconnect(), Open(Filename As String), Save(), SaveAs(Filename
As String), SetPassword(Password As String),
UseAlternateMetadataLocation(Value As Boolean, [MetadataOce As String])

Read-Only Properties: Property Connected As Boolean, Property Filename As
String

Read-Write Properties: Property AllowNonJoinedQueries As Boolean,
Property Api As BqApi, Property AutoCommit As Boolean, Property Database
As BqDatabase, Property DataBaseList As String, Property
DBLibAllowChangeDatabase As Boolean, Property DBLibApiSeverity As
Number, Property DBLibDatabaseCancel As BqDbLibCancelMode, Property
DBLibPacketSize As Number, Property DBLibServerSeverity As Number,
Property DBLibUseQuotedIdentifiers As Boolean, Property
DBLibUseSQLTable As Boolean, Property EnableAsyncProcess As Boolean,
Property EnableTransactionMode As Boolean, Property HostName As String,
Property MetadataPassword As String, Property MetadataUser As String,
Property MetaFileChoice As String, Property ODBCDatabasePrompt As
Boolean, Property ODBCEnableLargeBufferMode As Boolean, Property
SaveWithoutUsername As Boolean, Property ShowAdvanced As Boolean,
Property ShowBrioRepositoryTables As Boolean, Property ShowMetadata As
Boolean, Property SpecificMetadataLogin As Boolean, Property
SQLNetRetainDateFormats As Boolean, Property StringRetrieval As Boolean,
Property TimeLimit As Number, Property Username As String

Connection (Object) 9-15

Console (Object)

Member of: Application Object
Description: The Console object represents the console window.
Example 1 The following example shows you how to display the names of all the sections

in a document to the console window. Each section name can print on a new
line by using the Carriage Return “\r” and New Line “\n” characters. The
method used is Write.

for(1=1; | <= ActiveDocunent. Sections.Count; | ++)
Console. Wite (ActiveDocument. Sections[l].Nanme+"\r\n")

Example 2 The following example shows you how to print the names of document
sections on individual lines. Each name is printed on a new line by using the
Writeln method.

Consol e. Witel n(Acti veDocunment. Name +"'s sections are: ")

for (j=1; j < ActiveDocunent. Sections. Count ; j++)
Consol e. Witeln("Section #"+ +" =" +ActiveDocunent. Sections[j]. Nane)

Method Write(OutputData), Writeln (OutputData)

9-16 Objects

Control (Object)

Member of: Controls Collection

Description: The Control object represents an individual control. All controls are inherited
from this basic object. As a result, the Control object itself is not called.

Control (Object) 9-17

Controls (Collection)

Member of: EISSection Object

Description: The Controls collection contains all the control objects for a specific EIS
section. This collection is used to gain access to an EIS sections control. The
Controls collection returns a specific control object. Each control object has
generic methods and properties, which are the same for all controls, and
methods and properties that are specific to the type of control returned.

[] Tip All collections have a method named “Item(NameOrIndex).” This is the
default method for all collections and returns an Item in the collection at a
particular index or with a specific name. For simplicity, the “[]” can be used in
place of the call to the “Item()” method. For example, the following statements
are identical in behavior:

myl tem = Docunent s[1]
myltem = Docunents. |tem1)
myl tem = Docunents["Start Up. bqy"]
myl tem = Docunents. |ltem("StartUp. bay")
Example: The following example shows you how to enable all disabled controls in a

particular EIS section:

var Control Count = ActiveDocunent. Sections["ElIS"]. Control s. Count
for (I =1 ; | <= Control Count; | ++)

/1 if the control is disabled then enable it
if (ActiveDocunent. Sections["ElIS"].Control s[1].Enabled != true)
Acti veDocunent. Sections["EIS"]. Control s[I1]. Enabled = true

}
Method Item(NameOrIndex) As Control
Properties: Read-Only Properties: Property Count As Number

9-18 Objects

ControlsCheckBox (Object)

Member of:

Description:

Example:

Controls Collection, EISSection Object

The ControlsCheckBox object represents an EIS checkbox. A check box
control is a user-interface control that allows the end-user to make simple
yes/no type choices. It has two states: checked and unchecked.

The following example shows you how to change the text associated with the
checkbox control and to determine if it is checked and visible. The following
script assumes that there is a checkbox control named “CheckBox” in an EIS
section.

CheckBox. Text = "Click here to change the val ue"
/1if the CheckBox is not being shown, showit.
if (CheckBox.Visible != true)

CheckBox. Vi si bl e = true
i f (CheckBox. Checked == true)

el se

Method

Properties:

Objects

Al ert (" Checkbox is Checked", "I nfo")

Al ert ("Checkbox is Not Checked","Info")

OnClick()

Read-Only Properties: Property Name As String

Read-Write Properties: Property Alignment As BqHorizontalAlignment,
Property Checked As Boolean, Property Enabled As Boolean, Property Text As
String, Property Type As BqShapeType, Property VerticalAlignment As
BqVerticalAlignment, Property Visible As Boolean

Fill As Fill, Font As Font

ControlsCheckBox (Object) 9-19

ControlsCommandButton (Object)

Member of: Controls Collection, EISSection Object
Description: The ControlsCommandButton object represents an EIS button.
Example: The following example shows you how to change the text, the font type, and

the font size of a Command button.

CommandBut t on. Text = "Cli ck Here"
CommandBut t on. Font . Nanme = "Courier"”
CommandBut t on. Font . Si ze = 12

Method OnClick()
Properties: Read-Only Properties: Property Name As String, Property Type As
BqShapeType

Read-Write Properties: Property Alignment As BqHorizontalAlignment,
Property Enabled As Boolean, Property Text As String, Property
VerticalAlignment As BqVerticalAlignment, Property Visible As Boolean

Object Font As Font

9-20 Objects

ControlsDropDown (Object)

Member of: Controls Collection, EISSection Object

Description: The ControlsDropDown object represents an EIS dropdown list object. The
Dropdown list control is a user-interface control that allows the user to select
one item from a list of items.

Example: The following example shows how to populate a dropdown list control from
an existing query limit.

/1 Connect to the database to ensure showal ues will work

Act i veDocunent . Secti ons[" Query"]. Dat aMbdel . Connecti on. Username = "brio"
Act i veDocunent . Secti ons[" Query"]. Dat aMbdel . Connecti on. Set Password(" Bri o
Brio")

Act i veDocurent . Secti ons[" Query"]. Dat aMbdel . Connect i on. Connect ()

//Load the list of Available Values

Act i veDocurnent . Sections["Query"].Li mts[1].RefreshAvail abl eval ues()

var Val ueCount =

Act i veDocunent . Sections["Query"]. Limts[1].Avail abl eVal ues. Count

/1 Remove All Itens fromthe DropDown
Dr opDown. RenoveAl | ()
for (I =1; I <= ValueCount; | ++)

{
Dr opDown. Add(Act i veDocunent . Secti ons[" Query"].Limts[1].Avail abl eVal ues[1])

Method Add(Value As String), Item(Index As Number), OnClick(), OnSelection(),
Remove(Index As Number), RemoveAll(), Select(Index As Number)

Properties: Read-Only Properties: Property Name As String, Property Type As
BqShapeType

Read-Write Properties: Property Alignment As BqHorizontalAlignment,
Property Count As Number, Property Enabled As Boolean, Property
SelectedIndex As Number, Property Text As String, Property
VerticalAlignment As BqVerticalAlignment, Property Visible As Boolean

Object Font As Font

ControlsDropDown (Object) 9-21

ControlsListBox (Object)

Member of: Controls Collection, EISSection Object

Description: The ControlsListBox object represents an EIS list box. A list box is a user-
interface control that allows a user to select one or more items from a list.

Example: The following example shows you how to clear the values in a listbox and
repopulate it with values from a results column. This example uses JavaScript’s
built in sorting functions. This feature sorts the data before populating the
control.

D Note JavaScript Arrays are O based; all Brio Collections are 1 based.

Li st Box. RenoveAl | ()
MyArray = new Array()
RowCount = ActiveDocunent. Secti ons["Results"]. RowCount
//GetCell Returns the value of an individual cell in a Colum
for (j =1, j <= RowCount; j++)

M/Array[j] = ActiveDocunent. Sections["Results"].Colums[1]. GetCell (j)
/1 Use JavaScripts built in Array sorting to sort the val ues
SortedArray = MyArray.sort()
/1 Add all the sorted itens to the |istbox control
for (j = 0; j< MyArray. length;j++)
Li st Box. Add(SortedArray[j])

Methods: Add(Value As String), Item(Index As Number) As String, OnClick(),
OnDoubleClick(), Remove(Index As Number), RemoveAll(), Select(Index As
Number), Unselect(Index As Number)

Properties: Read-Only Properties: Property Count As Number, Property Name As String,
Property Type As BqShapeType

Read-Write Properties: Property Alignment As BqHorizontalAlignment,
Property Enabled As Boolean, Property MultiSelect As Boolean, Property Text
As String, Property VerticalAlignment As BqVerticalAlignment, Property
Visible As Boolean

Objects Font As Font, SelectedList As SelectedList

9-22 Objects

ControlsRadioButton (Object)

Member of: Controls Collection, EISSection Object

Description: The ControlsRadioButton object represents an EIS radio button. A radio
button is a user-interface control that allows the user to select one value from a
group of options. Radio buttons individually exhibit the same behavior as
checkboxes; however, when they are grouped, their behavior changes. When
radio buttons are grouped together, only one button may be selected at any
time.

Example: The next example shows you how to determine which Radio button has been
selected from a group of buttons.

NunmControl s = ActiveDocunent. Sections["El S2"]. Shapes. Count
for (I =1; | <= NunControls; | ++)

if (ActiveDocument. Sections["El S2"]. Shapes[1]. G oup == "ButtonG oup")
i f(ActiveDocunent. Sections["ElI S2"]. Control s[1].Checked==true)

Al ert ("Radi o Button"+ ActiveDocunent. Sections["El S2"]. Control s[1]. Nane
+" |s checked")

}

Methods: OnClick()

Properties: Read-Only Properties: Property Group As String, Property Name As String
Read-Write Properties: Property Alignment As BqHorizontalAlignment,
Property Checked As Boolean, Property Enabled As Boolean, Property Text As
String, Property VerticalAlignment As BqVerticalAlignment, Property Visible
As Boolean

Objects: Fill As Fill, Font as Font

ControlsRadioButton (Object) 9-23

ControlsTextBox (Object)

Member of:

Description:

Example:

Methods:

Properties:

Controls Collection, EIS Section Object

The ControlsTextBox represents an EIS textbox. Each text box in an EIS tab
has a unique name. Use this name to reference the object when scripting.

The following example shows you how to change the text in a Textbox control
and how to enable a Textbox control. This script assumes that it is being run
from the same EIS section as the Textbox control named "TextBox."

Text Box. Text = "Hello World"

i f (Text Box. Enabl ed == fal se)
Text Box. Enabl ed = true

OnChange(), OnClick(), OnEnter(), OnExit()

Read-Only Properties: Property Name As String, Property Type As
BqShapeType

Read-Write Properties: Property Alignment As BqHorizontalAlignment,
Property Enabled As Boolean, Property Password As Boolean, Property
Scrollable As Boolean, Property Text As String, Property VerticalAlignment As
BqVerticalAlignment, Property Visible As Boolean

9-24 Objects

Cookies (Collection)

Member of:

Description:

Example 1

L] Tip

Session Object

The cookies collection represents a list of key value pairs, stored as cookies, in
the current browser. Cookies are small nuggets of text (less than 4K) which are
stored in a Web browser to enable persistent data storage. The cookies
collection provides read-only access to the cookies stored in the current
browser. Since cookies are browsers based, this collection only applies to the
plug-in products. However, the cookies collection is exposed in the client
server products to assist in developing plug-in scripts.

All collections have a method named “Item(NameOrIndex).” This is the
default method for all collections and returns an item in the collection at a
particular index or with a specific name. For simplicity, the “[]” can be used in
place of the call to the “Item()” method. For example, the following statements
are identical in behavior:

myl tem = Docunent s[1]

myl tem = Docunents. |tenm(1)

myl tem = Docunents["Start Up. bqy"]

myl tem = Docunents. |tem("StartUp. bay")

Shows how to display the value of the BRIOUSER cookie in an alert box.

var Usernanme = Session. Cooki es[" BRI QUSER"]
Al ert("The usernane entered on the OnDemand Server login is:
"+User nane, " ODSUSer nane")

Cookies (Collection) 9-25

Example 2 Shows how to test scripting in the client server version by creating temporary
values in the cookies collection.

D Note Added key value pairs to the cookies collection does NOT write them back to the Web browser.

/1 Add sonme test cookies

Sessi on. Cooki es. Add(" MyCooki e", "MyVal ue")

Sessi on. Cooki es. Add(" Appl i cati onNane", Appl i cati on. Nane)
//Wite out the values to the console w ndow

Consol e. Wite (Session. Cookies["MCookie"])

Consol e. Wite (Session. Cookies["ApplicationNanme"])

Methods: Add(Key As String, Value As String), Item(Key As String) As String

9-26 Objects

CornerlLabels (Object)

Member of: PivotSection Object

Description: The CornerLabels object represents the Pivot report's corner labels feature.
Corner labels mirror the names of the values in the Pivot Outliner in the actual
pivot. Using the CornerLabels object you can include corner labels on your
pivot report and specify their position (none, top, side, or both).

Example 1: In the following example, corner labels are displayed on the side of the pivot
report.

Label Acti veDocunent. Secti ons["Pivot"]. Corner Label s. Di spl ay=
BgPi vot Label Di spl aySi de

Example 2: In the following example, corner labels are displayed on the top of the pivot
report.

Act i veDocunent . Sections["Pi vot"]. CornerLabel s. D spl ay= BqPi vot Label Di spl ayTop

Example 3: In the following example, corner labels are displayed on both the top and side
of the pivot report.

Act i veDocunent . Sections[" Pi vot"]. CornerLabel s. Di spl ay= BqPi vot Label Di spl ayBot h

Example 4: In the following example, corner labels are not displayed.

Act i veDocurnent . Secti ons["Pi vot"]. CornerLabel s. Di spl ay= BqPi vot Label Di spl ayNone

Properties: Read-Write Properties: Property Display as BqPivotLabelDisplay

CornerLabels (Object) 9-27

Datalabels (Object)

Member of:

Description:

Example 1:

Acti veDocunent .

Example 2:

Acti veDocunent .

Example 3:

Acti veDocunent .

Example 4:

Acti veDocunent .

Properties:

PivotSection Object

The DataLabels object represents the Pivot report's data labels feature. Data
labels are the column and row heading on the top and sides of the pivot report
and define the categories by which the numeric values are organized.Using the
DataLabels object you can include datalabels on your pivot report and specify
their position (none, top, side, or both).

In the following example, data labels are displayed on the side of the pivot
report.

Sections["Pivot"]. DatalLabel s. Di spl ay= BqPi vot Label Di spl aySi de
In the following example, data labels are displayed across the top of the pivot
report.

Sections["Pivot"]. DatalLabel s. D spl ay= BqPi vot Label Di spl ayTop
In the following example, data labels are displayed on both the top and side of
the report.

Sections["Pivot"]. DatalLabel s. Di spl ay= BgPi vot Label Di spl ayBot h

In the following example, data labels are not displayed.

Sections["Pivot"]. DataLabel s. Di spl ay= BqPi vot Label D spl ayNone

Read-Write Properties: Property Display as BqPivotLabelDisplay

9-28 Objects

DataModelSection (Object)

Member of: QuerySection Object

Description: The Data Model object represents the underlying Data Model for a Query
Section or DataModelSection object. The Data Model object contains
information about the connection, table catalog, etc. It can be accessed from
either the Data Model or Query sections.

Example 1: The following example shows you how to set some basic properties of a Data
Model. It turns off AutoJoin and AutoAlias, limits queries to 20 minutes and
enables joins between iconized topics. Using the with statement enables you to
call methods and properties for an object without fully qualifying it.

with (ActiveDocunent. Sections["Query"] . Dat aModel)
{

Aut oAl i as = fal se

Aut oJoin = fal se

TinmeLinmt = 20

Showl conJoins = true

}

Example 2: The following example shows you how to build a Data Model using the Table
Catalog object. This example assumes that you are already connected to a
database.

with (ActiveDocunent. Sections["Query"]. Dat aModel)

{

Topi cs. RenoveAl | ()

Aut oJoin = fal se

//Create two new topics fromtables in table catal og
Cat al 0og. Refresh()

Tabl el =Catal og. Catal ogltenms["W NE"]

Tabl e2 =Cat al og. Cat al oglt emrs["W NE_SALES"]

Topi cs. Add(Tabl el)

Topi cs. Add(Tabl e2)

Fieldl = Topics[1l].Topicltenms["Wne |d"]

Field2 = Topics[2].Topicltenms["Wne |d"]

//Create a new join by joining two Topicltens together
Joi ns. Add(Fi el d1, Fi el d2, bgJoi nSi npl eEqual)

/1 Now add topic items to the request |ine

for (I =1; | <= Topics[1]. Topicltens. Count; | ++)

Act i veDocurent . Sections[" Query"]. Request s. Add(Topi cs[1] . Nane, Topi cs[1] .
Topicltenms[1]. D spl ayNane)

}

DataModelSection (Object) 9-29

Methods: AuditSQL(BgAuditEventType EventType, String SQLString)
SyncWithDatabase()

Properties: Read-Only Properties: TimeLimitActive as Boolean
Read-Write Properties: Property AutoAlias As Boolean, Property AutoJoin As
Boolean, Property RowLimit as Number, RowLimitActive as Boolean,
Property ShowIconJoins As Boolean, Property TimeLimit As LNumber,

Objects: Catalog As DMCatalog, Connection As Connection, MetaDataConnection As
Connection, JoinOptions as JoinOptions

Collections: Joins As Joins, Limits As Limits, Topics As Topics, Local Results as
LocalResults, LocalJoins as LocalJoins

9-30 Objects

Date Field (Object)

Member of: Fields collection
Description: Sets the current date in MM/DD/YY format.
Example: The following example shows you how to add a line border with a width of 3

points to the Date Field:
Act i veDocurnent . Secti ons[" Sal es Report"]. Report Header. Fi el ds["Date
Field"].Line.Col or =10040166

Act i veDocurnent . Sections[" Sal es Report"]. Report Header. Fi el ds["Date
Field"'].Line.Wdth =4

Methods: Layer(BqLayer value), Spring(String Name), UnSpring

Properties: Read-write: Formula as String, HorizontalAlignment as
BqHorizontalAlignment, Text as String, TextWrap as Boolean,
VerticalAlignment as BqVerticalAlignment

Read only: Name as String, Type as BqShapeType

Objects: LineFormat object, FillFormat object, FontFormat object

Date Field (Object) 9-31

DateNow Field (Object)

Member of: Fields collection

Description: Sets the current date MM/DD/YY format.
Note that this object represents the date when the Date Now field is first added
to the report and it will never change.

Example: The following example shows you how to concatenate the string: "Created on:
" and the date on which the DateNow field was added to the report.

Acti veDocurent . Sections["Sal es Report"]. Report Header. Fi el ds[" Dat eNow

Field'].Formula = "Created on:" + "' ' + new Date()
Methods: Layer(BqLayer value), Spring(String Name), UnSpring
Properties: Read-write: Formula as String, HorizontalAlignment as

BqHorizontalAlignment, Text as String, TextWrap as Boolean,
VerticalAlignment as BqVerticalAlignment

Read only: Name as String, Type as BqShapeType

Objects: LineFormat object, FillFormat object, FontFormat object

9-32 Objects

DateTime Field (Object)

Member of: Fields collection

Description: Sets the current date in MM/DD/YY HH:MM: AM format.
Note that the DateTimeNow object represents the date and time when it is first

added and it will never change.

Example: The following example shows you how to change the font size of the characters
in the DateTime field to 12 points.

Act i veDocurnent . Sections[" Sal es Report"]. Report Header . Fi el ds[" Dat eTi me
Field"'].Font.Size = 12

Methods: Layer(BqLayer value), Spring(String Name), UnSpring

Properties: Read-write: Formula as String, HorizontalAlignment as
BqHorizontalAlignment, Text as String, TextWrap as Boolean,
VerticalAlignment as BqVerticalAlignment

Read only: Name as String, Type as BqShapeType

Objects: LineFormat object, FillFormat object, FontFormat object

DateTime Field (Object) 9-33

DateTimeNow Field (Object)

Member of: Fields collection

Description: Sets the current date MM/DD/YY HH:MM: AM format.

Note that this object represents the date and time when this field is first added
to the report and it will never change.

Example: The following example shows you how to add a red fill color to the
DateTimeNow field in the report header band.
ActiveDocument.Sections["SalesReport"].ReportHeader.Fields["DateTimeNo
w Field"].Fill.Color = bqRed

Methods: Layer(BqLayer value), Spring(String Name), UnSpring

Properties: Read-write: Formula as String, HorizontalAlignment as
BqHorizontalAlignment, Text as String, TextWrap as Boolean,
VerticalAlignment as BqVerticalAlignment
Read only: Name as String, Type as BqShapeType

Objects: LineFormat object, FillFormat object, FontFormat object

9-34 Objects

DefinedJoinPaths (Collection)

Member of: DataModel Object

Description: Defined Join Paths are customized join preferences that enable Brio
Intelligence to include or exclude appropriate tables based on the items
referenced on the Request and Limit lines. The net effect limits the query to all
referenced tables based on available table groupings, generating the most
efficient SQL for queries of the Data Model. The features in this collection
correspond to the options available on the Define Join Paths dialog.

] Tip All collections have a method named “Item(NameOrIndex).” This is the
default method for all collections and returns an item in the collection at a
particular index or with a specific name. For simplicity, the “[]” can be used in
place of the call to the “Item()” method. For example, the following statements
are identical in behavior:

myl tem = Docunent s[1]
myl tem = Docunents. |tenm(1)
myl tem = Docunents["Start Up. bqy"]
myl tem = Docunents. |tem("StartUp. bay")
Example 1: The following example shows you how to select a user defined join path option

and delete the existing join path.

Act i veDocunent . Sections[" Query"]. Dat aModel . Joi nsOpti ons. Type=

bgDat avbdel Joi nsOpt i onDef Joi n

Act i veDocurnent . Secti ons[" Query"]. Dat aMbdel . Joi nsOpti ons. Def i nedJoi nPat h
["MyJoi nPath"] . Renove()

Example 2: The following example shows you how to select the user defined join path
option, and change an existing defined join path by adding a join path topic.

Act i veDocunent . Sections[" Query"]. Dat aModel . Joi nsOpti ons. Type=

bgDat avbdel Joi nsOpt i onDef Joi n

Act i veDocurnent . Secti ons[" Query"]. Dat aMbdel . Joi nsOpti ons. Def i nedJoi nPat h
["MyJoi nPat h"] . AddTopi c(" Peri ods")

DefinedJoinPaths (Collection) 9-35

Example 3: The following example shows you how to select the user defined join path
option, create a defined join path, and add all join path topics to the defined
join path.

Acti veDocurnent . Sections[" Query"]. Dat aMbdel . Joi nsOpti ons. Type=

bgDat avbdel Joi nsOpt i onDef Joi n

Acti veDocurent . Sections[" Query"]. Dat aMbdel . Joi nsOpti ons. Def i nedJoi nPat h. Add

("MyJoi nPat h")

Acti veDocurnent . Sections[" Query"]. Dat aMbdel . Joi nsOpti ons. Def i nedJoi nPat h
["MJoi nPat h"] . AddAl | Topi cs()

Methods: Add(Name As String) As DefinedJoinPath, Item (NameOrIndex) As
DefinedJoinPath, Remove(NameOrIndex As String), RemoveAll()

Properties: Read-Write Properties: Count As Number

9-36 Objects

DefinedJoinPath (Object)

Member of: DefineJoinPaths Collection

Description: A defined join path object contains the customized join preferences that enable
Brio Intelligence to include or exclude appropriate tables based on the items
referenced on the Request and Limit lines.

Example 1: The following example shows you how to select the user defined join path
option, and change an existing defined join path by adding a join path topic.

Act i veDocurnent . Sections[" Query"]. Dat aMbdel . Joi nsOpti ons. Type=

bgDat avbdel Joi nsOpt i onDef Joi n

Act i veDocurnent . Secti ons[" Query"]. Dat aMbdel . Joi nsOpti ons. Def i nedJoi nPat h
["MyJoi nPat h"] . AddTopi c(" Peri ods")

Example 2: The following example shows you how to select the user defined join path
option, create a defined join path, and add all join path topics to the defined
join path.

Act i veDocurnent . Sections[" Query"]. Dat aMbdel . Joi nsOpti ons. Type=

bgDat avbdel Joi nsOpt i onDef Joi n

Act i veDocurnent . Secti ons[" Query"]. Dat aMbdel . Joi nsOpti ons. Def i nedJoi nPat h. Add(" MyJo

i nPat h")

Act i veDocunent . Secti ons[" Query"]. Dat aMbdel . Joi nsOpti ons. Def i nedJoi nPat h[" MyJoi nPa
th"].AddAl | Topics()

Methods: AddAllTopics(), AddTopic(DefinedJoinPathsName As String), Remove(),
RemoveAllTopics(), RemoveTopic(DefinedJoinPathName As String)

Properties: Read-Write Properties: Name As String

DefinedJoinPath (Object) 9-37

Dimension (Object)

Member of: Dimension collection
Description: The Dimension object represents a specific table dimension in the Report
section.

A dimension is typically a qualifiable and text value, such as a region, product
line, and includes date values. It defines the secondary headings or labels that
make up the body of the report. Each of the dimensions is repeated within
each group. Usually, you use items containing text values (for example, Year
or item type) for table dimensions. For example, if you select Item Type to be
your table dimension, Item Type is a dimension within each group header.
Under the dimension "Item Type," appears the name of each kind of item (for
example, CD ROM, or HARD Drive). and corresponds to the . A factis an
quantifiable value, such amount of sales, budget or revenue.

Example 1: The following example shows you how to move the "City" dimension before
the "State Province" dimension.

Acti veDocurnent . Sections["Report"] . Body. Tabl es[" Tabl e"]. Di nensions["City"]. Move("S
tate Province")

Example 2: The following example shows you how to suppress duplicate values on specific
columns in a report table.

Acti veDocurent . Sections["Report"]. Body. Tabl es[" Tabl e"]. Di mensi ons["City"]. Suppres
sDuplicates = true

Acti veDocurnent . Sections["Report"] . Body. Tabl es[" Tabl e"]. Di nensi ons[" State
Province"] . SuppressDuplicates = true

Example 3: The following example shows you how to set the background color of the
"City" dimension to light blue and the font style to bold.

Acti veDocurnent . Sections["Report"] . Body. Tabl es[" Tabl e"]. Di nensi ons["City"]. Backgro
undCol or = bqLi ght Bl ue

Acti veDocurent . Sections["Report"]. Body. Tabl es[" Tabl e"]. Di mensi ons["City"]. Font. St
yl e = bgFont Styl eBol d

9-38 Objects

Methods: Move(LabelNameBefore as String), Remove()

Properties: BackgroundAlternateColor as BqColorType, BackgroundAlternateFrequency
as Number, BackgroundColor as BqColorType,
BackgroundShowAlternateColor as Boolean, Horizontal Alignment as
BqHorizontalAlignment, Name as String, NumberFormat as String,
SuppressDuplicates as Boolean, TextWrap as Boolean, VerticalAlignment as
BqVerticalAlignment

Objects: Font object

Dimension (Object) 9-39

Dimensions (Collection)

Member of: ReportTable collection
Description: The Dimensions collection represents all table dimension objects in the report
section.

A dimension is typically a qualifiable value, such as a region, date or product
line. A fact is an quantifiable value, such amount of sales, budget or revenue.

Example: The following example shows you how to add the "City" label as a new
dimension.

Acti veDocurent . Sections["Report"] . Body. Tabl es[" Tabl e"]. D nensi ons. Add
("Gty", "Results")

Methods: Add(New Dimension as String, [optional] MoveBeforeName as String
[optional String SectionDependancy), Item(NameOrIndex as Value),
RemoveAll()

Properties: Read only: Count as Number

9-40 Objects

DMCatalog (Object)

Member of:

Description:

Example:

DataModelSection Object

The DMCatalog object represents the Table Catalog. This object provides
access to the names of the database tables that are used when a Data Model is
built.

The following example shows you how to create a Data Model by inserting
tables from the Table Catalog. It also shows you how to change the basic
display properties of the Table Catalog.

with (ActiveDocunent. Sections["Query"] . Dat aModel)

{

Cat al og. ShowFul | Name= true

/1 Updates the Table Catal og with the nost current view of the tables

Cat al og. Refresh()
Tabl el =Catal og. Catal ogl tens["W NE"]
Tabl e2 =Cat al og. Cat al ogl t ens["W NE_SALES"]

//Create two new topics fromtables in table catal og

}

Methods:

Properties:

Collections:

Topi cs. Add(Tabl el)
Topi cs. Add(Tabl e2)

Refresh()

Read-Write Properties: Property ShowFullNames As Boolean, Property
ShowLocalResults As Boolean

Catalogltems As DMCatalogltems, Results As Results

DMCatalog (Object) 9-41

DMCatalogltem (Object)

Member of: DMCatalogltems Collection
Description: The DMCatalogltem object represents a table in the Table Catalog.
Example: The following example shows you how to write all the information about the

tables in the Table Catalog to the console window.

with (ActiveDocunent. Sections["Query"] . Dat aModel)

{
var Nunifabl es = Cat al og. Cat al ogl t ens. Count
for (I =1; | <= NunTabl es; | ++)
{
Qutput String = "Dat abase Name =" +
Cat al og. Cat al ogl tens[1] . Dat abaseNane
QutputString = QutputString +":Database Owmer=" +
Cat al og. Catal ogltens[1] . Oaner
QutputString = QutputString +": Table Nane=" +
Cat al og. Catal ogltens[1]. Nanme
Consol e. Wite(QutputString+"\r\n")
}
}
Methods: None
Properties: Read-Only Properties: DatabaseName As String, Property Name As String,

Property Owner As String

9-42 Objects

DMCatalogltems (Collection)

Member of:

Description:

L] Tip

Example:

DMCatalog Object

The DMCatalogltems collection represents a list of all the items in the Table
Catalog.

All collections have a method named “Item(NameOrIndex).” This is the
default method for all collections and returns an item in the collection at a
particular index or with a specific name. For simplicity, the “[]” can be used in
place of the call to the “Item()” method. For example, the following statements
are identical in behavior:

myl tem = Docunent s[1]

myl tem = Docunents. |tenm(1)

myl tem = Docunents["Start Up. bqy"]

myl tem = Docunents. |ltem("StartUp. bay")

The following example shows you how to write all the information about the
tables in the Table Catalog to the console window.

Wth (ActiveDocunent. Sections["Query"] . Dat aModel)

var Nunifabl es = Cat al og. Cat al ogl t ens. Count

{
for (I
{
}
}
Methods:
Properties:

= 1; | <= Nunffabl es; | ++)

Qutput String = "Dat abase Name =" +

Cat al og. Catal ogltens[1] . Dat abaseNane

QutputString = QutputString +": Dat abase Omer=" +
Cat al og. Catal ogltens[1] . Oamner

QutputString = QutputString +": Table Nane=" +

Cat al og. Catal ogltens[1] . Nane

Consol e. Wite(Qut putString+"\r\n")

Item(NameOrIndex) As DMCatalogltem

Read-Only Properties: Property Count As Number

DMCatalogltems (Collection) 9-43

Document (Object)

Member of: Documents Collection, Application Object

Description: The document object contains the content of the file (document) created by
Brio Intelligence that you store on your personal computer. Each Brio
Intelligence document consists of one or more sections.

Example 1: The following example shows how a document object can be referenced by
enumerating the documents collection object or by referring to the
ActiveDocument object. The following commands all set myDoc to the same
document object.

myDoc Docunent s[1] or

myDoc Docunent s[" Test doc. bqy"] or

if "Testdoc.bqy" is the current docunent then
myDoc = Acti veDocunent

Example 2: In this example, the Section Title bar has been turned off in the
ActiveDocument, and the document is saved with a new filename.
Acti veDocunent . ShowSecti onTitl ebar = fal se

Acti veDocurent . SaveAs("d: \\ Bri o Docs\\ Updated File.bqgy")
Acti veDocurent . Cl ose()

Methods: Activate(), AddExportSection(SectionName As String), Close([SaveChanges
As Boolean]), Export([Filename As String], [FileFormat As
BqExportFileFormat], [Prompt As Boolean]), OnShutdown(), OnStartup(),
Save([bCompressed As Boolean]), SaveAs([Filename As String],
[bCompressed As Boolean],[Prompt As Boolean]),

Properties: Read-Only Properties: Property Active As Boolean, Property Name As String,
Property Path As String

Read-Write Properties: Property ShowCatalog As Boolean, Property
ShowSectionTitleBar As Boolean

Collections: Sections As Sections

Object: LastSaved As LastSaved

9-44 Objects

Documents (Collection)

Member of: Application Object

Description: This is a collection of all document collections objects within the application.

[] Tip All collections have a method named “Item(NameOrIndex).” This is the
default method for all collections and returns an item in the collection at a
particular index or with a specific name. For simplicity, the “[]” can be used in
place of the call to the “Item()” method. For example, the following statements
are all identical in behavior:

myl tem = Docunent s[1]
myl tem = Docunents. |tenm(1)
myl tem = Docunents["Start Up. bqy"]
myl tem = Docunents. |ltem("StartUp. bay")
Example: The following example shows you how to print the names of all open

documents to the console window. It also compares the names of the open
documents with the ActiveDocument (the document which has Focus) and
prints “Active” next to its name.

For (1= 1;1 <= Docunents. Count; | ++)
if (Documents[l].Nanme == ActiveDocunent. Nane)

Consol e. Witel n(Acti veDocunent. Name + "- Active")
el se

}

Console. Witeln (Documents[l]. Nane)

Methods: Add([Name As String]) As Document, [tem(NameOrIndex) As Document,
New([Name As String]) As Document, Open([Filename As String],
[DisplayName As String]) As Document

Properties: Read-Only Properties: Property Count As Number

Documents (Collection) 9-45

EISSection (Object)

Member of: Sections Collection
Description: The EISSection object represents an EIS section.
Example: The following example shows how to access the list of controls in an EIS

section. It also shows you how to rename the section, and how to show or hide
the section.

MYElI'S = ActiveDocunent. Sections["El S"]
Consol e. Wite("Number of Controls = "+MEIS. Controls. Count)
Consol e. Wite("The First Control is Naned: "+MEIS. Controls[1].Nane)
MYElI S. Name = "My Eis Section"
/11f the section is hidden then show it
if (MEIS Visible == fal se)
M/EI S. Visible = true

Methods: Activate(), Copy(), Duplicate(), Export([Filename As String],[FileFormat As
BqExportFileFormat[, [IncludeHeaders As Boolean], Prompt As Boolean]),
OnActivate(), OnDeactivate(), PrintOut([FromPage As Number], [ToPage As
Number], [Copies As Number], [Filename As String]), Recalculate(),
Remove()

Properties: Read-Write Properties: Property Active As Boolean, Property Name As
String, Property ShowOutliner As Boolean, Property Type As BqSectionType,
Property Visible As Boolean

Collections: Shapes As Shapes

9-46 Objects

Facts (Object)

Member of:

Description:

Example:

Methods:

Properties:

CategorylItems (Collection)

An object that represents a chart's Y-axis. The Facts object's properties affect
the display of the Y-axis and the Y-Facts categories in the Outliner.

In this example, a chart is built from scratch using the request items specified
in the query. First, all the items in the outliner are removed, and then the
specific items are added to the outliner.

Act i veDocunent . Sections["Chart"]. Facts. RenoveAll ()

Act i veDocunent . Sections["Chart"]. Facts. Add(" Product")
Act i veDocurent . Sections["Chart"]. Facts. Add(" State")

Add(ItemName As String), AddComputedItem(Name As String, Expression
As String, [Index As String] As AxisItem), Item (NameOrIndex) As Axisltem,
Remove(NameOrIndex), RemoveAll()

Read-Only Properties: Property Axis Type as BqChartAxisType, Property
Count As Number

Facts (Object) 9-47

Field (Object)

Member of: Fields collection
Description: Sets a computable field.
Example: The following example shows you how to display a field with the text message:

This is a text label.

try
t . . . o
Acti veDocurnent . Sections["Report"] . PageHeader.Fields["Field"].Formula = "' This is
a text |abel""
Acti veDocurnent . Sections["Report"] . Recal cul at e()
catch(e)

Console. Witeln(e.toString())

}

Methods: Layer(BqLayer value), Spring(String Name), UnSpring

Properties: Read-write: Formula as String, HorizontalAlignment as
BqHorizontalAlignment, Text as String, TextWrap as Boolean,
VerticalAlignment as BqVerticalAlignment
Read only: Name as String, Type as BqShapeType

Objects: LineFormat object, FillFormat object, FontFormat object

9-48 Objects

Fields (Collection)

Member of:

Description:

Example 1:

ReportHeader object, ReportFooter object, PageHeader object, PageFooter
object, Body object

The Fields collection represents all field objects in the report section.

The following example shows you how to count the number of fields that have
been inserted in the Body band of the report:

Al ert (Acti veDocunent. Secti ons[" Report"]. Body. Fi el ds. Count + " Nunber of fields in

t hi s band")

Methods:

Properties:

Objects:

Item(NameOrIndex as Name)
Read Only: Count as Number

ReportName Field object, Path Field Object, FileName Field object, Date
TimeNow Field object, TimeNowField, DateNow Field object, Time Field
object, Last Printed Field object, Date Field, LastSaved Field object, Page XofY
Field object, PageCount Field object, PageNm Field, Query SQL field object,
Result Limit object, Query Limit object, Field object

Fields (Collection) ~ 9-49

FileName Field (Object)

Member of: Fields collection
Description: Sets the full document name and file extension.
Example: The following example shows you how to spring the FileName field with the

ReportName field and PageXofY field objects.
Acti veDocurnent . Sections[" Sal es Report"]. Report Header. Fi el ds["Fi | eNanme
Fiel d']. Spring("ReportNane Field")

Acti veDocurnent . Sections[" Sal es Report"]. Report Header. Fi el ds["Fi | eNanme
Fiel d']. Spring("PageXofY Field")

Methods: Layer(BqLayer value), Spring(String Name), UnSpring

Properties: Read-write: Formula as String, HorizontalAlignment as
BqHorizontalAlignment, Text as String, TextWrap as Boolean,
VerticalAlignment as BqVerticalAlignment

Read only: Name as String, Type as BqShapeType

Objects: LineFormat object, FillFormat object, FontFormat object

9-50 Objects

Fill (Object)

Member of: Shape Object, Control Object, LegendItem Object

Description: The Fill object contains all of the properties associated with object background
formatting.

Example: The following example shows you how to change the color of a rectangle.

MyRect angl e = Acti veDocunent. Sections["ElI S"]. Shapes[" Rect angl e"]
MyRect angl e. Fi I | . Col or = bqBl ue

Methods: None
Properties: Read-Write Properties: Property Color As BqColorType, Property BrushStyle
As BqBrushStyle

Fill (Object) 9-51

Font (Object)

Member of: Shape Object, Control Object’
Description: The Font object contains all of the methods and properties of fonts.
Example: The following example shows you how to change the size and color of a text

label control.

Acti veDocunent . Sections["El S"]. Shapes[" Text Label 1"]. Font. Col or =bgBl ue
Acti veDocunent . Sections["El S"]. Shapes[" Text Label 1"]. Font. Styl e=bgFont Styleltalic

Methods: None

Properties: Read-Write Properties: Property Color As BqColorType, Property Effect As
BqFontEffect, Property Name As String, Property Size As Number, Property
Style As BqFontStyle

9-52 Objects

Footer (Object)

Member of:

Description:

Example:

ReportGroup object

The footer object represents the attributes of the report group footer band.

In the user interface, when you drag an item from the Catalog pane into the
Report Group Outliner, Brio Intelligence automatically supplies a report
group header band and adds a label inside the band, which identifies the
group. A group header categorizes data into repeating collections of records in
a header band. To switch to a report group footer band, you select a column in
the outliner and select "Footer" on the shortcut menu.

The following example shows you how to change the color page number field
footer to red.

Act i veDocunent . Sections["Report"] . Groups[" Report Group2"].Footer.Fields["PageNm

Field"]. Font. Col or

Methods:

Properties:

Objects:

= 16711680

None

Read-Write Properties: KeepTogether as Boolean, KeepWithNext as Boolean,
PageBreak as BqPageBreak, Visible as Boolean

LineFormat object, FillFormat object, Tables collection, Fields collection,
Shapes collection, Shapes Collection, Pivots collection, Pivot collection, Chart
collection

Footer (Object) 9-53

Form (Collection)

Member of: Session Object

Description: The Form collection represents a list of key value pairs stored generated from a
POST method of an HTML form. Form elements are the controls, which allow
users to make selections on an HTML page. The Form collection provides
read-only access to the form elements values which as environment variables
in the current browser. Since HTML forms are browsers based this collection
only applies to the plug-in products. However, the Form collection is exposed
in the client server products to assist in developing plug-in scripts.

[] Tip All collections have a method named “Item(NameOrIndex).” This is the
default method for all collections and returns an item in the collection at a
particular index or with a specific name. For simplicity, the “[]” can be used in
place of the call to the “Item()” method. For example, the following statements
are identical in behavior:

myl tem = Docunent s[1]
myl tem = Docunents. |tenm(1)
myl tem = Docunents["Start Up. bqy"]
myl tem = Docunents. |tem("StartUp. bay")
Example: Shows how to read the values of a Form elements and use them inside a plug-
in script.
Basic HTML Form:
<HTML>
<BODY>

<!"Note: The Action Key have a val ue whi ch opens a document from the OnDenand
Server. You MJST include the "Jscript=enable" key-value pair to initialize the
plug-in scripting ->
<FORM METHOD = "post" ACTION = "http://your.server.com ods-
cgi/ odscgi . exe?Met hod=get Docunment &Docnanme=- 1835- 83481598112- 58541278350- 125- 8- 1-
1387-9434&JScr i pt =enabl e" >
<P>Text Box <I NPUT id=textl nanme=text1></P>

<P>Password <I NPUT i d=passwordl name=passwordl type=password></P>
<P>Text Area <TEXTAREA i d=TEXTAREAl name=TEXTAREAl></ TEXTAREA></ P>
<P>Check Box<I NPUT i d=checkbox1l name=checkboxl type=checkbox></P>
<P>Radi o <I NPUT id=radi ol nanme=radi ol value = "1st" type=radi o><l NPUT
i d=radi 01 nare=radi 01 type=radi o value = "2nd" CHECKED></ P>
<P>Dr opDown<SELECT i d=sel ect 1 nanme=sel ect1 >

<OPTI ON val ue=Val uel>Di spl ayl

9-54 Objects

<OPTI ON val ue=Val ue4>Di spl ay4</ SELECT></ P>
<P>Li st Box <SELECT i d=sel ect2 name=sel ect2 size=4 nultiple>
<OPTI ON val ue=Val uel>Li st 1
<OPTI ON val ue=Val ue4>Li st 4</ SELECT></ P>
<P><I NPUT i d=subm t1 name=submitl type=submit val ue=Subnm t></P>
</ FORM>
</ BODY>
</ HTML>

/1Script running on plug-in

//Wite all values to consol e w ndow

Consol e. Witeln("Text1l Value = "+ Session. Fornf"text1"])

Consol e. Witel n("passwordl Val ue "+ Session. Forn{"passwordl"])
Consol e. Witel n(" TEXTAREAL Val ue "+ Session. Forn{ " TEXTAREA1"])
Consol e. Witel n("checkbox1 Val ue "+ Session. Forn{"checkbox1"])
Consol e. Witeln("radi ol Value = "+ Session.Forn{"radiol"])
Consol e. Witeln("selectl Val ue "+ Session. Forn{"selectl"])
Consol e. Witel n("sel ect2 Val ue "+ Session. Forn{"select2"])

Methods: Add(Key As String, Value As String), |tem Naneorl ndex)
As Form

Form (Collection) 9-55

Group (Object)

Member of: ReportSection object

Description: The group header categorizes data into repeating collections of records in a
header band.

Example: The following example shows you how to remove all items in Report Group 1.

Acti veDocurent . Sections["Report"]. G oups["Report Groupl"].Renove()

Methods: Move(LabelNameBefore String), Remove()
Properties: Read only: Name as String
Objects: Header object, Footer object, Groupltems collection, SortItems collection

9-56 Objects

Groups (Collection)

Member of: ReportSection object

Description: The Group collection represents the Report Groups (i.e.the user selects the
"Groups" portion of the outliner in the Reporter). It is treated like a header
band, but there are separate objects for the actual report page headers/footers
and report header/footer.

] Tip When you use the Add, Move and/or Remove methods with this collection
and the SuspendCalculation property is set to true (which it is by default), then
you must use the Recalculate method to force the Report section to recalculate
itself.

Example: The following example shows you how to add the "Year" column member.

Act i veDocurnent . Secti ons["Report"] . Groups. Add(Year)

Methods: Add(Column Member), Item (Value NameOrIndex), RemoveAll()

Properties: Count as Number (Read Only)

Groups (Collection) 9-57

Groupltem (Object)

Member of: GrouplItems Collection

Description: The Groupltem object represents an individual column that has been dragged
into the report group outliner, such as the "Store Id" column from the Results
section.

Example: The following example shows you how to write the name of the Amount Sales

group item to the console window:

Consol e. Witel n(Acti veDocunment . Sections["Report"]. G oups[" Report
Groupl"]. G oupltens["Amount Sal es"]. Nane)

Methods: Move(LabeLNameBefore as String), Remove()

Properties: Read only: Name As String

9-58 Objects

Groupltems (Collection)

Member of: ReportGroup object
Description: The Groupltems collection is a collection of items for a specific report group.
Example 1: The following example shows you how to remove all group items in the report

group band in Report Group 1.

ActiveDocument.Sections["Report"].Groups["Report Group1"].
GrouplItems.RemoveAll()

Example 2: The following example shows you how to addl the "Year" and "Results" group
items to Report Group 1.

Act i veDocurnent . Sections["Report"]. G oups["Report Groupl"]. G oupltens. Add(" Year",
"Resul ts")

Methods: Add(String Member, [optional] StringSectionDependency),
Item(NameOrIndex as Value). RemoveAll()

Properties: Read only: Count as Number

Groupltems (Collection) 9-59

Header (Object)

Member of:

Description:

Example:

Methods:

Properties:

Objects:

ReportGroup object

The Header object represents the attributes of the report group header band.
When you drag an item from the Catalog pane into the Report Group
Outliner, Brio Intelligence automatically supplies a group header band and
adds a label inside the band, which identifies the group. A group header
categorizes data into repeating collections of records in a header band.

For example, if you create a report to show purchases by state, each state would
serve a group header for the report. Other items can be added as sub-
categories, such as buyers.

The following example shows you how to count and display the number of

tables in the Report Group 1 header.

Act i veDocurent . Sections["Report"] . Groups[" Report
Groupl"] . Header. Tabl es. Count

None

Read-Write Properties: KeepTogether as Boolean, KeepWithNext as Boolean,
PageBreak as BqPageBreak, Visible as Boolean

LineFormat object, FillFormat object, Tables collection, Fields collection,
Shapes collection, Shapes Collection, Pivots collection, Pivot collection, Chart
collection

Read only: Count as Number

9-60 Objects

Join (Object)

Member of: DataModel Object
Description: The Join object represents an individual join between topics in a Data Model.
Example: The following example shows you how to change the type of join to a left join

and print the names of the joined topic items to the console window.

Act i veDocunent . Sections[" Query"]. DataModel . Joi ns[1] . Type = bgJoi nLeft

Consol e. Witel n(Acti veDocunent . Secti ons[" Query"] . Dat avbdel . Joi ns[1] . Topi cl tentl. Di
spl ayNanme="Sal es")

Consol e. Witel n(Acti veDocunent . Sections[" Query"]. Dat aMbdel . Joi ns[1] . Topi cl tenR. Ph
ysi cal Nan®)

Methods: Add(), Item(), Remove()
Properties: Read-Write Properties: Property Count As Number
Objects: Topicltem1 As Topicltem, Topicltem2 As Topicltem

Join (Object) 9-61

Joins (Collection)

Member of: DataModel Object

Description: The Joins collection is a collection of joins between topics in a Data Model.

[] Tip All collections have a method named “Item(NameOrIndex).” This is the
default method for all collections and returns an item in the collection at a
particular index or with a specific name. For simplicity, the “[]” can be used in
place of the call to the “Item()” method. For example, the following statements
are identical in behavior:

myl tem = Docunent s[1]
myl tem = Docunents. |tenm(1)
myl tem = Docunents["Start Up. bqy"]
myl tem = Docunents. |ltem("StartUp. bay")
Example: The following example shows you how to remove all the joins in the current

Data Model and create a simple join between the Wine.Wine_Id and
Wine_Sales.Wine_Id topic items.

wi t h(Acti veDocunent . Secti ons[" Query"]. Dat aMbdel)

{

Joi ns. RenoveAl | ()

Fieldl = Topics["WNE"]. Topicltens["Wne |d"]

Fiel d2 = Topi cs["W NE_SALES"] . Topicltens["Wne 1d"]
//Create a new join by joining two Topicltens together
Joi ns. Add(Fi el d1, Fi el d2, bqJoi nSi npl eEqual)

}

Methods: Add(TopicItem1 As Topicltem, Topicltem2 As Topicltem, Type As
BqJoinType) As Join, Item(NameOrIndex) As Join, RemoveAll()

Properties: Read-Only Properties: Property Count As Number

9-62 Objects

JoinsOptions (Collection)

Member of:

Description:

L] Tip

Example:

DataModel Object

The JoinsOptions collection represents the available join usage preferences.
The features in this collection correspond to the options available on the Joins
tab of the Data Model Option dialog.

All collections have a method named “Item(NameOrIndex).” This is the
default method for all collections and returns an item in the collection at a
particular index or with a specific name. For simplicity, the “[]” can be used in
place of the call to the “Item()” method. For example, the following statements
are identical in behavior:

myl tem = Docunent s[1]

myl tem = Docunents. |tenm(1)

myl tem = Docunents["Start Up. bqy"]

myl tem = Docunents. |tem("StartUp. bay")

The following example shows you how to specify to use only topics
represented by items on the Request line for joins.

Act i veDocurnent . Sections[" Query"]. Dat aMbdel . Joi nsOpti ons. Type=
bgDat aMbdel Joi nsOpti onM nTopi cs

Methods:
Properties:

Collections:

[] Note

None
Read-Write Properties: Property Type As BqDataModelJoinsOptions

DefinedJoinPaths As DefinedJoinedPaths

If you choose to programmatically define your own join paths by selecting the bgDataModel
JoinsOptionDefJoin constant, specify your join preferences using the DefinedJoinPath
(Collection).

JoinsOptions (Collection) 9-63

LabelsAxis (Object)

Member of: ChartSection Object

Description: The LabelsAxis object acts as a logical container for both of the labels axis
contained in a chart.

Example: The following example shows you how to set basic properties of the XAxis
label and the ZAxis label.

wi t h(Acti veDocunent. Sections["Chart"])

{
Label sAxi s. XAxi s. Showal ues = true
Label sAxi s. XAxi s. ShowTi ckmar ks = true
Label sAxi s. ZAxi s. Showval ues = fal se
Label sAxi s. ZAxi s. ShowTi ckmar ks = f al se

}

Methods: None

Properties: None

Objects: XAxis As XaxisLabel, ZAxis As ZAxisLabel

9-64 Objects

LabelValues (Object)

Member of: ChartSection Object, XLabels Object, YLabels Object and Zlabels Object

Description: The LabelValues object represents the values on the YLabel, XLabel, or ZLabel.

[Tip For simplicity, the “[]” can be used in place of the call to the “Item()” method.
For example, the following statements are identical in behavior:

myl tem = Docunent s[1]
myl tem = Docunents. |tenm(1)
myl tem = Docunents["Start Up. bqy"]
myl tem = Docunents. |ltem("StartUp. bay")
Example: The following example shows you how to set up LabelValues items 1 and 2 in a

new array. The new array could then be used with the FocusSelection and
HideSelection methods.

var Xarray = new Array();

Xarray[0] = ActiveDocunent. Sections["Chart"].XLabel s. Label Val ues. Iten(1)
Xarray[1] = ActiveDocunent. Sections["Chart"]. XLabel s. Label Val ues. Iten(2)
Methods: Item (Index As Number) As LabelValueltem

Properties: None

LabelValues (Object) 9-65

LastPrinted Field (Object)

Member of: Fields collection

Description: Sets the date on which the report section was last printed in MM/DD/YY
format.

Example: The following example shows you how to reposition the LastPrinted Field

object behind another object (such as a shape object).

Acti veDocurent . Sections["Sal es Report"]. PageFooter. Fiel ds["LastPrinted
Fiel d']. Layer (bgLayer Back)

Methods: Layer(BqLayer value), Spring(String Name), UnSpring()

Properties: Read-write: Formula as String, HorizontalAlignment as
BqHorizontalAlignment, Text as String, TextWrap as Boolean,
VerticalAlignment as BqVerticalAlignment

Read only: Name as String, Type as BqShapeType

Objects: LineFormat object, FillFormat object, FontFormat object

9-66 Objects

LastSaved Field (Object)

Member of: Fields collection

Description: Sets the date on which the document was last printed in MM/DD/YY format.

Example: The following example shows you how to change the font color to red in the
Last Saved field.

Act i veDocurnent . Secti ons[" Sal es Report"]. PageFoot er. Fi el ds["Last Saved
Field"].Font.Color = 16711680

Methods: Layer(BqLayer value), Spring(String Name), UnSpring()

Properties: Read-write: Formula as String, HorizontalAlignment as
BqHorizontalAlignment, Text as String, TextWrap as Boolean,
VerticalAlignment as BqVerticalAlignment

Read only: Name as String, Type as BqShapeType

Objects: LineFormat object, FillFormat object, FontFormat object

LastSaved Field (Object) 9-67

Legend (Object)

Member of: ChartSection Object

Description: The Legend object represents all of the methods and properties of a chart
legend.

Example: The following example shows you how to change the chart axis type to the X-

axis category.

Acti veDocurent . Sections["Chart"]. Legend. Focus=bgChart XAxi s

Methods: None
Properties: Property Focus as BqChartAxisType
Collections Items As Legendltens

9-68 Objects

Legend (Collection)

Member of: ChartSection Object

Description: The Legend collection allows you to set and get legend item attributes of a
chart. You might use this collection to set and retrieve the line width of a line
chart; or to modify the foreground color of a Bar chart.

] Tip All collections have a method named “Item(NameOrIndex).” This is the
default method for all collections and returns an item in the collection at a
particular index or with a specific name. For simplicity, the “[]” can be used in
place of the call to the “Item()” method. For example, the following statements
are identical in behavior:

myl tem = Docunent s[1]
myltem = Docunents. |tem(1)
myl tem = Docunents["Start Up. bqy"]
myl tem = Docunents. |tem("StartUp. bay")
Example 1: The following example shows you how to change the color, the fill pattern, the

line color, and the line width of a legend item.

Act i veDocurnent . Sections["Chart"]. Legend. Itens[1].Fill. Col or=bqgBl ue
Act i veDocunent . Sections["Chart"]. Legend. Itens[1].Fill.BrushStyle =
bgBrushStyl eCr oss

Act i veDocument . Sections["Chart"]. Legend. I tens[1] . Li ne. Col or = bqgBl ue
Act i veDocurnent . Sections["Chart"]. Legend. Itens["QLl"]. Line. Wdth= 6

Example 2: The following example shows you how to set the marker style, the marker size,
the marker border color, and the marker fill color of a legend item.

Act i veDocurent . Sections["Chart"]. Legend. Itens["QL"]. Li ne. Marker Styl e = bgSquare

Act i veDocument . Sections["Chart"]. Legend. I tens[1] .Li ne. Marker Si ze = bqg6pt

]
Act i veDocunent . Sections["Chart"]. Legend. It enms[1] . Li ne. Mar ker Bor der Col or = bgRed
Act i veDocunent . Sections["Chart"]. Legend. Itens["QL"]. Li ne. Marker Fi |l Col or= bqG een

Methods: LegendItems.Item(NameOrIndex)

Properties: Read only: Property Count as Number

Legend (Collection) 9-69

LeftAxis (Object)

Member of: ValuesAxis Object

Description: The LeftAxis object represents all the left values axis properties contained in a
chart.

Example: The following example shows you how to set some basic properties of the left
axis.

wi t h(Acti veDocunent . Sections[" Chart"]. Val uesAxi s)

{
Lef t Axi s. AutoScale = true
Lef t Axi s. Autol nterval = true
Lef t Axi s. ShowLabel = fal se
}
Methods: None
Properties: Read-Write Properties: Property AutoInterval As Boolean, Property

AutoScale As Boolean, Property IntervalFrequency As Number, Property
LabelText As String, Property ScaleMax As Number, Property ScaleMin As
Number, Property ShowLabel As Boolean

9-70 Objects

Limit (Object)

Member of: Limit Collection

Description: The Limit object represents an individual limit. The limit object applies to
Results, Data Model and Query Limits.

Example 1 The following example shows you how to modify values of an existing Results
limit.

MyLimt = ActiveDocument. Sections["Results"].Limts[1]
//Clear all the values which are currently set

MyLim t. Sel ect edVal ues. RenoveAl | ()

/1 add new val ues to the sel ectedval ues coll ection
MyLi m t. Sel ect edVal ues. Add(2000)

//Change the limt criteria

MyLim t. Operator = bqgLi m t OperatorLessThan

Example 2 The following example shows you how to create a new query limit from an
existing topic.

//Create an enpty Limt object fromthe "Wne. Cost" Topic Item

MyLimt = ActiveDocument. Sections["Query"].Limts.CreateLimt("Wne.Cost")
MyLim t. Operator = bqgLi m t Operator Greater Than

MyLim t. Sel ect edVal ues. Add(10)

MyLim t. Name = "Costly Wne"

//Adds the Iimt to the Limt Line -

Act i veDocunent . Sections["Query"]. Limts. Add(MyLinit)

Example 3 The following example shows you how to populate a list box control with the
list of available values for an existing results limit.
Lim tCount = ActiveDocunent. Sections["Results"].Limts[1].Avail abl eVal ues. Count

for (i=1;1<=LimitCount;i++)
Li st Box. Add(Acti veDocunent . Sections["Results"].Limts[1]. Avail abl eVal ues[i])

Methods LoadFromFile(Filename As String) As Boolean, RefreshAvailableValues(),
Remove()

Limit (Object) 9-71

Properties

Collections:

Read-Only Properties Property ValueSource As BqLimitValueSource

Read-Write Properties: Property CustomSQL As String, Property
DisplayName As String, Property FullName As String, Property Ignore As
Boolean, Property IncludeNulls As Boolean, Property LimitValueType As
BqLimitType, Property LogicalOperator As BqLogical Operator, Property
Negate As Boolean, Property Operator As BqLimitOperator, Property Prompt
As String, Property SuspendRecalculation As boolean, Property VariableLimit
As Boolean

AvailableValues As LimitValues, CustomValues As LimitValues,
SelectedValues As LimitValues

9-72

Objects

Limits (Collection)

Member of: QuerySection Object, DataModel Object, TableSection Object

Description: The Limits collection is the collection of limits within a Results, Query or Data
Model section. The Limits collection is analogous to the Limit line in Brio
Intelligence.

] Tip All collections have a method named “Item(NameOrIndex).” This is the
default method for all collections and returns an item in the collection at a
particular index or with a specific name. For simplicity, the “[]” can be used in
place of the call to the “Item()” method. For example, the following statements
are identical in behavior:

myl tem = Docunent s[1]
myl tem = Docunents. |tenm(1)
myl tem = Docunents["Start Up. bqy"]
myl tem = Docunents. |tem("StartUp. bay")
Example 1: The following example shows you how to remove all existing limits and create

a new query limit from an existing topic.

Act i veDocunent . Sections[" Sal esQuery"]. Linits. RenoveAl |l ()

MyLimt = ActiveDocunent. Sections["Sal esQuery"].Limts.CreateLimt
("Sal es_Fact. Unit_Sal es")

MyLim t. Operator = bgLi nit Operator G eaterThan

MyLi m t. Cust omval ues. Add(50)

MyLi m t. Sel ect edVal ues. Add(50)

//Adds the Iimt to the Limt Line -

Act i veDocunent . Sections[" Sal esQuery"]. Limits. Add(MyLimt)

Example 2: The following example shows you how to remove all existing limits and create
a new query computed item limit.

Act i veDocunent . Sections[" Sal esQuery"]. Linits. RenoveAl |l ()

MyLimt = ActiveDocunent. Sections["Sal esQuery"].Limts.CreateLimt
("Requests. Sal es_Per_Unit")

MyLim t. Operator = bgLi nitOperatorlLessThan

MyLi m t. Cust omval ues. Add(20)

MyLi m t. Sel ect edVal ues. Add(20)

//Adds the Iimt to the Limt Line -

Act i veDocunent . Sections[" Sal esQuery"]. Limits. Add(MyLimt)

Limits (Collection) 9-73

Methods:

[] Note

Properties:

Add(Limit As Limit), CreateLimit(Limitltem As String) As Limit,
Item(NameOrIndex) As Limit, RemoveAll()

The argument for CreateLimit method is different for regular limits, computed item limits, and
aggregate limits. For regular limits the argument is a reference to the table topic and the topic
item, for example, CreateLimit(“Sales_Facts.Amount_Sales”). For both computed item limits
and aggregate limits the argument is a reference to the item’s Display Name on the request
line, for example, CreateLimit(“Request.Amount Sales”).

Read-Only Properties: Property Count As Number

9-74

Objects

LimitValues (Collection)

Member of: Limit Object

Description: The LimitValues collection is a collection of all the values associated with the
different types of limits—regular, computed, and aggregate. Each limit object
has three LimitValues collections: AvailableValues, SelectedValues, and
CustomValues. The AvailableValues collection is used for regular limits only.

[] Tip All collections have a method named “Item(NameOrIndex).” This is the
default method for all collections and returns an item in the collection at a
particular index or with a specific name. For simplicity, the “[]” can be used in
place of the call to the “Item()” method. For example, the following statements
are identical in behavior:

myl tem = Docunent s[1]
myl tem = Docunents. |tenm(1)
myl tem = Docunents["Start Up. bqy"]
myl tem = Docunents. |ltem("StartUp. bay")
Example 1: The following example shows you how to add all the values in the

AvailableValues collection to the SelectedValues collection. This is essentially
the same as performing a select all values and transferring the selection in the
Limit User Interface.

Li m t Count =

Act i veDocunent . Sections["Results"].Limts[1]. Avail abl eVal ues. Count

for (i=1;i<=LimtCount;i++)

{

MyVal =

Add(Acti veDocument . Sections["Results"].Limts[1]. Avail abl eVal ues[i]
Act i veDocurent . Sections["Results"].Limts[1]. Sel ectedVal ues. Add(MyVal)

}

Example 2: The following example adds a CustomValue to the computed item limit.

Act i veDocurnent . Sections["Query"].Limts[2]. CustonVal ues. Add(*2")

Methods: Add(Valueltem), AddAll(), Item(Index As Number), RemoveAll()

LimitValues (Collection) 9-75

D Note For the AvailableValues collection, the Add() method does nothing since the values are
obtained from the database.

Properties: Read-Only Properties: Property Count As Number

9-76 Objects

LineChart (Object)

Member of: ChartSection Object

Description: The Line Chart object represents all the methods and properties specific to
Line Charts.

Methods: None

Properties: Read-Write Properties: Property IgnoreNulls As Boolean

LineChart (Object) 9-77

Line (Object)

Member of: Shape Object, Control Object, LegendItem Object
Description: The Line object contains all of the properties assocated with border formating.
Example 1: The following example shows you how to change the border color, width and

DashStyle of a rectangle.

MyRect angl e = Acti veDocunent. Sections["ElI S"]. Shapes[" Rect angl e"]
MyRect angl e. Li ne. Col or = bqRed

MyRect angl e. Line. Wdth = 4

MyRect angl e. Li ne. DashStyl e = bgDashsSt yl eDot Dot Dash

Example 2: The following example shows you how to change the marker color and style
for a line chart.

Acti veDocurent . Sections["Al | Chart"].Legend.ltens["Unit Sal es"]. Line.
Mar ker Bor der Col or =bgRed

Acti veDocurent . Sections["Al | Chart"].Legend.ltens["Unit Sal es"]. Line.
Mar ker St yl e=bgMar ker Styl eTri angl e

Methods: None

Properties: Read-Write Properties: Property Color As BqColorType, Property DashStyle
as BqDashStyle, Property MarkerBorderColor as BqColorType, Property
MarkerFillColor as BqColorType, Property MarkerSize as Number, Property
MarkerStyle as BqMarkerStyle, Property Width as Number

9-78 Objects

Localloins (Collection)

Member of: DataModel Object

Description: The LocalJoins collection provides you with the ability to derive the Topic
Name of a topic item contained in a join or local join. You can also retrieve the
Topic Item Name for joins (but not for a local join).

] Tip All collections have a method named “Item(NameOrIndex).” This is the
default method for all collections and returns an item in the collection at a
particular index or with a specific name. For simplicity, the “[]” can be used in
place of the call to the “Item()” method. For example, the following statements
are identical in behavior:

myl tem = Docunent s[1]
myl tem = Docunents. |tenm(1)
myl tem = Docunents["Start Up. bqy"]
myl tem = Docunents. |tem("StartUp. bay")
Example 1: The following example shows you how to use a simple equal join.

Topi c1=Act i veDocunment . Secti ons["Query"] . Dat aMbdel . Topi cs[" Sal es Fact"].
Topicltens. |tem2)

Topi c2=Act i veDocunent . Secti ons["Query"] . Dat aMbdel . Topi cs[" Products"].
Topicltems. Item(1)

Act i veDocurent . Secti ons[" Query"]. Dat aMbdel . Joi ns. Add

(Topi c1, Topi c2, bgJoi nSi npl eEqual)

Example 2: The following example shows you how to use a simple equal join to join topics
1 and 2 in a local results set.

LRTopi c1=Acti veDocunent . Secti ons[" Query2"] . Dat avbdel . Local Resul ts["1"].

Local Resul t Topicltens.ltem(7)

LRTopi c2=Act i veDocunent . Secti ons[" Query2"] . Dat aMbdel . Local Resul ts["2"].

Local Resul t Topicltens.ltem(7)

Act i veDocunent . Secti ons[" Query2"] . Dat aMbdel . Local Joi ns. Add(LRTopi c1, LRTopi c2,
bgJoi nSi npl eEqual)

Methods: Add([Topicltem1 As BaseTopicltem], [Topicltem2 As BaseTopicltem], [Type
As BgJoinType] As LocalJoin), Item(NameOrIndex) As LocalJoin,
RemoveAll()

Properties: Read-Only Properties: Property Count As Number

Localloins (Collection) 9-79

LocalResults (Collection)

Member of: DataModel Object

Description: The LocalResults collection provides you with the ability to use local results in
joins and the Request line for processing results sets.

[] Tip All collections have a method named “Item(NameOrIndex).” This is the
default method for all collections and returns an item in the collection at a
particular index or with a specific name. For simplicity, the “[]” can be used in
place of the call to the “Item()” method. For example, the following statements
are identical in behavior:

myl tem = Docunent s[1]
myl tem = Docunents. |tenm(1)
myl tem = Docunents["Start Up. bqy"]
myl tem = Docunents. |ltem("StartUp. bay")
Example 1: The following example adds a local results topic to a query section.

vDMVE
Acti veDocunent . Sections[" Query"]. Dat aModel . Cat al og. Resul ts. Item("sal es_fact")
Acti veDocurnent . Secti ons[" Query"]. Dat aMbdel . Local Resul ts. Add(vDM

Example 2: The following example shows how to remove all local results topics and how to
count the local results topics in a query section.

Acti veDocurent . Sections[" Query"]. Dat aMbdel . Local Resul ts. RemoveAl | ()
Acti veDocunent . Secti ons[" Query"]. Dat aMbdel . Local Resul ts. Count

Example 3: The following example removes a single local results topic and gets the topic
item count of the “Results2” local topic.

Acti veDocurent . Sections[" Query"]. Dat aMbdel . Local Resul ts[" Resul t s2"] . Renove()
Acti veDocurent . Sections[" Query"]. Dat aMbdel . Local Resul ts[" Resul t s2"] .
Local Resul t sTopi cl t ens. Count

Example 4: The following example adds a join between a topic and a local results topic.

Topi c1=Act i veDocument . Secti ons["Query"] . Dat aMbdel . Local Resul t s["Sal es Fact"].
Local Resul t Topicltens.lten("Store 1d")

Topi c2=Act i veDocunent . Secti ons["Query"] . Dat aMbdel . Resul t s[" Resul t s2"]. Topi cl t ens.
Item("Store 1d")

Acti veDocurent . Sections[" Query"]. Dat aMbdel . Local Joi ns. Add(Topi c1, Topi c2,

bgJoi nLeft)

9-80 Objects

Example 5: The following example adds a topic from a local results to the request line.

Act i veDocurnent . Sections[" Query"]. Requests. Add("Resul ts2","Quarter")

Methods: Add(LocalResultObject As DMResult) As LocalResult, Item(NameOrIndex)
As LocalResult, RemoveAll()

Properties: Read-Only Properties: Count as Number

LocalResults (Collection) 9-81

LocalResultsTopicltems (Collection)

Member of: LocalResults Object

Description: The LocalResultsTopicltems collection provides you with the ability to use
local results topic items in joins and in the Request line for processing results
sets.

Example 1: The following example removes a single local results topic and gets the topic

item count of the “Results2” local topic.

Acti veDocurent . Sections[" Query"]. Dat aMbdel . Local Resul ts[" Resul t s2"] . Renove()
Acti veDocurent . Sections[" Query"]. Dat aMbdel . Local Resul ts[" Resul t s2"] .
Local Resul t sTopi cl t ens. Count

Example 2: The following example adds a join between a topic and a local results topic.

Topi c1=Act i veDocument . Secti ons["Query"] . Dat aMbdel . Local Resul t s["Sal es Fact"].
Local Resul t Topicltens.lten("Store 1d")

Topi c2=Act i veDocunent . Secti ons["Query"] . Dat aMbdel . Resul t s["Resul t s2"]. Topi cl t ens.
Item("Store 1d")

Acti veDocurnent . Sections[" Query"]. Dat aMbdel . Local Joi ns. Add(Topi c1, Topi c2,

bgJoi nLeft)

Methods: Item()

Properties: Read-Only Properties: Count as Number

9-82 Objects

OLAPConnection (Object)

Member of:

Description:

Example:

OLAPQuery Object

The OLAPConnection object represents either an OLAP Query connection file
(OCE) or the connection to a database. The OLAPQuery connection file is
used to capture and store connection information such as the connection
software, the database software, and the address of your database server and
your database user name for a multi-dimensional database.

The following example shows you how to connect an OLAP database using an
OCE saved locally.

/] Connecting to OLAP

MyConnecti on=Act i veDocunent . Secti ons[" CLAPQuer y"]. Connecti on

MyConnecti on. Open("c:\\ Program Fil es\\ Brio\\BrioQuery\\Program\ Open Cat al og
Ext ensi ons\\ essbhase. oce")

MyConnecti on. User name="essbase"

MyConnecti on. Set Passwor d(" essbase")

MyConnect i on. Connect ()

Method

Properties:

Connect(), Disconnect(), Open(Filename As String), Save(), SaveAs(Filename
As String), SetPassword(Password As String)

Read-Only Properties: Property Connected As Boolean

Read-Write Properties: Property Username As String

OLAPConnection (Object) 9-83

OLAPLabel (Object)

Member of: OLAPLabels Collection

Description: The OLAPLabel object represents an individual (either a top or side) label
within an OLAP report.

Methods: AddFilterValue(MemberName As String, Operator As BqOperator),
Remove()
Properties: Read-Only Properties: Property Name As String

9-84 Objects

OLPLabels (Collection)

Member of:

Description:

Examples:

L] Tip

OLAPQuerySection Object

The OLAPLabels collection consists of the OLAP Query TopLabels and
SideLabels collections. These collections correspond to the labels within a
OLAP Query section. These are columns added to the side and top labels
groups in the outliner.

Brio Intelligence supports different OLAP datasources, including OLEDB for
DB, Essbase, and MetaCube. Depending on the datasource, different filter
operators are supported. If you use an operator that is not applicable for the
datasource, an exception is thrown.

OLEDB for OLAP only allows users to add filter values by selecting them from
the Show Values pane on the Filter dialog box. Otherwise, use the
FilterOperator property and Add FilterValue() method.

All collections have a method named “Item(NameOrIndex).” This is the
default method for all collections and returns an item in the collection at a
particular index or with a specific name. For simplicity, the “[]” can be used in
place of the call to the “Item()” method. For example, the following statements
are identical in behavior:

myl tem = Docunent s[1]

myl tem = Docunents. |tenm(1)

myl tem = Docunents["Start Up. bqy"]

myl tem = Docunents. |tem("StartUp. bay")

The sample scripts below use a simple OLAPQuery with a value of “State (All)”
as a side label, a value of “Year (All)” as a top label and a value “Amount” as a
measure in the user interface.

When creating a script that includes OLAP objects, methods and properties, it
is important to observe the hierarchy of dimensions and levels. For example,
levels from the same dimension must be grouped together in both the Side and
Top labels.

In addition, the hierarchy of a dimension cannot be broken. For example,
“Year” must come before “Quarter,” which must come before “Month.”

OLPLabels (Collection) 9-85

Example 1: The following script shows you how to add the value “State” as the side label.
Notice how “Location” (a dimension) appears before “State” (a level) in the
script.

OQPath = ActiveDocunent. Secti ons[" OLAPQuery"]
OQPat h. Si deLabel s. Add(' Locati on. State')
OQPat h. Process()

Example 2: In the following script the Arizona state abbreviation code is added as a filter
value. Note that the “State” side label must exist before you can execute this
script properly.

OQPath = ActiveDocunent. Secti ons[" OLAPQuery"]

OQPat h. Si deLabel s[1] . AddFi | t er Val ue{" AZ", bqOper at or Equal)
OQPat h. Process()

OQPat h. Acti vat e()

Example 3: When you do not want to use the Show Value method of filtering, use the Add
method as shown below.

Acti veDocurent . Secti ons[" CLAPQuer y"]
TopLabel s. Add(* Ti me. { hi erarchy}. Year’,’ 1999")

Example 4: When you want to use the Show Value method of filtering, use the
AddFilterValue method as in the following example.

/1 When using Show Val ue nethod of filtering

Acti veDocurent . Secti ons[" CLAPQuer y"]. TopLabel s. Add(* Ti me. { hi erarchy}. Year"')
Acti veDocurnent . Secti ons[" CLAPQuery"]. TopLabel s[* Ti me. {hi erarchy}. Year'].

Set Fi |l t er Oper at or= bgOper at or Equal

Acti veDocurnent . Secti ons[" CLAPQuery"]. TopLabel s[* Ti me. {hi erarchy}. Year'].

AddFi | terVal ue((‘ Ti me.{hierarchy}.Year’, ' 1999")

Acti veDocurent . Secti ons[" CLAPQuery"]. TopLabel s. Add(* Ti me. { hi erarchy}. Quarter’)
Acti veDocunent . Secti ons[" OLAPQuery"]. TopLabel s[‘ Ti me. {hi erarchy}. Quarter’].
Set Fi |l t er Oper at or= bgOper at or Not Equal

Acti veDocurnent . Secti ons[" CLAPQuery"]. TopLabel s[* Label Nane’'] . AddFi | t er Val ue
((*Time.{hierarchy}. Year’), QL")

Acti veDocurent . Secti ons[" CLAPQuer y"]. Si deLabel s. Add(‘ Country. {hierarchy}. Region’)

Methods: Add(LevelName As Sting) As OLAPLabel, Item(NameOrIndex) As
OLAPLabel, RemoveAll()

Properties: Read-Only Properties: Property Count As Number

9-86 Objects

OLAPMeasure (Object)

Member of: OLAPMeasures Collection

Description: The OLAPMeasure object represents an individual measure within an OLAP
Query report.

Methods: AddFilterValues (MemberName As String, Operator As BqOperator),
Remove()

Properties: Read-Only Properties: Property Name As String

OLAPMeasure (Object) 9-87

OLAPMeasures (Collection)

Member of:

Description:

Example:

L] Tip

OLAPQuerySection Object

The OLAPMeasures collection consists of the OLAP Query Measures
collections. These collections correspond to the measures within an OLAP
Query section. These are columns added to the side and top labels groups in
the outliner.

All collections have a method named “Item(NameOrIndex).” This is the
default method for all collections and returns an item in the collection at a
particular index or with a specific name. For simplicity, the “[]” can be used in
place of the call to the “Item()” method. For example, the following statements
are identical in behavior:

myl tem = Docunent s[1]

myl tem = Docunents. |tenm(1)

myl tem = Docunents["Start Up. bqy"]

myl tem = Docunents. |ltem("StartUp. bay")

The following example shows you how to add a measure limit called “Units
Plan.”

Acti veDocurent . Secti ons[" CLAPQuer y"]. Measures. Add(‘ Measure. Units Pl an’)

Methods: Add(Measure As String), Item(NameOrIndex) As OLAPLabel, RemoveAll()
Properties: Read-Only Properties: Property Count As Number
9-88 Objects

OLAPQuerySection (Object)

Member of:

Description:

[] Note

Example:

Methods:

Properties:

Sections Collection

The OLAPQuerySection object represents an OLAP Query Section.

With this object you can process OLAP queries, but not build them.

The following example shows you how to activate and process an OLAP
Query.

Act i veDocunent . Secti ons[" OLAPQuery"]. Activate()
Act i veDocument . Secti ons[" CLAPQuer y"]. Process()

Activate(), Copy(), Duplicate(), Export([Filename As String], [FileFormat As
BqExportFileFormat], [IncludeHeaders As Boolean],[Prompt As Boolean]),
PrintOut([FromPage As Number], [ToPage As Number], [Copies As
Number], [Filename As String], Prompt As Boolean]), Process(),
Recalculate(), Remove()

Read-Only Properties: Property Active As Boolean, Property Type As
BqSectionType

Read-Write Properties: Property ExportWithoutQuotes As Boolean, Property
HTMLExportBreakRowCount As Number, Property Name As String,
Property ShowOutliner As Boolean, Property Visible As Boolean

OLAPQuerySection (Object) 9-89

OLAPSlicer (Object)

Member of: OLAPSlicer (Object)

Description: The OLAPSlicer object represents an individual slicer within an OLAP Query
report.

Methods: Remove()

Properties: Read-Only Properties: Property Name As String

9-90 Objects

OLAPSIlicers (Collection)

Member of: OLAPQuerySection Object

Description: The OLAPSlicers collection consists of the OLAP Query Slicers collections.
These collections correspond to the slicer within a OLAP Query section. This is
the column added to the slicer in the outliner.

] Tip All collections have a method named “Item(NameOrIndex).” This is the
default method for all collections and returns an item in the collection at a
particular index or with a specific name. For simplicity, the “[]” can be used in
place of the call to the “Item()” method. For example, the following statements
are identical in behavior:

myl tem = Docunent s[1]
myl tem = Docunents. |tenm(1)
myl tem = Docunents["Start Up. bqy"]
myl tem = Docunents. |tem("StartUp. bay")
Example: The following example shows you how to add a slicer that limits the scope to
Oakland, California.

Act i veDocurnent . Secti ons[" CLAPQuery"]. Slicers. Add(‘ Product Locati on. {hi erachy}.
Store Type', ' USA. Cali fornia. Gakl and’)

Methods: Add(LevelName As String, MemberName As String, Variable As Boolean) As
OLAPSIicer, Item(NameOrIndex) As OLAPSlicer, RemoveAll()

Properties: Read-Only Properties: Property Count As Number

OLAPSlicers (Collection) 9-91

PageCount Field (Object)

Member of: Fields collection

Description: Sets the current page of the total number of pages.

Example: The following example shows you how to change the font color of the
PageCount field to red.

Acti veDocunent . Sections["Report"] . Report Header . Fi el ds[" PageCount
Fiel d']. Font. Col or = bgRed

Methods: Layer(BqLayer value), Spring(String Name), UnSpring()

Properties: Read-write: Formula as String, HorizontalAlignment as
BqHorizontalAlignment, Text as String, TextWrap as Boolean,
VerticalAlignment as BqVerticalAlignment

Read only: Name as String, Type as BqShapeType

Objects: LineFormat object, FillFormat object, FontFormat object

9-92 Objects

PageFooter (Object)

Member of: ReportSection object

Description: The PageFooter object represents the attributes of the page footer group.

Example: The following example shows you how to suppress the display of the page
footer.

Act i veDocunent . Secti ons[" Report"]. PageFooter.Visible = fal se

Methods: None

Properties: Read-Write Properties: KeepTogether as Boolean, KeepWithNext as Boolean,
PageBreak as BqPageBreak, Visible as Boolean

Objects: LineFormat object, FillFormat object, Tables collection, Fields collection,
Shapes collection, Shapes Collection, Pivots collection, Pivot collection, Chart
collection

PageFooter (Object) 9-93

PageHeader (Object)

Member of: ReportSection object

Description: The PageHeader object represents the attributes of the page header group.

Example: The following example shows you how to set the line color of the page header
to red.

Docunent s[" Sal esreport. bgy"]. Sections["Report"].PageHeader. Li ne. Col or = bgRed

Methods: None

Properties: Read-Write Properties: KeepTogether as Boolean, KeepWithNext as Boolean,
PageBreak as BqPageBreak, Visible as Boolean

Objects: LineFormat object, FillFormat object, Tables collection, Fields collection,
Shapes collection, Shapes Collection, Pivots collection, Pivot collection, Chart
collection

9-94 Objects

PageNm (Object)

Member of: Fields collection
Description: Sets the current page number..
Example: The following example shows you how to align vertically the text in PageNum

field at the top of the field.

Act i veDocurent . Secti ons[" Report"] . PageHeader . Fi el ds[" PageNm
Field"'].Vertical Alignment = bgAlignTop

Methods: Layer(BqLayer value), Spring(String Name), UnSpring()

Properties: Read-write: Formula as String, HorizontalAlignment as
BqHorizontalAlignment, Text as String, TextWrap as Boolean,
VerticalAlignment as BqVerticalAlignment

Read only: Name as String, Type as BqShapeType

Objects: LineFormat object, FillFormat object, FontFormat object

PageNm (Object) 9-95

PageXofY Field (Object)

Member of: Fields collection

Description: Sets the current page of the total number of pages.

Example: The following example shows you how to add a green, 2 point, dash style to the
PageXofY field object.

Acti veDocurnent . Sections[" Sal es Report"]. PageFoot er. Fi el ds[" PageXof Y
Fiel d'].Line.DashStyle = 4

Acti veDocunent . Sections[" Sal es Report"]. PageFoot er. Fi el ds[" PageXof Y
Fiel d"].Line.Color = bgG een

Acti veDocunent . Sections[" Sal es Report"]. PageFoot er. Fi el ds[" PageXof Y
Field'].Line.Wdth = 2

Methods: Layer(BqLayer value), Spring(String Name), UnSpring()

Properties: Read-write: Formula as String, HorizontalAlignment as
BqHorizontalAlignment, Text as String, TextWrap as Boolean,
VerticalAlignment as BqVerticalAlignment

Read only: Name as String, Type as BqShapeType

Objects: LineFormat object, FillFormat object, FontFormat object

9-96 Objects

Parentheses (Collection)

Member of:

Description:

Limits collection

The Parentheses collection allows you to programmatically set and get
parentheses attributes of a limit value. You might use this collection to set and
retrieve the line width of a line chart; or to modify the foreground color of a
Bar chart.

If you intend to nest parentheses between limit items, you must first add
parentheses around the largest range of limit objects before nesting additional
parentheses.

For example, suppose there are three items on the limit line: "State", "Amount
Sales" and "City".

Type:
Act i veDocument . Sections["Query"].Limts. Parent heses. Add("State", "City")
before typing:
Act i veDocunent . Sections["Query"]. Limts. Parent heses. Add("State", "Anmount Sal es")

Example 1:

Example 2:

[] Tip All collections have a method named “Item(NameOrIndex).” This is the

default method for all collections and returns an item in the collection at a
particular index or with a specific name. For simplicity, the “[]” can be used in
place of the call to the “Item()” method. For example, the following statements
are identical in behavior:

myl tem = Docunent s[1]

myl tem = Docunents. |tenm(1)

myl tem = Docunents["Start Up. bqy"]

myl tem = Docunents. |ltem("StartUp. bay")

The following example shows you how to remove all parentheses attributes set
on the values of the limit line.

Act i veDocunent . Sections["Query"]. Limts. Parent heses. RenoveAl | ()

The following example shows you how to add parentheses

Act i veDocurent . Sections["Query"].Limts. Parent heses. Add(" St at e
Province", "City")

Parentheses (Collection) 9-97

Methods: Add(), Item(NameOrIndex as Value), RemoveAll()

Properties: Read only: Count as Number

9-98 Objects

Parentheses (Object)

Member of: Limits collection

Description: Returns or sets parentheses around values on the limit line. In
Brio.Intelligence, enclosed sub-operations are represented by parentheses.
Sub-operations allow you to override the default evaluation order, and may be
required for certain operations involving both AND and OR operators.

Example 1: The following example shows you how to remove all parentheses on the Limit
line.

Act i veDocunent . Sections["Query"]. Limts. Parent heses. RenoveAl | ()

Example 2: The following example shows you how to remove the first parenthetical
expression.

Act i veDocurent . Sections[" Query"].Li mts. Parent heses[1] . Renove();

Example 3: The following example shows you how to count the number of parenthetical
expressions on the Limit line

Al ert (ActiveDocunent. Sections["Query"].Limts. Parentheses. Count);

Methods: Remove
Properties: Read only: BeginLimitName as String, EndLimitName as String, Name as
String

Parentheses (Object) 9-99

Path Field (Object)

Member of: Fields collection

Description: Returns the full path name of the document.

Example: The following example shows you how to wrap the entire file path name
within the path field.

Acti veDocunent . Sections["Sal es Report"].Body.Fields["Path Field"].TextWap = true
Methods: Layer(BqLayer value), Spring(String Name), UnSpring()

Properties: Read-write: Formula as String, HorizontalAlignment as
BqHorizontalAlignment, Text as String, TextWrap as Boolean,
VerticalAlignment as BqVerticalAlignment

Read only: Name as String, Type as BqShapeType

9-100 Objects

PieChart (Object)

Member of: ChartSection Object

Description: The PieChart object represents pie chart settings.

Example: The following example shows you how to set the formatting for a specific pie
chart.

wi t h(Acti veDocunent. Sections["Chart"])

{
Pi eChart. ShowLabel s = true
Pi eChart. Showal ues = true
Pi eChart. ShowPer cent ages = fal se
Pi eChart. ShowAl | Positive = Fal se
}
Methods: None
Properties: Read-Write Properties: Property Height As Number, Property Rotation As

Number, Property ShowAllPositive As Boolean, Property ShowLabels As
Boolean, Property ShowPercentages As Boolean, Property ShowValues As
Boolean

PieChart (Object) 9-101

PivotFact (Object)

Member of: PivotFacts Collection

Description: The PivotFact object represents an individual fact within a pivot.

Methods: AutoSizeHeight(), AutoSizeWidth(), Hide(), Remove()

Properties: Read-Write Properties: Property DataFunction As BqDataFunction, Property
Index As Long, Property NumberFormat As String
Read-Only Properties: Property Name as String

9-102 Objects

PivotFacts (Collection)

Member of:

Description:

Example:

Methods:

Properties:

L] Tip

PivotSection Object

The PivotFacts collection is a set of facts within a pivot section. These columns
are added to the facts groups in the outliner.

All collections have a method named “Item(NameOrIndex).” This is the
default method for all collections and returns an item in the collection at a
particular index or with a specific name. For simplicity, the “[]” can be used in
place of the call to the “Item()” method. For example, the following statements
are identical in behavior:

myl tem = Docunent s[1]

myl tem = Docunents. |tenm(1)

myl tem = Docunents["Start Up. bqy"]

myl tem = Docunents. |ltem("StartUp. bay")

The following example shows you how to add a number of request items to the
facts collections.
Act i veDocunent . Sections["Pivot"]. Facts. RenoveAll ()

Act i veDocurnent . Sections["Pivot"]. Facts. Add(" Year")
Act i veDocunent . Sections["Pivot"]. Facts. Add(" Regi on")

Add(RequestltemName As String, [Index as Number]) As PivotFact,
AddComputedItems(Name As String, [Index As Number]) As PivotFact,
Item(NameOrIndex) As PivotFact, RemoveAll()

Read-Only Properties: Property Count As Number

PivotFacts (Collection) 9-103

PivotLabel (Object)

Member of:

Description:

Methods:

Properties:

Pivot Labels Collection

The PivotLabel object represents an individual (either a top or side) label
within a Pivot report.

AddTotals(), AutoSizeHeight(), AutoSizeWeight(), PivotTo([Index As
Number]), Remove(), SortByFact(FactName As String, SortFunction As
BqSortFunction, [SortOrder As BqSortOrder]), SortByLabel([SortOrder As
BqSortOrder])

Read-Only Properties: Property SortFactName As String, Property
SortFunction As BqSortFunction, Property SortOrder As BqSortOrder

Read-Write Properties: Property Index as Number, Property Name as String

9-104

Objects

PivotLabels (Collection)

Member of: PivotSection Object

Description: The PivotLabels collection consists of the pivot TopLabels and SideLabels
collections. These collections correspond to the labels within a pivot section.
These are columns added to the side and top labels groups in the outliner.

] Tip All collections have a method named “Item(NameOrIndex).” This is the
default method for all collections and returns an item in the collection at a
particular index or with a specific name. For simplicity, the “[]” can be used in
place of the call to the “Item()” method. For example, the following statements
are identical in behavior:

myl tem = Docunent s[1]
myl tem = Docunents. |tenm(1)
myl tem = Docunents["Start Up. bqy"]
myl tem = Docunents. |tem("StartUp. bay")
Example: The following example shows you how to add a number of request items to the

side and top labels collections.
Act i veDocunent . Secti ons[" Sal esPi vot"]. TopLabel s. RenoveAl | (

)
Act i veDocunent . Secti ons[" Sal esPivot"]. Si deLabel s. RenmoveAl | ()
Act i veDocurent . Secti ons[" Sal esPi vot"]. TopLabel s. Add(" Year")

Methods: Add(RequestItemName As String, [Index as Number] As PivotLabel),
Item(NameOrIndex) As PivotLabel, RemoveAll()

Properties: Read-Only Properties: Property Count As Number

PivotLabels (Collection) 9-105

PivotLabelTotals (Object)

Member of: SideLabel Object, TopLabel Object

Description: The PivotLabelTotals collection returns an additional row or column
containing the total for a top label or side label object. This feature
corresponds to selecting a pivot side label column or top label row and
invoking the Add Totals option from the Pivot menu.

[] Tip All collections have a method named "Item(NameOrIndex)." This is the
default method for all collections and returns an item in the collection at a
particular index or with a specific name. For simplicity, the "[]" can be used in
place of the call to the "Item()" method. For example, the following statements
are identical in behavior:

myl tem = Docunent s[1]
myl tem = Docunents. |tenm(1)
myl tem = Docunents["Start Up. bqy"]
myl tem = Docunents. |ltem("StartUp. bay")
Example 1: The following example shows you how to add a Totals column (using the

default data function of “sum”) for the “Product Line” from the Totals
collection or from the Toplabels collection.
Acti veDocurent . Sections[" Sal esPivot"]. TopLabel s["Product Line"].Totals.Add()

or
Acti veDocurent . Secti ons[" Sal esPi vot "] . TopLabel s["Product Line"].AddTotal s()

Example 2: The following example shows you how to determine the average using the data
function property and the totals collection.
Acti veDocurnent . Secti ons[" Sal esPi vot"]. TopLabel s[" Product Line"].Totals[1].

Dat aFuncti on=bqgDat aFuncti onAver age
Acti veDocurent . Sections[" Sal esPivot"]. TopLabel s["Product Line"].Totals.Add()

Methods: Add(), Item NameOrlndex) As PivotlLabel Total s,
RenmoveAl | ()

Properties: Read-Only Properties: Property Count As Nunmber

9-106 Objects

PivotSection (Object)

Member of:

Description:

Example:

Methods:

Properties:

Collections:

Sections Collection
The PivotSection object represents a pivot section.

The following example shows you how to modify the top and side labels on a
pivot, and create a chart based on the new pivot.

wi t h(Acti veDocunent. Secti ons["Pivot"])

{
TopLabel s. Add(" Year")
Si deLabel s. Add(" W nery")
Char t Thi sPi vot ()

}

Activate(), ChartThisPivot() As ChartSection, Copy(), Duplicate(),
Export([Filename As String], [FileFormat As BqExportFileFormat],
[IncludeHeaders As Boolean], [Prompt As Boolean]), PrintOut([FromPage As
Number], [ToPage As Number], [Copies As Number], [Filename As String],
[Prompt As Boolean]), Recalculate(), RefreshDataNow(), Remove()

Read-Only Properties: Property Active As Boolean, Property Type As
BqSectionType

Read-Write Properties: Property Name As String, Property RefreshData As
BqRefreshData, Property ShowOutliner As Boolean, Property SurfaceValues
As Boolean, Property Visible As Boolean

SideLabels As PivotLabels, TopLabels As PivotLabels, Facts As PivotFacts,
DataLabels As DataLabels, CornerLabels As CornerLabels

PivotSection (Object) 9-107

Query Limit (Object)

Member of: Fields collection
Description: Sets a Query section limit field definition.
Example: The following example shows you how to add a second Query section limit

field to an existing Query section limit field programtically.

Acti veDocunent . Sections["Report"].Body. Fields["Query Linit"].Fornula=" \"State\"
+ ServerLimtVal ues(\"Query\", \"State\",\"\", \" \") +\" \"+ \"Cty \" +
"

ServerLimtValues(\"Query\", \"Gty\", \"\" \" \")"
Methods: Layer(BqLayer value), Spring(String Name), UnSpring()
Properties: Read-write: Formula as String, HorizontalAlignment as

BqHorizontalAlignment, Text as String, TextWrap as Boolean,
VerticalAlignment as BqVerticalAlignment

Read only: Name as String, Type as BqShapeType

Objects: LineFormat object, FillFormat object, FontFormat object

9-108 Objects

Query SQL (Object)

Member of: Fields collection

Description: Sets the last SQL (Structured Query Language) sent to the database when the
Process button (in Query) was used.

Example: The following example shows you how to identify the Query SQL field in an
Alert box.

Al ert (Acti veDocunent. Sections["Report"]. Body. Fields["Query SQL"]. Nane)
Met hods: Layer (BgLayer value), Spring(String Nane), UnSpring()

Properties: Read-write: Formula as String, HorizontalAlignment as
BqHorizontalAlignment, Text as String, TextWrap as Boolean,
VerticalAlignment as BqVerticalAlignment

Read only: Name as String, Type as BqShapeType

Objects: LineFormat object, FillFormat object, FontFormat object

Query SQL (Object) 9-109

QuerySection (Object)

Member of: Sections Collection

Description: The QuerySection object represents a query section.

Example 1 The following example shows you how to build a Data Model using the Table
Catalog object. This example assumes that you are already connected to a
database.

with (ActiveDocunent. Sections["Query"]. Dat aModel)
{
Topi cs. RenoveAl | ()
Aut oJoin = fal se
//Create two new topics fromtables in table catal og
Cat al og. Refresh()
Tabl el =Catal og. Catal ogl tenms["W NE"]
Tabl e2 =Cat al og. Cat al ogl tens["W NE_SALES"]
Topi cs. Add(Tabl el)
Topi cs. Add(Tabl e2)
Fieldl = Topics[1l].Topicltenms["Wne |d"]
Field2 = Topics[2].Topicltenms["Wne |d"]
//Create a new join by joining two Topicltenms together
Joi ns. Add(Fi el d1, Fi el d2, bgJoi nSi npl eEqual)
/1 Now add topic items to the request |ine
for (I =1; | <= Topics[1]. Topicltens. Count; |++)
Act i veDocurent . Secti ons["Query"]. Request s. Add(
Topi cs[1] . Nane, Topics[1]. Topicltens[I|].Di spl ayNane)
}

Example 2 The following example shows you how to connect to an existing connection,
remove all the limits and process a query.

MyQuery = ActiveDocument. Sections[" Query"]

MyQuery. Dat aMbdel . Connecti on. Usernane = "brio"

MyQuery. Dat aMbdel . Connect i on. Set Password("brio")

MyQuery. Dat aMbdel . Connecti on. Connect ()

MyQuery. Limts. RenmoveAl | ()

MyQuery. Process()

RowRet urned = Acti veDocunent. Sections["Resul ts"]. RowRet ur ned
Consol e. Witel n("Returned "+ RowReturned+" Rows!")

9-110 Objects

Methods:

Properties:

Objects:

Collections:

Activate(), Copy(), CustomSQLFrom(CustomSQLStr As String),
CustomSQLWhere([CustomSQLStr As String]), Duplicate(),
Export([Filename As String], [FileFormat As BqExportFileFormat],
[IncludeHeaders As Boolean], [Prompt As Boolean]),
ImportSQLFile(Filename As String, numColumns As Number),
PrintOut([FromPage As Number], [ToPage As Number], [Copies As
Number], [Filename As String], [Prompt As Boolean]), Process(),
ProcessStoredProc(), ProcessToTable(Tablename As String, ProcessType As
BqProcessType, [Grantee As String]), Recalculate(), Remove(),
ResetCustomSQL(), SetStoredProcProgram(Parameter As Value,
[ParamIndex As Number])

Read-Only Properties: Property Active As Boolean, Property
LastSQLStatement As String, Property QuerySize As Number, Property Type
As BqSectionType

Read-Write Properties: Property AutoProcess As Boolean, Property Name As
String, Property RowLimit As Number, Property RowLimitActive As Boolean,
Property SaveResults As Boolean, Property ShowOutliner As Boolean,
Property TimeLimit As Number, Property TimeLimitActive As Boolean,
Property UniqueRows As Boolean, Property Visible As Boolean

DataModel As DataModel

Requests As Requests, Limits As Limits, AggregateLimits As AggregateLimits,
SortItems as Sortltems, AppendQueries As AppendQueries

QuerySection (Object) 9-111

RecentFiles (Collection)

Member of: Application Object

Description: The Recent Files collection is a collection of strings, which represent the list of
currently, opened Brio Intelligence documents.

[] Tip All collections have a method named “Item(NameOrIndex).” This is the
default method for all collections and returns an item in the collection at a
particular index or with a specific name. For simplicity, the “[]” can be used in
place of the call to the “Item()” method. For example, the following statements
are all identical in behavior:

myl tem = Docunent s[1]
myl tem = Docunents. |tenm(1)
myl tem = Docunents["Start Up. bqy"]
myl tem = Docunents. |ltem("StartUp. bay")
Example: The following example prints the list of recent files to the console window.
for (j =1, j <= RecentFiles.Count; j++)
Console.Witeln("File # + j + "=" + RecentFiles[j])
Methods: Item(NameOrIndex) As String
Properties: Read-Only Properties: Property Count As Number

9-112 Objects

ReportChart (Object)

Member of: ReportChart collection

Description: The ReportChart object represents a chart object in the Charts collection of the
Report section.

This object corresponds to inserting a Smart Chart in the Report section,
When you insert a chart object in the report section, a proportional copy is
placed in every band instance. Any chart dropped into a header/footer that is
"owned" by data will be focused by that piece of data. Smart Charts are smart
because only the corresponding section of the embedded report appears in
each band instance.

Example: The following example shows you how to spring a Chart report and a Pivot
report in the Body band.

Act i veDocunent . Sections[" Report"].Body. Charts["Chart"]. Spring("Pivot")

Methods: Layer(Value as BqLayer), String(Name as String), UnSpring()

Properties: Read Only: Name as String

ReportChart (Object) 9-113

ReportCharts (Collection)

Member of: ReportHeader object, ReportFooter object, PageHeader object, PageFooter
object, Body object

Description: The Report Chart collection represents all "smart” chart objects in the report
section.

When you insert a chart object in the report section, a proportional copy is
placed in every band instance. Any chart dropped into a header/footer that is
"owned" by data will be focused by that piece of data. Smart Charts are smart
because only the corresponding section of the embedded report appears in
each band instance.

Example: The following example shows you how to count and display in an Alert box the
number of smart Chart reports.

Al ert (ActiveDocunent. Sections["Report"]. Body. Charts. Count)

Methods: Item(NameOrIndex as Name)
Properties: Read Only: Count as Number
Objects: ReportChart object

9-114 Objects

ReportFooter (Object)

Member of: ReportSection object

Description: The ReportFooter object represents the attributes of the report footer group.
Typically, the report footer is a summarizing band of information and prints
only on the very last page of the report.

Example: The following example shows you how to add a rose fill color to the report
footer.

Act i veDocunent . Sections["Report"]. ReportFooter.Fill.Color = 16751052

Methods: None

Properties: Read-Write Properties: KeepTogether as Boolean, KeepWithNext as Boolean,
PageBreak as BqPageBreak, Visible as Boolean

Objects: LineFormat object, FillFormat object, Tables collection, Fields collection,
Shapes collection, Shapes Collection, Pivots collection, Pivot collection, Chart
collection

ReportFooter (Object) 9-115

ReportGroup (Object)

Member of:

Description:

Example:

ReportSection object

The ReportGroup object represents the attributes of the topmost level from
which to structure data in a report. When you drag an item from the Catalog
pane into the Report Group Outliner, Brio Intelligence automatically supplies
a group header band and adds a label inside the band, which identifies the
group. A group header categorizes data into repeating collections of records in
a header band. A ReportGroup object can also be added to a group footer
band in addition to or instead of the group header band.

The following example shows you how to remove the objects in the
ReportGroup.

Acti veDocurent . Sections["Report"]. G oups["Report G oupl"].Renove()

Methods: Move(LabelNameBefore as String), Remove()

Properties: Read only: Name as String

Objects: ReportGroup Header, ReportGroup Footer, LineFormat object, FillFormat
object, Tables collection, Fields collection, Shapes collection, Pivots collection,
Pivot collection, Chart collection

9-116 Objects

ReportHeader (Object)

Member of:

Description:

Example:

ReportSection object

The ReportHeader object represents the attributes of the report header group.
Typically, the report headers is a summarizing band of information. The
report header prints on the very first page of the report only.

The following example shows you how to instruct Brio Intelligence not to split
the report header band when a break is encountered. If Brio Intelligence does
encounter a break, the entire report header will be moved to the next page.

Docunent s[" Sal esreport. bgy"]. Sections["Report"]. ReportHeader. KeepToget her

Methods:

Properties:

Objects:

None

Read-Write Properties: KeepTogether as Boolean, KeepWithNext as Boolean,
PageBreak as BqPageBreak, Visible as Boolean

LineFormat object, FillFormat object, Tables collection, Fields collection,
Shapes collection, Pivots collection, Chart collection

ReportHeader (Object) 9-117

ReportName Field (Object)

Member of: Fields collection

Description: Returns or sets the report name field.

[] Tip Be sure to include the Recalculate() method when using this object.

Example : The following example shows you how to concatenate the name of the report
and the current date:
Acti veDocurnent . Sections[" Sal es Report"]. Report Header . Fi el ds[" Report Nanme

Field"].Fornmula = "Report Nanme() + ' '+ new Date()"
Acti veDocunent . Sections[" Sal es Report"]. Recal cul at e()

Methods: Layer(BqLayer value), Spring(String Name), UnSpring()

Properties: Read-write: Formula as String, HorizontalAlignment as
BqHorizontalAlignment, Text as String, TextWrap as Boolean, Vertical
Alignment as BqVerticalAlignment

Read Only: Name as String, Type as BqShapeType

9-118 Objects

ReportPivot (Object)

Member of: ReportPivot collection

Description: The ReportPivot object represents a pivot object in the Pivot collection of the
Report section.

This object corresponds to inserting a Smart Pivot report in the Report
section, When you insert a pivot object in the report section, a proportional
copy is placed in every band instance. Any pivot dropped into a header/footer
that is "owned" by data will be focused by that piece of data. Smart pivots are
smart because only the corresponding section of the embedded report appears
in each band instance.

Example: The following example shows you how to layer a Smart Pivot report to the
front of a stack.

Act i veDocurent . Sections["Report"] . Body. Pi vot s["Pivot"]. Layer (bgLayer Front)

Methods: Layer(Value as BqLayer), Spring(Name as String), UnSpring()

Properties: Read Only: Name as String

ReportPivot (Object) 9-119

ReportPivot (Collection)

Member of:

Description:

Example:

ReportHeader object, ReportFooter object, PageHeader object, PageFooter
object, Body object

The Report Pivot collection represents all "smart" pivot objects in the report
section.

When you insert a pivot object in the report section, a proportional copy is
placed in every band instance. Any pivot dropped into a header/footer that is
"owned" by data will be focused by that piece of data. Smart Pivot reports are
smart because only the corresponding section of the embedded report appears
in each band instance.

The following example shows you how to count the number of pivot reports
that have been inserted in the Body band of the report:

Al ert (ActiveDocunent. Sections["Report"]. Body. Pivots. Count)

Methods: Item(NameOrIndex as Name)
Properties: Read Only: Count as Number
Objects: ReportPivot object

9-120 Objects

ReportTable (Object)

Member of: ReportTable collection

Description: The ReportTable object represents a specific table object contained within a
specific report section object

In the user interface, tables are created with dimension columns and fact
columns, where the distinction is typically text versus numeric content. These
tables are quite flexible structures in that several tables may be introduced into
each band; each originating from the same or different result sets in the
document.

Example: The following example shows you how to simulate the look of a green bar
report by alternating the color scheme of every other row between green and
white.

Act i veDocurnent . Secti ons[" Report"] . Body. Tabl es[" Tabl e"]. Backgr oundCol or =
bqgLi ght Green

Act i veDocurnent . Secti ons["Report"] . Body. Tabl es[" Tabl e"]. Backgr oundAl t er nat eCol or =
bgwhi t e

Act i veDocurent . Secti ons[" Report"] . Body. Tabl es[" Tabl e"] . Backgr oundAl t er nat eFr equen
cy = 1

ReportTable (Object) 9-121

ReportTables (Collection)

Member of:

Description:

Example:

Body object, PageHeader object, PageFooter object, ReportHeader object,
ReportFooter object,

The ReportTable collection represents all the table objects contained in a
specific report section object.

The following example uses the Count property to determine the number of
tables in the Body band of the report and write it to the Console window.

Consol e. Wite(Acti veDocunment. Sections["Report"]. Body. Tabl es. Count)

Methods:

Properties:

Spring as Sting Name, UnSpring

Read-Write: Property BackgroundAlternateColor as BqColorType,
BackgroundAlternateFrequency as Number, BackgroundColor as BqColor
Type, BackgroundShowAlternate Color as Boolean, BorderColor as
BqColorType, BorderWidth as Number,

Read only: Property Name as String

9-122

Objects

Request (Object)

Member of: Requests Collection
Description: The Request object represents an individual, request line item.
Example: The following example prints out the display name and data type of each item

on the request line.

var count = ActiveDocunent. Sections["Query"].Requests. Count
for(i=1;i<=count;i++)

{
myRequest = ActiveDocunent. Sections["Query"]. Requests[i]
swi t ch(myRequest . Dat aType)
{
case 1:
nyType = "String"
br eak;
case 2:
myType = "Integer"
br eak;
case 3:
nyType = " Nunber"
br eak;
case 4:
nyType = "Date"
br eak;
defaul t:
myType = "Unknown"

Consol e. Wite(nyRequest. Di spl ayName +" DataType ="+nyType+"\r\n")
}

Methods: Remove()

Properties: Read-Only Properties: Property SQLName As String

Read-Write Properties: Property DataType As BqDataType, Property
DisplayName As String, Property Visible As Boolean

Request (Object)

9-123

Requests (Collection)

Member of: QuerySection Object

Description: The Requests collection is a collection of items on the request line.

[] Tip All collections have a method named “Item(NameOrIndex).” This is the
default method for all collections and returns an item in the collection at a

particular index or with a specific name. For simplicity, the “[]” can be used in

place of the call to the “Item()” method. For example, the following statements

are all identical in behavior:

myl tem = Docunent s[1]
myl tem = Docunents. |tenm(1)
myl tem = Docunents["Start Up. bqy"]
myl tem = Docunents. |ltem("StartUp. bay")
Example: The following example shows you how to remove all the request line items and

add new items based on the topics in the query.

wi t h(Acti veDocunent. Secti ons[" Query"])

{
Requests. RenoveAl | ()
for (I =1; | <= DataMdel . Topics[1]. Topicltens. Count; |++)
{
Topi cName = Topi cs[1] . Nane
Topi cltenNanme = Topics[1]. Topicltens[l]. D spl ayNane
Request s. Add(Topi cNane, Topi cl t emNane)
}
}
Methods: Add(TopicName As String, TopicltemName As String) As Request,
AddComputedItem(Name As String, Expression As String, Type As
BqDataType) As Request, [tem(NameOrIndex) As Request, RemoveAll()
Properties: Read-Only Properties: Property Count As Number

9-124 Objects

Results (Object)

Member of: Results Collection

Description: The Results object represents an individual results set in a table catalog.
Methods: None

Properties: Read-Only Properties: Property Name As String

Results (Object) 9-125

Results (Collection)

Member of: DMCatalog Object

Description: The Results collection is a collection of local results sets in a table catalog.

[] Tip All collections have a method named “Item(NameOrIndex).” This is the
default method for all collections and returns an item in the collection at a
particular index or with a specific name. For simplicity, the “[]” can be used in
place of the call to the “Item()” method. For example, the following statements
are all identical in behavior:

myl tem = Docunent s[1]
myl tem = Docunents. |tenm(1)
myl tem = Docunents["Start Up. bqy"]
myl tem = Docunents. |ltem("StartUp. bay")
Example: The following example shows you how to get a count of the LocalResults in the
Table Catalog.

Resul t Set Count =Act i veDocument . Secti ons[" Query2"] . Dat aMbdel . Cat al 0og. Resul t s. Count

Methods: Item(NameOrIndex) As DMResult

Properties: Read-Only Properties: Property Count As Number

9-126 Objects

Result Limit (Object)

Member of: Fields collection
Description: Sets a Results limit field definition.
Example: The following example shows you how to add a second Results section limit

field to an existing Results section limit field programtically.
Act i veDocunent . Sections["Report"].Body. Fields["Result Limt"].Fornmula=" \"State\"

+ Local Li mtVal ues(\"Results\", \"State Province\",\"\" , \" \") +\" \"+ \"Cty
\" + Local LimtValues(\"Resul ts\", \"City\",\"\" \" \")"

Methods: Layer(BqLayer value), Spring(String Name), UnSpring()

Properties: Read-write: Formula as String, HorizontalAlignment as
BqHorizontalAlignment, Text as String, TextWrap as Boolean,
VerticalAlignment as BqVerticalAlignment

Read only: Name as String, Type as BqShapeType

Objects: LineFormat object, FillFormat object, FontFormat object

Result Limit (Object) 9-127

RightAxis (Object)

Member of: ValuesAxis Object

Example: The following example shows you how to set basic properties for the right axis.
wi t h(Acti veDocunent . Secti ons["Chart"]. Val uesAxi s)
{
Ri ght Axi s. AutoScal e = true
Ri ght Axi s. ShowLabel = fal se
Ri ght Axi s. Label Text = "Ri ght Axis"
}

Methods: None

Properties: Read-Write Properties: Property AutoScale As Boolean, Property Label Text
As String, Property ScaleMax As Number, Property ScaleMin As Number,
Property ShowLabel As Boolean

9-128 Objects

Section (Object)

Member of: Sections Collection

Description: The Section object represents the base object from which all section objects are
derived.

Methods: Activate(), Copy(), Duplicate(), Export(Filename As String, FileFormat As

BqExportFileFormat, [IncludeHeaders As Boolean]), Paste(),
PrintOut([FromPage As Long], [ToPage As Long], [Copies As Long],
[Filename As String]), PrintPreview(), Recalculate(), Remove()

Properties: Read-Only Properties: Property Active As Boolean, Property LastPrinted As
Date, Property Type As BqSectionType

Read-Write Properties: Property Index As Long, Property Name As String,
Property Visible As Boolean

Section (Object) 9-129

Sections (Collection)

Member of: Document Object
Description: The Sections collection represents all the sections, contained within a single
document.

[] Tip All collections have a method named “Item(NameOrIndex).” This is the
default method for all collections and returns an item in the collection at a
particular index or with a specific name. For simplicity, the “[]” can be used in
place of the call to the “Item()” method. For example, the following statements
are identical in behavior:

myl tem = Docunent s[1]
myl tem = Docunents. |tenm(1)
myl tem = Docunents["Start Up. bqy"]
myl tem = Docunents. |ltem("StartUp. bay")
Example: The following example shows how to create new report and query sections.

In the case of report sections (Chart and Pivot) the “SectionDependency”
parameter must be set or this method will fail. This is because all Charts and
Pivots must be associated with a query or results set.

MySection = ActiveDocunment. Sections. Add(bgChart, "Query")
or

MySection = ActiveDocument. Sections. Add(bgPi vot, "Resul t s")
MySection. Name = "New Chart"

/1 Addi ng Queries does not require a section dependence
MySection = ActiveDocunment. Sections. Add(bgQuery)

Methods: Add(SectionType As BqSectionType, [SectionDependency as String]) As
Section, ImportDataFile(FileName As String, Format As
BqlmportDataFileFormat), Item(NameOrIndex) As Section

Properties: Read-Only Properties: Property Count As Number

9-130 Objects

SelectedList (Object)

Member of: ListBoxControl Object
Description: The SelectedList object represents all of the selected items within a list box.
Example: The following example shows you how to add the selected items from a listbox

control to a preexisting results limit.

Act i veDocunent . Sections["Results"].Limts[1]. Sel ectedVal ues. RemoveAl | ()
for(l = 1; | <= ListBox. Sel ectedList. Count ;| ++)
{

NewLi mi t Val ue = ListBox. Sel ectedList[I]

Act i veDocurent . Sections["Results"].Limts[1]. Sel ect edVal ues. Add(NewLi m t Val ue)
}

Methods: Item(Index As Number) As String, ItemIndex(Index As Number) As Number

Properties: Read-Only Properties: Property Count As Number

SelectedList (Object) 9-131

Session (Object)

Member of: Application Object

Description: The session object refers to the current Web browser’s session variables. The
Session object contains 3 collections, which logically group a browser’s
different type of data variables. The session object applies to the Web plug-ins
but is visible in the client server product to support script testing. To activate
the session object you must include the key value pair JScript=enable in the
URL. Please refer to the “URL (Collection)” on page 9-150 and “Form
(Collection)” on page 9-54 for more information.

Example: The following script shows how to determine if a session is active and process
the session variables.

/] Session. Active = true if the script is running in the plug-in and JScript=enable
if (Session.Active)
Al ert ("Your web usernane is ="+ Session. Cooki es["BRI OQUSER'], "Web
User nane")
el se
Alert("You are not running a plug-in or you have not added the
JScri pt=enabl e key value pair to your URL")

Methods: None
Properties: Read-Only Properties: Property Active As Boolean
Collections Form as Form, Cookies as Cookies, URL as URL

9-132 Objects

Shape (Object)

Member of: Shapes Collection

Description: The Shape object represents an individual EIS graphic item contained in a
Shapes collection. Certain properties only apply to specific shape objects. For
example, PictureEffect property applies to a picture object and does NOT
apply to a line object. If you refer to a property that does not apply to the
object, no action occurs.

Example: The following example shows you how to change the properties of drawing
objects contained in an EIS section. The example assumes that the script is
running from the same EIS section. This allows the direct access to the drawing
objects by name.

Li nel. DashSt yl e=bgDashSt yl eDot Dash

Li nel. LinewWdth = 3

/Inote you may use Hex values instead of enunerated types for any color property

Rect 1. Bor der Col or = bqgBl ue

Rect 1. Li ne. DashSt yl e=bqDashSt yl eDot Dash

Text Label . Text = "Wl conme to Brio Enterprise Scripting"
Text Label . Font. Style = bgFont Styl eBol dltalic

Methods: OnClick()

Properties: Read-Only Properties: Property Active As Boolean, Property Group As String,
Property Name As String, Property RowCount As Number, Property
RowNumber As Number, Property Type As BqShapeType

Read-Write Properties: Property Alignment As BqHorizontalAlignment,
Property Checked As Boolean, Property Enabled As String, Property
ScrollbarsAlswaysShown As Boolean, Property ShowOutliner As Boolean,
Property ShowRowNumber As Boolean, Property Text As String, Property
VerticalAlignment As BqVerticalAlignment, Property Visible As Boolean

Objects Fill As Fill, Line As Line

Shape (Object) 9-133

Shapes (Collection)

Member of:

Description:

Methods:

Properties:

L] Tip

EISSection Object

The Shapes collection represents all the graphic objects contained in a specific
EIS tab.

All collections have a method named “Item(NameOrIndex).” This is the
default method for all collections and returns an item in the collection at a
particular index or with a specific name. For simplicity, the “[]” can be used in
place of the call to the “Item()” method. For example: The following
statements are identical in behavior:

nyltem
nyltem
nyltem
nyltem

Docunent s[1]

Docunents. |tem(1)

Docunment s["Start Up. bay"]
Docunents. Item(" StartUp. bqy")

Item(NameOrIndex) As Shape

Read-Only Properties: Property Count As Number

9-134

Objects

SharedLibrary (Object)

Member of: Application Object
Description: The SharedLibrary object represents an external, dynamically linked library.
Example: The following example shows how to call a function from a local dIL

MyLibrary = Application.LoadSharedLibrary("c:\\temp\nydl|l.dlIl")
MyLi brary. Cal | (" Set Transaction","String", Val uel)

Methods: Call(sFunctionName As String, sArgumentType As String, [argl], [arg2],
[arg3], [arg4], [arg5], [arg6], [arg7], [arg8])

SharedLibrary (Object) 9-135

Sortltems (Collection)

Member of: QuerySection Object, ResultsSectionObject, TableSection Object

Description: The SortItems collection is the collection of sorts within a Query, Results or
Table section.

In the Query section, sort line objects must be columns that are on the Request
line since theses are the only objects that can be placed on the Sort line. In the
Results and Table section, sort line objects have to be columns in the Results
set.

The SortItems collection provides you with the ability to create Sort Line
objects (column names), add them to the Sort Line, specify a sort order, and
force an immediate sort (for Results and Table).

When you use the Add, Move and/or Remove methods with this collection
and the SuspendCalculation property is set to true (which it is by default), then
you must use the Recalculate method to force the Report section to recalculate
itself.

[] Tip All collections have a method named “Item(NameOrIndex).” This is the
default method for all collections and returns an item in the collection at a
particular index or with a specific name. For simplicity, the “[]” can be used in
place of the call to the “Item()” method. For example: The following
statements are identical in behavior:

myl tem = Docunent s[1]
myl tem = Docunents. |tenm(1)
myl tem = Docunents["Start Up. bqy"]
myl tem = Docunents. |ltem("StartUp. bay")
Example 1: The following example shows you how to remove all sort line objects

(columns) and then how to add a sort line item in the Results section.

Acti veDocunent . Sections[" Sal esResul ts"]. Sortltens. RenmoveAl | ()
Acti veDocunent . Sections[" Sal esResul ts"]. Sortltens. Add(" Quarter")
Acti veDocurent . Sections[" Sal esResul ts"]. Sortltens. Sort Now()

9-136 Objects

Example 2: The following example shows you how to establish an ascending sort order in
the Query section.

Act i veDocurent . Sections[" Sal esQuery"]. Sortltens[1]. Sort O der=bgSort Ascend
Example 3: The following example shows you how to remove a sort “Product Id” sort
from the Sort line in the Results section.

Act i veDocunent . Sections["Results"]. Sortltens["Product |1d"].Renove()

Methods: Add(Request As String), Item(NameOrIndex) As SortItem, RemoveAll(),
SortNow()

Properties: Read-Only Properties: Property Count As Number

Collections AppendQueries As AppendQueries

Sortltems (Collection) 9-137

TableFact (Object)

Member of: TableFact collection
Description:

Sets the measurable or quantifiable fact objects that makes up the body of the
report. Brio Intelligence quantifies values by group header and dimension. If
you have a descriptive numeric value that should not be calculated, such as
Retail Price or Target Sales, use the table dimension object instead of a fact
object.

Example 1: The following example shows you how to remove the "Unit Sales" object from
table facts.

Acti veDocurent . Sections["Report"] . Body. Tabl es[" Tabl e"]. Fact s[" Uni t
Sal es"]. Renove()

Example 2: The following example shows you how to align left horizontal text within a fact
column.

Acti veDocurent . Sections["Report"] . Body. Tabl es[" Tabl e"] . Fact s[" Anbunt
Sal es"]. Hori zontal Ali gnment = bgAlignLeft

Example 3: The following example shows you how not to display the column total for the
"Unit Sales" fact object.

Acti veDocurent . Sections[" Report"] . Body. Tabl es
["Tabl e"]. Facts["Unit Sal es"].ShowCol umTotal = false

Methods: Move(LabelNameBefore as String), Remove()

Properties: Read-write: BackgroundAlternateColor as BqColorType,
BackgroundAlternateFrequency as Number, BackgroundColor as
BqColorType, BackgroundAlternateColor as Boolean, DataFunction as
BqDataFunction, HorizontalAlignment as BqHorizontalAlignment,
NumberFormat as String, ShowColumnTotal as Boolean, SuppressDuplicates
as Boolean, TextWrap as Boolean, VerticalAlignment

Read Only: Name as String

9-138 Objects

TableFacts (Collection)

Member of: ReportTable object

Description: The TableFacts collection represents all table fact objects in the report section.

] Tip When you use the Add, Move and/or Remove methods with this collection
and the SuspendCalculation property is set to true (which it is by default), then
you must use the Recalculate method to force the Report section to recalculate
itself.

Example 1: The following example shows you how add the "Unit Sales" column to the
table:

Act i veDocurent . Sections["Report"]. Body. Tabl es[" Tabl e"]. Facts. Add("Unit Sal es")
ActiveDocument.Sections["Report"].Recalculate()

Example 2: The following example shows you how to use the AddComputed method to
divide the "Amount Sales" column by the "Unit Sales" column and display the
results in a new computed column called "My Computed":

var nyStr ="Tabl es(\"Resul ts\"). Col ums(\" Anmount _Sal es\"). Sun{currBreak) /

Tabl es(\"Resul ts\"). Col ums(\"Unit_Sal es\"). Sunm(currBreak)";

Act i veDocurent . Secti ons[" Report"] . Body. Tabl es[" Tabl e"] . Fact s. AddConput ed(" MyConpu

ted", nmyStr, bgbDat aTypeNumnber)
Act i veDocunent . Sections["Report"] . Recal cul at e()

Example 3: The following example shows you to how to count the number of tables in the
body of the report section:
Al ert (Acti veDocunent . Secti ons[" Report"]. Body. Tabl es["Tabl e"]. Facts. Count," Number

of Tabl es")
Act i veDocunent . Secti ons["Report"] . Recal cul at e()

Methods: Add(NewFact as String, [optional] MoveBeforeName as String),
AddComputed(Name as String, Expression as String), [tem(NameOrIndex as
Value), ModifyComputed(OldName as String, NewName as String,
Expression as String), RemoveAll()

Properties: Read Only: Count as Number

TableFacts (Collection) 9-139

TableSection (Object)

Member of:

Description:

Example:

Sections Collection

The TableSection object represents a results or table section, contained within
a document.

The following example shows you how to print the names of all the columns to
the console window.

MyResul ts = ActiveDocunent. Sections["Resul ts"]

Col umCount

= MyResul ts. Col utms. Count

for (1=1;1<= Col um~Count; | ++)
Consol e. Wite("Col um#"+l +":"+MyResul ts. Col ums[1]. Nanme+"\r\n")

Methods:

Properties:

Collections:

Activate(), Copy(), Duplicate(), Export([Filename As String], [FileFormat As
BqExportFileFormat], [IncludeHeaders As Boolean], [Prompt As Boolean]),
GetCell(nRow As Number, nCol As Number) As Value, PrintOut([FromPage
As Number], [ToPage As Number], [Copies As Number], [Filename As
String], [Prompt As Boolean]), Recalculate(), Remove()

Read-Only Properties: Property Active As Boolean, Property RowCount As
Number, Property Type As BqSectionType

Read-Write Properties: Property Name As String, Property ShowOutliner As
Boolean, Property ShowRowNumbers As Boolean, Property Visible As
Boolean

Limits As Limits, Columns As Columns, SortItems as Sortltems

9-140

Objects

Time Field (Object)

Member of: Fields collection
Description: Sets the current time in HH:MM AM/PM format.
Example: The following example shows you how to reposition the Time Field object

behind another object (such as a shape object).

Act i veDocurnent . Secti ons[" Sal es Report"]. PageFooter.Fields["Tinme
Fi el d"]. Layer (bgLayer Back)

Methods:
Layer(BqLayer value), Spring(String Name), UnSpring()
Properties: Read-write: Formula as String, HorizontalAlignment as
BqHorizontalAlignment, Text as String, TextWrap as Boolean,
VerticalAlignment as BqVerticalAlignment
Read only: Name as String, Type as BqShapeType
Objects: LineFormat object, FillFormat object, FontFormat object

Time Field (Object) 9-141

TimeNow Field (Object)

Member of: Fields collection

Description: Sets the current time HH:MM:SS format.

Note that this object represents the time when the TimeNow field is first added
to the report and it will never change.

Example: The following example shows you how to concatenate the string: "Last
Updated on: " and the date on which the TimeNow field was added to the
report.

Acti veDocurent . Sections["Sal es Report"]. Report Header. Fi el ds[" Ti neNow

Field'].Formula = "Last Updated:" + ' ' + new Date()

Methods: Layer(BqLayer value), Spring(String Name), UnSpring

Properties: Read-write: Formula as String, HorizontalAlignment as

BqHorizontalAlignment, Text as String, TextWrap as Boolean,
VerticalAlignment as BqVerticalAlignment

Read only: Name as String, Type as BqShapeType

Objects: LineFormat object, FillFormat object, FontFormat object

9-142 Objects

Toolbar (Object)

Member of:

Description:

Example:

Methods:

Properties:

Toolbars Collection

The Toolbar object represents an individual toolbar, contained in the
application.

The following example shows you how to hide all the toolbars in the
application.

for(l = 1; | <= Application. Tool bars. Count ;| ++)

{
MyTool bar = Application. Tool bars[1]

MyTool bar. Vi sible = fal se
}

None

Read-Only Properties: Property Name As String, Property Type As
BqToolbars

Read-Write Properties: Property Visible As Boolean

TimeNow Field (Object)

Member of:Fields collection
Description: Sets the current time HH:MM:SS format.

Note that this object represents the time when the TimeNow field is first added
to the report and it will never change.

Example:The following example shows you how to concatenate the string:
"Last Updated on: " and the date on which the TimeNow field was added to the
report.

ActiveDocument.Sections["Sales Report"].ReportHeader.Fields["TimeNow
Field"].Formula = "Last Updated:" + "' + new Date()

Methods:Layer(BqLayer value), Spring(String Name), UnSpring

Toolbar (Object) 9-143

Properties:Read-write: Formula as String, Horizontal Alignment as
BqHorizontalAlignment, Text as String, TextWrap as Boolean,
VerticalAlignment as BqVerticalAlignment

Read only: Name as String, Type as BqShapeType

Objects:LineFormat object, FillFormat object, FontFormat object

9-144

Objects

Toolbars (Collection)

Member of:

Description:

Example:

Methods:

Properties:

L] Tip

Application Object

The Toolbars collection represents all the toolbars, contained within the
application.

All collections have a method named “Item(NameOrIndex).” This is the
default method for all collections and returns an item in the collection at a
particular index or with a specific name. For simplicity, the “[]” can be used in
place of the call to the “Item()” method. For example: The following
statements are identical in behavior:

myl tem = Docunent s[1]

myl tem = Docunents. |tenm(1)

myl tem = Docunents["Start Up. bqy"]

myl tem = Docunents. |ltem("StartUp. bay")

The following example shows you how to hide all the toolbars in the
application.

for(l = 1; | <= Application. Tool bars. Count ;| ++)
Application. Tool bars[I].Visible = fal se

Item(NameOrIndex) As Toolbar

Read-Only Properties: Property Count As Number

Toolbars (Collection) 9-145

Topic (Object)

Member of:

Description:

Example:

Methods:

Properties:

Collections:

DataModel Object
The Topic object represents a topic in a data model or query section.

The following example shows you how to print the names of all the topicsin a
Data Model to the console window.

wi t h(Acti veDocunent . Secti ons[" Query"]. Dat aMbdel)

{
Topi csCount = Topi cs. Count
for(1=1;1<= Topi csCount; | ++)
Consol e. Wit e(Topics[I]. Di spl ayName+"\r\n")
}
Remove()

Read-Only Properties: Property PhysicalName As String, Property Type As
BqTopicType

Read-Write Properties: Property DisplayName As String, Property View As
BqTopicView

Topicltems As Topicltems,

9-146 Objects

Topicltem (Object)

Member of: Topic Object
Description: The TopicItem object represents an individual field within a topic.
Example: The following example shows you how to print the names of all the topics and

topic items in a Data Model to the console window.

wi t h(Acti veDocunent. Secti ons[" Query"]. Dat aMbdel)
{
Topi csCount = Topi cs. Count
for(1=1;1<= Topi csCount ;| ++)
{

Consol e. Wite(Topics[I].Di splayNanme+"\r\n")

Topi cl temsCount = Topi cs[I]. Topi cltens. Count

for(j=1;j<= TopicltemsCount;j++)
Consol e. Wite(Topics[1].Topicltenms[j].Di splayName)
}

}
Methods: None

Properties: Read-Only Properties: Property PhysicalName As String

Read-Write Properties: Property DisplayName As String, Property Visible As
Boolean

Topicltem (Object) 9-147

Topicltems (Collection)

Member of: Topic Object

Description: The TopicItems collection represents all of the fields, contained within an
individual topic.

[] Tip All collections have a method named “Item(NameOrIndex).” This is the
default method for all collections and returns an item in the collection at a
particular index or with a specific name. For simplicity, the “[]” can be used in
place of the call to the “Item()” method. For example, the following statements
are identical in behavior:

myl tem = Docunent s[1]
myl tem = Docunents. |tenm(1)
myl tem = Docunents["Start Up. bqy"]
myl tem = Docunents. |ltem("StartUp. bay")
Example: The following example shows you how to print the names of all the topics and

topic items in a Data Model to the console window.

wi t h(Acti veDocunent . Secti ons[" Query"]. Dat aMbdel)
{

Topi csCount = Topi cs. Count

for(1=1;1<= Topi csCount ;| ++)

Consol e. Wite("\r\nTopic - "+Topics[I].DisplayNanme+"\r\n")
Topi cltemsCount = Topi cs[I]. Topi cltens. Count

for(j=1;j<= TopicltenmsCount;j ++)

Consol e. Wite(Topics[I1]. Topicltens[]]. D spl ayNane)

}

}

Methods: Item(NameOrIndex) As Topicltem

Properties Read-Only Properties: Property Count As Number

9-148 Objects

Topics (Collection)

Member of: DataModel Object

Description: The Topics collection is a collection of all topics in the Data Model.

[] Tip All collections have a method named “Item(NameOrIndex).” This is the
default method for all collections and returns an item in the collection at a
particular index or with a specific name. For simplicity, the “[]” can be used in
place of the call to the “Item()” method. For example, the following statements
are identical in behavior:

myl tem = Docunent s[1]
myl tem = Docunents. |tenm(1)
myl tem = Docunents["Start Up. bqy"]
myl tem = Docunents. |ltem("StartUp. bay")
Example: The following example shows you how to print the names of all the topics and

topic items in a Data Model to the console window.

wi t h(Acti veDocunent . Secti ons[" Query"]. Dat aMbdel)
{

Topi csCount = Topi cs. Count

for(1=1;1<= Topi csCount ;| ++)

Consol e. Wite(Topi cs[1].Displ ayNane)

Topi cltemsCount = Topics[1]. Topicltens. Count
for(j=1;j<= TopicltemsCount;j ++)

Consol e. Wite(Topics[I].Topicltens[j].D splayNane)

}

}

Methods: Add(TableObject As DMCatalogltem) As Topic, [tem(NameOrIndex) As
Topic, RemoveAll()

Properties: Read-Only Properties: Property Count As Number

Topics (Collection) 9-149

URL (Collection)

Member of: Session Object

Description: The URL collection represents a list of key value pairs generated from a GET
method invocation in the current browser. URL key value pairs are variables,
which are appended to the end of a URL in a Web browser.

For example:
http://ww. yourserver.comnanme=t est &ersi on=6. 0&j scri pt =enabl e

has two key value pairs, Name and Version. The URL collection provides read-
only access to these variables. Since URLs are browser based this collection
only applies to the plug-in products. However, the URL collection is exposed
in the client server products to assist in developing plug-in scripts.

[] Tip All collections have a method named “Item(NameOrIndex).” This is the
default method for all collections and returns an item in the collection at a
particular index or with a specific name. For simplicity, the “[]” can be used in
place of the call to the “Item()” method. For example, the following statements
are identical in behavior:

myl tem = Docunent s[1]
myl tem = Docunents. |tenm(1)
myl tem = Docunents["Start Up. bqy"]
myl tem = Docunents. |tem("StartUp. bay")
Example: The following example shows how to read the values from a URL and use them

inside a script running on the plug-in.

http://ww. yourserver.com&app=bri oquer y&gr oup=pm&useri d=2020&j scri pt =enabl e/
/1 Wite the URL information to the consol e w ndow.

BaseURL = Application. URL

Console. Wite ("The URL of ny server is = "+BaseURL)

Console. Wite ("The value App variable is =" + Session. URL["App"])
Console. Wite ("The value Group variable is =" + Session.URL["G oup"])
Console. Wite ("The value UserlID variable is =" + Session. URL["UserID'])
Methods: Add(Key As String, Value As String), Item (Key As String) As String

9-150 Objects

ValuesAxis (Object)

Member of: ChartSection Object

Description: The ValuesAxis object logically represents all the properties of a charts values
axis.

Example: The following example shows you how to set some basic properties for the left
axis.

wi t h(Acti veDocunent. Sections["Chart"])

{

Val uesAxi s. Lef t Axi s. Aut oScal e = true
Val uesAxi s. Lef t Axi s. ShowLabel = fal se
Val uesAxi s. Ri ght Axi s. AutoScal e = true
Val uesAxi s. Ri ght Axi s. ShowLabel = fal se
Val uesAxi s. Ri ght Axi s. Label Text = "Ri ght Axis"
}
Methods: None
Properties: Read-Write Properties: Property ShowIntervalTickmarks As Boolean,
Property ShowlIntervalValues As Boolean, Property ShowValuesAtRight As
Boolean
Objects LeftAxis As LeftAxis, RightAxis As RightAxis

ValuesAxis (Object) 9-151

WebClientDocument (Object)

Member of: Documents Collection, Application Object
Applies to Insight and Quickview only
Description: The WebClientDocument object represents a document that has been opened

inside a Brio Web application. This object, which is based on a document
object, has similar methods and properties. A WebClientDocument also has
methods and properties which are specific to Web environments.

Example: The document object may be referenced by enumerating the documents
collection object or by referring to the ActiveDocument object. For example,
the following commands all set myDoc to the same document object.

nmyDoc
or
myDoc = Document s[" Test doc. bqy"]

or if "Testdoc.bqy" is the current docurment then

myDoc = Acti veDocunent

In the foll owing exanple all of the Web specific properties and net hods are shown.
/I ReConnect to the OnDermand Server froma |local saved insight document

//and process a query. Note: Exanpl e assunes document is using

/ I passt hrough node.

Acti veDocurent . ODSUser name = "bri o"

Acti veDocunent . Set ODSPasswor d(" bri obri 0")

Acti veDocurent . Sections[" Query"]. Process()

//Prints the Adaptive State and the URL of the docunent

i sODSDocunment = true

switch (ActiveDocunment. Adapti veSt at e)

Docunent s[1]

{
case bqSt at eNor mal :
Message = "Docunent not registered with Ondemand Server."
i sODSDocunent = fal se
br eak;

case bqSt at eVi ewOnl y:
Message = "Adaptive state =View Only."

br eak;

case bqSt at eVi ewPr ocess:

Message = "Adaptive state =View and Process."
br eak;

case bqSt at eAnal yzeOnly:
Message = "Adaptive state = Anal yze Only."
br eak;
case bqSt at eAnal yzePr ocess:
Message = "Adaptive state =
Anal yze and Process."

9-152 Objects

br eak;

case bqSt at eQueryAnal yze:

Message = "Adaptive state = Query and Analyze."
br eak;

defaul t:

Message = "Not a web based docunent."

i sODSDocunent = fal se

}
i f(isODSDocunent)

el se

URLString = "OnDemand Server URL = "+Acti veDocument. URL

URLString = "Web Server URL = "+ActiveDocunent. URL

Consol e. Wit e(Mssage)
Consol e. Wite(URLString)

Methods:

Properties:

Collections:

Activate(),Close([SaveChanges As Boolean]), Import(Filename As String,
FileType As Number), ImportSQLFile(Filename As String),
Save([bCompressed As Boolean]), SaveAs([Filename As String],
[bCompressed As Boolean]), [CC As String], [Subject As String], [Message As
String], [SaveResults As Boolean], [Compressed As Boolean]) As Number,
SetODSPassword (Password as String)

Read-Only Properties: Property AdaptiveState as BqAdaptiveState, Property
Active As Boolean, Property LastSaved As Date, Property Name As String,
Property Path As String, Property Url as String

Read-Write Properties: Property ShowCatalog As Boolean, Property
ShowSectionTitleBar As Boolean, Property Username as String

Sections As Sections

WebClientDocument (Object) 9-153

XAxisLabel (Object)

Member of: LabelsAxis Object

Description: An object that represents a chart X-axis label. This object’s properties directly
affect the display of the X axis and corresponds to the options provided on the
Label Axis tab of the Properties dialog box.

Example: The following example shows how to modify the properties of the X Axis label.

Acti veDocunent . Sections["Chart1"]. Label sAxi s. Xaxi s. Aut oFr equency = true
Acti veDocurnent . Sections["Chart1"]. Label sAxi s. Xaxi s. Label Frequency = 3
Acti veDocunent . Sections["Chart1"]. Label sAxi s. Xaxi s. Label Text = "X Axi s"
Acti veDocunent . Sections["Chart1"]. Label sAxi s. Xaxi s. ShowLabel = true
Acti veDocunent . Sections["Chart1"]. Label sAxi s. Xaxi s. ShowTi ckmarks = fal se
Acti veDocunent . Sections["Chart1"]. Label sAxi s. Xaxi s. Showval ues = true

]

Acti veDocurnent . Sections["Chart1"]. Label sAxi s. XAxi s. Ti cknar kFr equency = 4

Methods: None

Properties: Read-Write Properties: Property AutoFrequency As Boolean, Property
LabelFrequency As Number, Property LabelText As String, Property
ShowLabel As Boolean, Property ShowTickmarks As Boolean, Property
ShowValues As Boolean, Property TickmarkFrequency As Number

9-154 Objects

XCategory (Object)

Member of:

Description:

Example:

Methods:

Properties:

CategorylItems (Collection)

An object that represents a chart's X-axis. This object's properties directly
affect the display of the X-axis and the X-Categories in the Outliner.

In this example, a chart is built from scratch using the request items specified
in the query. First, all the items in the outliner are removed, and then the
specific items are added to the outliner.

Act i veDocunent . Sections["Chart"]. XCat egori es. RenmoveAl | ()
Act i veDocurent . Sections[" Chart"]. XCat egori es. Add(" Product")
Act i veDocurent . Sections[" Chart"]. XCat egori es. Add(" St ate")

Add(ItemName As String), AddComputedItem(Name As String, Expression
As String, [Index As String] As AxisItem), Item (NameOrIndex) As Axisltem,
Remove(NameOrIndex), RemoveAll()

Read-Only Properties: Property Axis Type as BqChartAxisType, Property
Count As Number

XCategory (Object) 9-155

XLabels (Object)

Member of: Chart Object

Description: An object that represents a label value on the X-axis. This object’s properties
directly affect the display of the label value on the X-axis and correspond to the
options provided on the Chart menu or shortcut menu.

D Note You must specify the label value(s) in an array before using the FocusSelection, HideSelection
and UnhideAll methods.

Example: The following example shows how to modify the label value on the X-axis.

var QArray = new Array()

OArray[0] = ActiveDocunent. Secti ons["Chart"]. XLabel s. Label Val ues. | ten(1)
OArray[1] = ActiveDocunent. Secti ons["Chart"]. XLabel s. Label Val ues. | ten(3)
var ZArray = new Array()

ZArray[0] = ActiveDocunent. Sections["Chart"]. XLabel s. Label Val ues. I ten{2)
ZArray[1] = ActiveDocument. Sections["Chart"]. XLabel s. Label Val ues. |ten(4)
Acti veDocurent . Sections["Chart"]. XLabel s. FocusSel ecti on(OArray)

Acti veDocurent . Sections[" Chart"]. XLabel s. Hi deSel ecti on(ZArr ay)

Acti veDocunent . Sections[" Chart"]. XLabel s. Unhi deAl | (ZArr ay)

Methods: Drilllnto(NameOrIndex As Value, DrillName As String),
FocusSelection(ItemArray As Value), HideSelection(ItemArray As Value),
UnhideAll()

Properties: Read Only: Property Count as Number

Objects: LabelValues As LabelValues

9-156 Objects

YLabels (Object)

Member of: Chart Object

Description: An object that represents a label value on the Y-axis. This object’s properties

directly affect the display of the label on the Z-axis and correspond to the
options provided on the Chart menu or shortcut menu.

D Note You must specify the label value(s) in an array before using the FocusSelection, HideSelection

and UnhideAll methods.

Example: The following example shows how to modify the label value on the Y-axis.

var QArray = new Array()
OArray[0] = ActiveDocunent. Secti ons["Chart"]. YLabel s. Label Val ues. | ten(1)
OArray[1] = ActiveDocunent. Secti ons["Chart"]. YLabel s. Label Val ues. | ten(3)

var ZArray = new Array()
ZArray[0] = ActiveDocunent. Sections["Chart"]. YLabel s. Label Val ues. |ten{2)
ZArray[1] = ActiveDocument. Sections["Chart"]. YLabel s. Label Val ues. |Iten(4)

Act i veDocurent . Sections[" Chart"]. YLabel s. FocusSel ecti on(OArray)
Act i veDocurent . Sections[" Chart"]. YLabel s. Hi deSel ecti on(ZArr ay)
Act i veDocunent . Sections[" Chart"]. YLabel s. Unhi deAl | (ZArr ay)

Methods: Drilllnto(NameOrIndex As Value, DrillName As String),
FocusSelection(ItemArray As Value), HideSelection(ItemArray As Value),
UnhideAll()

Properties: Read Only: Property Count as Number

Objects: LabelValues As LabelValues

YLabels (Object)

9-157

ZAxisLabel (Object)

Member of: LabelsAxis Object

Description: An object that represents a charts Z-axis. This object’s properties directly affect
the display of the Z-axis label.

Example: The following example shows how to modify the properties of the Z-axis label.
Acti veDocunent . Sections["Chart1"]. Label sAXi s. ZAxi s. Aut oFr equency = true
Acti veDocunent . Sections["Chart1"]. Label sAXi s. ZAxi s. Label Frequency = 3
Acti veDocunent . Sections["Chart1"]. Label sAXi s. ZAxi s. Label Text = "X Axi x"
Acti veDocunent . Sections["Chart1"]. Label sAxi s. ZAxi s. ShowLabel = true

Acti veDocunent . Sections["Chart1"]. Label sAXi s. ZAxi s. ShowTi ckmarks = fal se
Acti veDocunent . Sections["Chart1"]. Label sAxi s. ZAxi s. Showval ues = true
Acti veDocunent . Sections["Chart1"]. Label sAxi s. ZAxi s. Ti cknar kFr equency = 4

Methods: None

Properties: Read-Write Properties: Property LabelText As String, Property ShowLabel As
Boolean, Property ShowTickmarks As Boolean, Property ShowValues As
Boolean

9-158 Objects

ZCategory (Object)

Member of:

Description:

Example:

Methods:

Properties:

CategorylItems (Collection)

An object that represents a chart's Z-axis. This object's properties directly
affect the display of the Z-axis and the Z-Categories in the Outliner.

In this example, a chart is built from scratch using the request items specified
in the query. First, all the items in the outliner are removed, and then the
specific items are added to the outliner.

Act i veDocunent . Sections["Chart"]. ZCat egori es. RenoveAl | ()
Act i veDocurent . Sections[" Chart"]. ZCat egori es. Add(" Product")
Act i veDocurent . Sections["Chart"]. ZCat egori es. Add(" St ate")

Add(ItemName As String), AddComputedItem(Name As String, Expression
As String, [Index As String] As AxisItem), Item (NameOrIndex) As Axisltem,
Remove(NameOrIndex), RemoveAll()

Read-Only Properties: Property Axis Type as BqChartAxisType, Property
Count As Number

ZCategory (Object) 9-159

ZLabels (Object)

Member of: Chart Object

Description: An object that represents a label value on the Z-axis. This object’s properties
directly affect the display of the label on the Z-axis and correspond to the
options provided on the Chart menu or shortcut menu.

D Note You must specify the label value(s) in an array before using the FocusSelection, HideSelection
and UnHideAll methods.

Example: The following example shows how to modify the label value on the Z-axis.

var QArray = new Array()
OArray[0] = ActiveDocunent. Secti ons["Chart"]. ZLabel s. Label Val ues. | ten(1)
OArray[1] = ActiveDocunent. Secti ons["Chart"]. ZLabel s. Label Val ues. | ten(3)

var ZArray = new Array()
ZArray[0] = ActiveDocunent. Sections["Chart"].ZLabel s. Label Val ues. | ten{2)
ZArray[1] = ActiveDocument. Sections["Chart"]. ZLabel s. Label Val ues. | ten(4)

Acti veDocurent . Sections["Chart"]. Zl abel s. FocusSel ecti on(OArray)
Acti veDocurnent . Sections["Chart"]. Zl abel s. Hi deSel ecti on(ZArr ay)
Acti veDocunent . Sections[" Chart"]. Zl abel s. Unhi deAl | (ZArr ay)

Methods: Drilllnto(NameOrIndex As Value, DrillName As String),
FocusSelection(ItemArray As Value), HideSelection(ItemArray As Value),
UnhideAll()

Properties: Read Only: Property Count as Number

Objects: LabelValues As LabelValues

9-160 Objects

Methods

A function associated with an object is called a method. The methods for an
object represent the actions that a script can request from that element.

For example, the document section object has a method called Act i vat e()
which can be used to activate the section. This method corresponds to the user
clicking on the section in the Section/Catalog pane. The method performs all
the background operations needed to hide the current section and causes the
selected section to display and initialize itself appropriately.

This chapter provides an alphabetical reference to the methods available for
Brio Intelligence objects.

10-1

Activate (Method)

Applies To: ChartSection, DataModelSection, Document, EISSection,
OLAPQuerySection, PivotSection, QuerySection, ReportSection,
ResultsSection, Sections, TableSection, WebClientDocument

Description: The activate method is used to switch the focus of a document or section.
Syntax: Expression. Acti vat e()

Expression Required: An expression that returns an object for any of the following:
ChartSection
DataModelSection
Document
EISSection
OLAPQuerySection
PivotSection
QuerySection
ReportSection
ResultsSection
Sections
TableSection

WebClientDocument

Example: The following example shows you how to unhide and activate a section.

var MySection = ActiveDocunent. Sections["Resul ts"]
MySection. Visible = true
MySection. Acti vate()

10-2 Methods

Add (Method)

Applies To:

Description:

[] Note

Syntax:

Expression Required:

Categoryltems, ChartSection, Columns, ControlsDropDown,
ControlsListBox, Documents, Joins, Limits, LimitValues, LocalJoins,
LocalResults, OLAPLabels, OLAPMeasures, OLAPSlicers, PivotLabels,
Requests, Sections, Topics

The Add() method is a common method for most collections. It adds an object
to a collection and returns a reference to the newly added object.

The Add() method works differently for the LimitValues (AvailableValues, CustomValues, and
SelectedValues) Collections. For the AvailableValues collection, the Add() does nothing since
the values are obtained from the database. For the CustomValues collection, Add() adds an
additional value to the list. For the SelectedValues collection, Add() adds a value to the
selected list.

Expression. Add(ltemNanme As String)

An expression that returns an object for any of the following:
Categoryltems
ChartSection
Columns
ControlsDropDown
ControlsListBox
Documents
Joins
Limits
LimitValues

LocalJoints

Add (Method) 10-3

LocalResults
OLAPLabels
OLAPMeasures
OLAPSlicers
PivotLabels
Requests
Sections

Topics

Example 1: The following example shows you how to create a new limit, add values to the
limit, and then add the limit to the limit line.

var MLinit =

Acti veDocunent . Sections["Query"].Limts.CreateLimt("Stores. Store_Id")
MyLi m t. Sel ect edVal ues. Add(2)

Acti veDocunent . Sections["Query"]. Limts. Add(M/Linit)

Example 2: The following example shows you how to add values to a list box and
dropdown.

Acti veDocurnent . Sections["El S2"] . Shapes[" DropDown1"] . Add(20)
Acti veDocurent . Sections["El S2"] . Shapes|[" Li st Box1"] . Add(1)

Example 3: The following example shows you how to add two new topics to a Data Model
and how to add a join between the topics.

var Topicl =

Acti veDocurent . Secti ons[" Query"]. Dat aMbdel . Cat al og. Cat al ogl tens["sal es_fact"]
Acti veDocunent . Secti ons[" Query"]. Dat aMbdel . Topi cs. Add(Topi c1)

var Topic2 =

Acti veDocurnent . Sections[" Query"]. Dat aMbdel . Cat al og. Catal ogltens["Store_| D']
Acti veDocurnent . Secti ons[" Query"]. Dat aMbdel . Topi cs. Add(Topi ¢c2)

var Topiclteml =

Acti veDocurent . Sections[" Query"]. Dat aMbdel . Topi cs

["Sal esFact"]. Topicltens["Store_Id"]

var Topiclten? =

Acti veDocurent . Sections[" Query"]. Dat aMbdel . Topi cs
["Stores"].Topicltenms["Store_l1d"]

Acti veDocurnent . Secti ons[" Query"]. Dat aMbdel . Joi ns. Add(Topi cl teml, Topi cl ten?,
bgJoi nSi npl eEqual)

10-4 Methods

Example 4: The following example shows you how to add a Pivot section type to the
Results section.

D Note A Chart, Pivot, and Table section type must be associated with a parent section, such as
Results. A Query, EIS, or Report section type does not have to be associated with a parent
section.

Act i veDocument . Secti ons. Add(bqgPi vot, "Resul ts")

Add (Method) 10-5

AddAll (Method)

Applies To:

Description:

[] Note

Syntax:

Expression Required:

Example:

/ I Adds
mylimit

SelectedValues Collections (instantiated from the LimitValues Collection)

The AddAll() method of the SelectedValues collection allows you to select all
values from either the AvailableValues or CustomValues collection depending
on what is selected. Use this method in conjunction with the LimitValueType
property so that you can determine in advance which limit value set is selected.
The value associated with this property is a member of the constant group
called BqLimitValueType. Two possible values of BqLimitValueType:
bgLimitValueTypeAvailable and bqLimitValueTypeCustom.

You can select a single value at a time using the Add() method of the SelectedValues
collection, however, you must know all the values in advance. This way of selecting a value can
become very tedious when there are a lot of values.

Expr essi on. Sel ect edVal ues. AddAl | () ;

An expression that returns a limit object.

In the following example, a "Quarter" limit is created and added to the limit
line in the Query section. Then, all available values in the Limit dialog box are
added.

alimt tothelimt line of the Query section
=Act i veDocunent . Sections["Query"].Linits.CreatelLi mt("Periods. Quarter")

myl i mit. Operat or =bqgLi m t Oper at or Equal

Acti veDocunent . Sections["Query"]. Limts. Add(nylinit)

/1 Selects ALL Available values in the Linits dialog

Acti veDocunent . Sections["Query"]. Limts[1]. Sel ect edVal ues. AddAl | ()

10-6

Methods

AddComputed (Method)

Applies To: Columns
Description: Creates a new computed column in a Table or Results section.
Syntax: Expressi on. AddConput ed(Name As Stri ng,

Expression As String) As Colum

Expression Required: An expression that returns an object for Columns.

Example: The following example shows you how to create a computed column that
concatenates the string “Manager =” with the value in the Store_Manager
column.

var Conput edExpression = " \"Manager =\" + Store_Manager"

Act i veDocurent . Sections["Resul ts"]. Col ums. AddConput ed(" MyConput ed",
Conput edExpr essi on)

AddComputed (Method) 10-7

AddComputeditem (Method)

Applies To:

Description:

Syntax:

Expression Required:

Example:

Chart, PivotLabels, Requests. Results, Tables

Creates a computed item and returns an object that represents the new item.

This method allows you to specify the name, expression, and index for the
computed item.

Calculated items created in the Chart section are always facts and are placed in
the Y-Facts pane of the chart outliner.

The “name” is the name of the computed item and appears in the Y-Fact pane
of the Chart or Pivot Outliner and the Chart legend.

The expression you specify must be a valid Brio Intelligence expression that
appears in the Computed Items dialog box.

The optional index determines the computed item’s position in a particular
pane. For example, an index of “2” places it as the second item in the Y-Fact
pane.

Chart: Expressi on. AddConput edl t en({Nane As String,
Expression As String,[optional |Index As Number])

Pi vot Label s: Expression.AddComputedItem(Name As String, Expression
As String, [optional Index As Number]) As PivotLabel

Resul ts and Tabl es: Expressi on. AddConput edl t en{ Nanme As
String, Expression As String)

Request s: Expression.AddComputedItem(Name As String, Expression As
String, Type As BqDataType) As Request

An expression that returns a Chart, PivotLabels or Requests object.

The following example shows you how to create a computed column titled
“Double Sales”, which doubles the amount in the Unit Sales column.

Acti veDocurent . Sections["Chart"]. Facts. AddConput edl t em

(* Doubl e_Sal es’,

“Unit_Sales *2', 2)

10-8 Methods

AddExportSection (Method)

Applies To:

Description:

ChartSection, Document, PivotSection, QuerySection, Section, TableSection

Exports documents to HTML format, making it easy to distribute data to
many users through corporate intranets or Web sites. Using this scripting
method executes a high-fidelity series of XHTML pages that match the original
Brio Intelligence reports as closely as HTML can; creates a set of.htm, .css and
.gif files; and if charts or EIS sections are included in the export set, creates.jpg
files. The resulting file set is a frame-based HTML display that includes a
report navigation frame, a report display area, and hyperlinks to move between
the multiple pages of a specific report.

When exporting selected sections, specify the section name in the
AddExportSection() method. A single call to AddExportSection() must be
specified for each section to be exported. After specifying all sections to be
exported the Document level Export() method is called. This method allows
you to specify the export file format.

Regardless of the order of the AddExportSection() calls, the exported
document preserves the original fixed section ordering of a .bqy document,
minus sections not selected for export. Invalid AddExportSection() calls,
either as a result of invalid section type or invalid section name, are ignored.

When sections are exported successfully, the Export() method clears the
export buffer. If sections are not exported successfully, use the
RemoveExportSections() method to flush the export buffer of sections. That
is, all sections set for export are cleared from the export buffer. For instance, if
you specify a Report, Pivot, and Chart section to be exported via the
AddExportSection() method, a call to RemoveExportSections() would nullify
the section set up for export. Consequently a call to Export() would assume
that you did not want to select individual sections for export, but instead
prefer that all sections be exported.

AddExportSection (Method) 10-9

The exported document resides in the default export directory wherever the

brioqry.exe file is located. The export directory can be modified by explicitly

specifying a path for the filename argument in the Export() method. For

example, "c:\\temp\\myfile.htm" and "myfile.htm" are valid arguments for
filename. Please note that the .htm extension is used to denote the HTML file
type. A .htm extension is used, even if .htm is specified as in the following

example:

Docunent s[" MyDocunent . bqy"] . Export (* C:\\ Tenp\\ MyExportFil e. ht mi , BgExport Fi | eHTM.)

D Note You cannot export the Query, OLAPQuery, and DataModel sections.

Syntax:

Expression Required:

Example 1:

/ | Export
Act i veDocunent
Act i veDocunent
Act i veDocunent
Act i veDocunent
Act i veDocunent
Act i veDocunent
Act i veDocunent
Act i veDocunent
Act i veDocunent
Act i veDocunent

Acti veDocunent .

Expressi on. AddExport Section(Secti onNanme As String)

PivotSection, TableSection, and Section.

An expression that returns an object for any of the following: ChartSection,

The following example shows you how to export selected sections of a .bqy

document.

SELECTED Secti ons of
. AddExport Sect i
. AddExport Sect i
. AddExport Sect i
. AddExport Sect i
. AddExport Sect i
. AddExport Sect i
. AddExport Sect i
. AddExport Sect i
. AddExport Sect i
. AddExport Sect i
Export (* C \\ Tenp\\ M\yExportFile. htnm,

. bgqy docunent

on(*
on(*
on(*
on(*
on(*
on(*
on(*
on(*
on(’
" CLAPQuery’)

on(

Report’)
Report2’)
Resul ts’)
Tabl e’)
Pi vot ")

Pi vot 2")
Pi vot 3")
Chart’)
Chart2')

bgExport For mat HTM.)

10-10 Methods

Example 2:

/ | Export

Docunent s["
Docunent s["
Docunent s["
Docunent s["
Docunent s["
Docunent s["
Docunent s["
Docunent s["
Docunent s["
Docunent s["
Docunent s["

In the following example, selected sections are set to be exported and then later

cleared from the export buffer. The Export method in the last part of the script
allows all sections in the document to be exported.

MyDocunent

MyDocurent .
MyDocurent .
MyDocurent .
MyDocurent .
MyDocurent .
MyDocurent .
MyDocurent .
MyDocurent .
MyDocurent .

bgExport For mat HTM.)
Act i veDocument . RenoveExport Sections();
/1 Export ALL sections of

Act i veDocunent . Export (* C \\ Tenp\\ MyExportFile. htni,

bay

. bgy"
bgy"

SELECTED Secti ons
MyDocurent .

[S Y S S S S S Sy —

of

. bgqy docunent
. AddExport Sect i
. AddExport Sect i
. AddExport Sect i
. AddExport Sect i
. AddExport Sect i
. AddExport Sect i
. AddExport Sect i
. AddExport Sect i
. AddExport Sect i
. AddExport Sect i
. Export (‘' C\\ Tenp\\ M\yExportFile. htni,

on(*
on(*
on(*
on(*
on(*
on(*
on(*
on(*
on(*
" CLAPQuery’)

on(

Report’)
Report2’)
Results’)
Tabl e’)
Pi vot)
Pi vot2")
Pi vot 3")
Chart’)
Chart2’)

. bgy docunent since Export buffer was flushed

bgExport For mat HTM.)

AddExportSection (Method) 10-11

AddFilterValue (Method)

Applies To: OLAPLabel, OLAPMeasures

Description: Adds a new filter value and returns an object that represents the new item.

D Note If you are using this method to apply a filter to a measure value, this method can only be used
against an Essbase database. In addition, you cannot use an alias.

Syntax: OLAPLabel . AddFi | t er Val ue(Menber Name As Stri ng,
Oper at or As BqOper at or)

OLAPMeasur e. AddFi | t er Val ue(Col uiml ndex As String,
Operat or As BgOperator, MeasureVal ue As String)

Expression Required An expression that returns an OLAPLabel or OLAPMeasure object.

Constants BqOperator
bqOperatorEqual
bqOperatorGreaterThan
bqOperatorGreaterThanOrEqual
bqOperatorLessThan
bqOperatorLessThanOrEqual
bqOperatorNotEqual

Example 1 The following example shows you how to add the new filter “AZ” item to the
side label.

OQPath = ActiveDocunent. Secti ons[" OLAPQuery"]

OQPat h. Si deLabel s[1] . AddFi | t er Val ue(* AZ' , bqOper at or Equal)
OQPat h. Process()

OQPat h. Acti vat e()

10-12 Methods

Example 2 The following example shows you how to add a filter value to a “Profit”
measure. In this example, the operator used equals 13,438.

Act i veDocunent . Secti ons[" OLAPQuery"]. Measures["Profit"]. AddFi | t er Val ue
('1', bqOperatorEqual ,'13438")

AddFilterValue (Method) 10-13

AddTotals (Method)

Applies To: PivotLabels (TopLabels and SideLabels collections)

Description: Creates an additional row or column containing the totals for all columns or
rows of the pivot.

Syntax: Expressi on. AddTot al s()
Expression Required: An expression that returns a PivotLabel object.

Example 1: The following example shows you how to total the top label columns called
“Product ID.”

Acti veDocurent . Sections["Pivot"]. TopLabel s["Product 1d"]. AddTot al s()

Example 2: The following example shows you how to a total to the side label rows called
“Quarter.”

Acti veDocurent . Sections["Pi vot"]. Si deLabel s["Quarter"]. AddTot al s()

10-14 Methods

Alert (Method)

Applies To:

Description:

Syntax:

Expression Required:

Example:

var ReturnVal =0

Application

Displays a simple dialog box. Up to three buttons can be displayed on the
dialog with custom names. When the user selects a button, an integer is
returned corresponding to the number of the button. If the user selects button
#1, the number 1 is returned and so on.

Expression. Alert(Pronpt As String, [Title As String],
[ButtonlText As String], [Button2Text As String],
[Button3Text As String]) As Integer.

An expression that returns an object for Application.

The following example shows you how to display an Alert dialog and process
the user’s response.

ReturnVal = Alert("Please press a button","Alert Title","One","Two", " Three")

switch (ReturnVal)
{

case 1:

Alert ("The user pressed the One button")

br eak;
case 2:

Alert ("The user pressed the Two button")

br eak;
case 3:

Alert ("The user pressed the Three button")

break;
def aul t:

Alert ("An error occurred!")

}

Alert (Method) 10-15

AuditSQL (Method)

Applies To: Query Object

Description: Allows you to define a SQL Statement that is executed when the audit event is
triggered. That is, you record how Brio Intelligence, a database server, or
network resources are being used. When triggered, the SQL statements update
an audit log table, which the administrator can query independently to track
and analyze usage data.

Syntax: Expressi on. Audi t SQL(Event Type As BgAudi t Event Type,
SQLSt atenent As String)

Expression Required An expression that returns a Query Object.

Constants: The BgAuditEventType constant group consists of the following values:
bqAuditDataModelRefresh
bgAuditDetail View
bgAuditLimitShowValues
bgAuditLogoff
bgAuditLogon
bgAuditNewDataModel
bgAuditPostProcess

bgAuditPreProcess

Example 1: In this example, an audit event is triggered when the user logs ons.

Acti veDocurent . Secti ons[" Query"]. Dat aMbdel . Audi t SQ (bgAudi t Logon, " Sel ect user nanme
fromall _users")

Example 2: In this example, an audit event is triggered when the user logs off.

Acti veDocunent . Sections[" Query"]. Dat aMbdel . Audi t SQ (bgAudi t Logoff, " Sel ect
usernane fromall _users")

10-16 Methods

Example 3: In this example, an audit event is triggered when “Process” is selected, but
before the SQL query statement is executed.

Act i veDocunent . Secti ons[" Query"]. Dat aModel . Audi t SQ (bgAudi t PreProcess, " Sel ect
usernane fromall _users")

Example 4: In this example, an audit event is triggered when the final row in the result set
is retrieved to the client workstation.

Act i veDocurent . Sections[" Query"]. Dat aMbdel . Audi t SQ (bgAudi t Post Process, " Sel ect
usernane fromall _users")

AuditSQL (Method) 10-17

AutoSizeHeight (Method)

Applies To: Pivot Fact

Description: By default, Brio Intelligence truncates Pivot fact columns evenly and without
regard to the length or height of data values. Numeric data that does not fit
within the height or length of the cell is replaced with pound signs (#).To size
the height of a Pivot fact column automatically so that all values are displayed
within the column, use the AutoSizeHeight method.

Syntax: Expressi on. Aut 0Si zeHei ght ()
Expression Required: An expression that autosizes the height of a Pivot Fact column.

Example: The following example shows you how auto size the height and the width of
the "Unit Sales" fact column.

Acti veDocunent . Sections["Pivot"]. Facts["Unit Sal es"]. Aut oSi zeHei ght ()
Acti veDocunent . Sections["Pivot"]. Facts["Unit Sal es"]. AutoSi zeW dt h()

10-18 Methods

AutoSizeWidth (Method)

Applies To: Pivot Fact

Description: By default, Brio Intelligence truncates Pivot fact columns evenly and without
regard to the length or height of data values. Numeric data that does not fit
within the height or length of the cell is replaced with pound signs (#).To size
the width of a Pivot fact column automatically so that all values are displayed
within the column, use the AutoSizeWidth method.

Syntax: Expressi on. Aut 0Si zeW dt h()
Expression Required: An expression that autosizes the width of a Pivot Fact column.

Example: The following example shows you how auto size the height and the width of
the "Unit Sales" fact column.

Act i veDocunent . Sections["Pivot"]. Facts["Unit Sal es"]. AutoSi zeW dt h()
Act i veDocunent . Sections["Pivot"]. Facts["Unit Sal es"]. Aut oSi zeHei ght ()

AutoSizeWidth (Method) 10-19

Call (Method)

Applies To:

Description:

Syntax:

Expression Required:

Example:

SharedLibrary
Use the call method to invoke functions in external dlls.

Expression. Cal | (sFunctionName As String, sArgunentType
As String, [argl], [arg2], [arg3], [arg4], [arg5],
[arg6], [arg7], [arg8])

An expression that returns a SharedLibrary object.

The following example calls the Beep function of the Kernal32.dll for 4
seconds with 5000Hz:

var olLibrary;
oLi brary = LoadSharedLi brary("kernel 32.dl1");
oLi brary. Call ("Beep", "U,U", 5000, 4000);

10-20

Methods

ChartThisPivot (Method)

Applies To: PivotSection
Description: Creates a new chart section using the criteria defined in a Pivot section.
Syntax: Expressi on. Chart Thi sPi vot ()

Expression Required: An expression that returns an object for the ChartSection.

Example: The following example shows you how to chart a pivot and then change the
display characteristics of the chart.

MyChart = ActiveDocunment. Sections["Pivot"]. Chart Thi sPivot ()
MyChart.Title = "Chart Created from Pivot"

ChartThisPivot (Method) 10-21

Close (Method)

Applies To:

Description:

Syntax:

Expression Required:

Example:

Document, WebClientDocument

Closes the document. This method is equivalent to selecting Close from the
File menu.

Expressi on. O ose([SaveChanges As Bool ean])
An expression that returns a Document or WebClientDocument object.

The following example shows you how to close all the open documents in the
application.

var OpenDocs = Docunents. Count

for (j =1 ; j <= OpenDocs ; j++)
Docunents[j]. Cl ose()

10-22

Methods

Connect (Method)

Applies To:

Description:

Syntax:

Connection

Tries to establish a connection to the database using the criteria set in the
connection object.

Expressi on. Connect ()

Expression Required: An expression that returns a Connection object.

Example:

The following example shows you how to establish a connection with a
database using the connection object.

D Note The ActiveDocument.Section [“Query].DataModel.Connect() works if you have already

MyConnecti on
MyConnecti on
MyConnecti on
MyConnecti on
MyConnecti on

successfully manually logged on once. However, if you have had an unsuccessful logon
attempt, you must manually logon first, before using the following script.

= ActiveDocument. Secti ons[" Query"]. Dat aMbdel . Connecti on
. Open("c:\\ OCEs\\ Sanpl eDB. oce")
.Usernanme = "brio"
. Set Passwor d("bri o")
. Connect ()

Connect (Method)

10-23

Copy (Method)

Applies To:

Description:

Syntax:

Expression Required:

Example:

ChartSection, DataModelSection, EISSection, PivotSection, QuerySection,
Section, TableSection

Makes a copy of the section and puts in on the clipboard.

Expressi on. Copy()

An expression that returns an object for any of the following:
ChartSection
DataModelSection
EISSection
OLAPQuerySection
PivotSection
QuerySection
Section
TableSection

The following example shows you how to copy an entire Results section to the
clipboard.

Act i veDocurnent . Secti ons[" Results"]. Copy()

10-24

Methods

CreateConnection (Method)

Applies To: Application

Description: Creates a stand-alone connection object. Use this method to create oce files,
which are not automatically associated with a Data Model.
CreateConnection() returns a connection object. Refer to the Connection
object for a complete list of its methods and properties.

Syntax: Expressi on. Creat eConnection() As Connection
Expression Required: An expression that returns an Application object.

Example: The following example shows you how to create a connection from scratch,
save it as an OCE and use it as the current connection. In this example, the
hostname uses the ODBC datasource name “Bookmart”.

var nyCon = CreateConnection()

myCon. Api = bqgApi ODBC

myCon. Dat abase = bgDat abaseCDBC

myCon. Host Nane = " Booknmart"

myCon. SaveAs("c:\\tenp\\booknart. oce")

var MyQuery = ActiveDocunent. Sections. Add(bgQuery)

MyQuery. Dat aMbdel . Connecti on. Open("c:\\tenp\\bookmart. oce")
MyQuery. Dat aMbdel . Connect i on. Connect ()

CreateConnection (Method) 10-25

CreateDateGroup (Method)

Applies To: Column

Description: Creates a date group from a Results or Table column. The data in the column
must be a date.

Syntax: Expressi on. Creat eDat eGr oup()
Expression Required: An expression that returns a Column object.

Example: The following example searches through a result set for a date column and
creates a date group.

Col Count = ActiveDocunent. Sections["Results"]. Col ums. Count
for (i =1, i <= Col Count ; i++)

{

if (ActiveDocunent. Sections["Results"].Colums[i].DataType ==bqgDat aTypeDat e)
Acti veDocurent . Sections["Results"].Col ums[i]. Creat eDat eG oup()

}

10-26 Methods

CreateLimit (Method)

Applies To:

Description:

Syntax:

[] Note

Expression Required:

Example 1:

Limits
Creates a stand alone limit object. Use the CreateLimit method to create new
limits. After creating the limit, complete its properties before adding it to the

limits collection.

Expression.CreateLimt(limtlitem As String) As Limt

The argument for CreateLimit method is different for regular limits, computed item limits, and
aggregate limits. For regular limits the argument is a reference to the table topic and the topic
item, for example, CreateLimit(“Sales_Facts.Amount_Sales”). For both computed item limits
and aggregate limits the argument is a reference to the item’s Display Name on the request
line, for example, CreateLimit(“Request.Amount Sales”).

An expression that returns a Limits object.

The following example shows you how to create a results limit. When creating
a local (results) limit the value for the LimitItem parameter needs to be the
name of the column the limit is being applied to.

MyLimt = ActiveDocunment. Sections["Results"].Limts.CreateLimt("State")

MyLi m t. Oper at or

= bgLi m t Oper at or Equal

MyLi m t. Cust onval ues. Add(" CA")

MyLim t. Sel ect edVal ues. Add(" CA")

Act i veDocunent . Sections["Results"].Limts. Add(MyLimt)

Act i veDocurent . Sections["Results"].Limts[1].DisplayName = "State"

CreateLimit (Method) 10-27

Example 2: The following example shows you how to create a query limit. When creating a
server (query) limit the value for the LimitItem parameter needs to be the
name of the Topic and the Topicltem the limit is being applied to in the form
"Topic.Topicltem".

MyLimit = ActiveDocunent. Sections["Query"].Limts.CreateLimt("Pcw_|Itens.OS")
MyLi mi t. Operator = bgLi m t Oper at or Equal

MyLi m t. Cust onval ues. Add(" W ndows")

MyLi m t. Sel ect edVal ues. Add(" W ndows")

Acti veDocunent . Sections["Query"]. Limts. Add(M/Linit)

Acti veDocunent . Sections["Query"]. Limts[1].DisplayName = "0Cs"

Example 3: The following example shows you how to create a query aggregate limit. When
creating a query aggregate limit the value for the LimitItem parameter needs to
be in the form of Request.DisplayName.

myLi mi t =Acti veDocunent . Sections[" Sal esQuery"]. AggregateLimts.CreateLimt
("Request. Amount Sal es")

myLi mi t. Oper at or =bqgLi m t Oper at or Equal

myLi m t. Cust onVal ues. Add("50")

myLi m t. Sel ect edVal ues. Add("50")

Acti veDocunent . Sections[" Sal esQuery"]. AggregateLim ts. Add(nyLimt)

10-28 Methods

CustomSQLFrom (Method)

Applies To: QuerySection

Description: Sets the FROM clause of an SQL statement prior to processing. The FROM
clause indicates the specific tables to reference when the SELECT statement is
processed.The CustomSQLFrom, the CustomSQLWhere, and the
ResetCustomSQL methods correspond to the edit SQL functionality in the
user interface's Custom SQL dialog. However, no Custom SQL dialog will
display when this method is executed.

Syntax: Expressi on. Cust onSQLFr on(Cust onSQ.Str As String)
Expression Required: An expression that returns a query object.

Example: The following example sets the FROM clause and the WHERE clause,
processes the query, and then restores the original SQL statement.

/1 Set the FROM cl ause, Set the WHERE cl ause, PROCESS, and then RESET
SQLAct i veDocunent . Secti ons[" Query"] . Cust onSQLFr on(" FROM From Sal es_Fact,
From Peri ods, From Products")

Act i veDocurent . Secti ons[" Query"]. Cust onSQLWher e(" WHERE

(Periods. Day_| d=Sal es_Fact. Day_ld AND

Products. Product _I d=Sal es_Fact. Product _Id) AND (Periods. Quarter="Q1l")")
Act i veDocurent . Sections[" Query"]. Process()

Act i veDocurent . Sections[" Query"]. Reset Cust onSQL() ;

CustomSQLFrom (Method) 10-29

CustomSQLWhere (Method)

Applies To: QuerySection

Description: Sets the WHERE clause of an SQL statement prior to processing.

The WHERE clause identifies which rows to use in a table based on selected
criteria. The CustomSQLFrom, the CustomSQILWhere, and the
ResetCustomSQL methods correspond to the edit SQL functionality in the
user interface's Custom SQL dialog. However, no Custom SQL dialog will
display when this method is executed.

Syntax: Expressi on. Cust onSQLWher e(Cust onSQLStr As String)
Expression Required: An expression that returns a query object.

Example: The following example sets the FROM clause and the WHERE clause,
processes the query, and then restores the original SQL statement.

/1 Set the FROM cl ause, Set the WHERE cl ause, PROCESS, and then RESET
SQLAct i veDocunent . Secti ons[" Query"] . Cust onSQLFr on(" FROM From Sal es_Fact,
From Peri ods, From Products")

Acti veDocurent . Sections[" Query"]. Cust onSQLWher e(" WHERE

(Periods. Day_| d=Sal es_Fact. Day_ld AND

Products. Product _I d=Sal es_Fact. Product _Id) AND (Periods. Quarter="Q1l")")
Acti veDocurent . Sections[" Query"]. Process()

Acti veDocurent . Sections[" Query"]. Reset Cust onSQL() ;

10-30 Methods

Disconnect (Method)

Applies To: Connection
Description: Drops the connection between the connection object and the datasource.
Syntax: Expressi on. Di sconnect ()

Expression Required: An expression that returns a Connection object.

Example: The following example shows you how to disconnect from the database.

if (ActiveDocunent. Sections["Query"].DataModel . Connecti on. Connected == true)
ActiveDocunment. Secti ons[" Query"]. Dat aMbdel . Connecti on. Di sconnect ()

Disconnect (Method) 10-31

DoEvents (Method)

Applies To: Application

Description: The DoEvents() method halts a script from executing and switches control to
the operating-environment kernel so that the application can respond to
pending or queued events. This method is typically placed at the end of a for-
loop statement. It is usually included in a script that runs continuously and

displays live data.

Syntax: Application. DoEvent s()

Example: The following script processes a query five times with limits. A DoEvents
method is included to display the applied limits each time the query is
processed.

function Wit (ms)
{
var oStart = new Date();
var oNow = new Date();
while (oNow.getTinme() - oStart.getTinme() < ns)

{
oNow = new Date() ;
DoEvents();
}
}
for (i=1;i<=5 ;i++)
{
/1 do sonething
i f(ActiveDocunent. Sections["Query"].Limts[2].lgnore ==fal se)
Acti veDocurent . Sections["Query"].Limts[2].]gnore=true;
el se
Acti veDocurent . Sections["Query"].Limts[2].]gnore=fal se;
Consol e. Wite("processing nunber: "+i+"\n")
Acti veDocunent. Sections[" Query"].Process()
Wai t (9000)
}

10-32 Methods

Drillinto (Method)

Applies To: AxisLabels (XLabels, YLabels, and ZLabels)

Description: Isolates and breaks out data using specified criteria.

Syntax: Expression.Drilllnto(ltemNameOr | ndex, Drill Name As
String)

Expression Required: An expression that returns an AxisLabels object.

Example The following example shows you how to drill into the fourth axis label.

Act i veDocurent . Sections["Al |l Chart"]. XLabel s.Drilllnto(4,"Territory")

Drillinto (Method) 10-33

Duplicate (Method)

Applies To:

Description:

Syntax:

Expression Required:

Example:

ChartSection, DataModelSection, EISSection, OLAPQuerySection,
PivotSection, QuerySection, ResultsSection, TableSection

Creates an exact copy of a section.

Expression. Duplicate()

An expression that returns an object for any of the following:
ChartSection
DataModelSection
EISSection
PivotSection

ReportSection

The following example creates a duplicate of the Chart section.

ActiveDocunent . Sections["Chart"]. Duplicate()

10-34

Methods

ExecuteBScript (Method)

Applies To: Application

Description: Executes Brio Intelligence’s old scripting language commands. By default, all
old scripts are wrapped by this function when they are converted from an old
document.

Syntax: Expr essi on. Execut eBScri pt (Scri pt As String)

Expression Required: An expression that returns an Application object.

Example: The following example shows a translated 5.x script:

Commands can be separated by semicolons or placed on individual lines.

Execut eBScri pt ("set | ogon root, 'OCENAME , 'test.oce'")
Execut eBScri pt ("connect |ogon root; show doc root, 'sectiontab'; hide doc root,
"requestline'")

ExecuteBScript (Method) 10-35

Export (Method)

Applies To:

Description:

Syntax:

Expression Required:

Constants:

ChartSection, DataModelSection, Document, EISSection,
OLAPQuerySection, PivotSection, QuerySection, Section, TableSection

Creates a new file with the information from a section object. Files can be
created using the standard data formats from the BqExportFileFormat
constant group.

Expressi on. Export (Fil ename As String, FileFormat As
BgExport Fi | eFormat, [IncludeHeaders As Bool ean])

An expression that returns an object for any of the following:
ChartSection
DataModelSection
EISSection
OLAPQuerySection
PivotSection
QuerySection
Section

TableSection

The BqExportFileFormat constant group consists of the following values:
BqExportFileFormatCSV
BqExportFileFormatExcel2
BqExportFileFormatExcel5
BqExportFileFormatHTML
BqExportFileFormatJPEG
BqExportFileFormatLotus123

BqExportFileFormatText

10-36 Methods

Example: The following example shows you how to export a Results section to HTML.
The first part of the script creates a computed column that displays the
contents of the “URL” columns as HTML HREFs.

/1Call the JavaScript link() method to convert the string to HREFs
var Conput edExpression = "URL.link()"

Act i veDocurent . Secti ons["Results"]. Col ums. AddConput ed("Cl i ckabl e
URLS", Comput edExpr essi on)

Act i veDocunent . Sections["Resul ts"]. Export ("C \\HTM.\\ MyResul ts. ht n{,
bgExport For mat HTM., f al se)

Export (Method) 10-37

FocusSelection (Method)

Applies To: AxisLabels (XLabels, YLabels, and ZLabels)

Description: Allows you to single out selected label value item(s), enabling you to
concentrate your view to particular item(s) of interest.

D Note You must specify the label value(s) item in an array before using the FocusSelection method.

Syntax: Expressi on. FocusSel ection(ltemArray As Val ue)
Expression Required: An expression that focuses a LabelValues item.

Example The following example shows you how to include LabelValues items 1 and 3 in
an array and then focus them in the Chart.

var NewArray = new Array()

NewAr r ay[0] =Act i veDocunent . Sections["Al | Chart"]. XLabel s. Label Val ues. | tem(1)
NewAr r ay[1] =Acti veDocument . Sections["Al | Chart"]. XLabel s. Label Val ues. It en(2)
Acti veDocunent . Sections["Al | Chart"]. XLabel s. FocusSel ecti on(NewArr ay)

10-38 Methods

GetCell (Method)

Applies To: Column, TableSection
Description: Returns the value of an individual cell in a Results or Table section.
Syntax: Expression. Get Cel | (nRow As Long) as vari ant

Expressi on. Get Cel | (nRow As Long, nCol as Long)

Expression Required: An expression that returns a Column or a TableSection object.

Example: The following example shows you how to populate a listbox from the values in

var
var
var
for

{

a Results section.

M/Li st = ActiveDocunent. Sections["ElIS"]. Control s["ListBox"]
RowCount = ActiveDocunent. Secti ons["Results"]. RowCount

MyCol = ActiveDocunent. Sections["Results"]. Colums["State"]
(j =1 ; j <= RowCount ; j = j+1)

var Tenmp = MyCol . GetCel I (j)
MyLi st . Add(Tenp)

GetCell (Method) 10-39

Hide (Method)

Applies To: Chart Fact objects

Description: Allows you to hide a chart fact. When this script is executed, the selected item
is removed from the Y-Facts area of the Chart Outliner,

Syntax: Expressi on. Hi de()
Expression Required: An expression that hides a Chart Fact item.

Example The following example shows you how to hide the fact “Amount Sales.”

Acti veDocurnent . Sections["Chart"]. Facts[" Anpunt Sal es"]. Hi de()

10-40 Methods

HideSelection (Method)

Applies To: AxisLabels (XLabels, Ylabels and ZLabels)

Description: Allows you to hide selected label value item(s), enabling you to concentrate
your view to selected item(s) of interest.

D Note You must specify the label value(s) item in an Array before using the HideSelection method.

Syntax: Expression. Hi deSel ection(ltemArray As Val ue)
Expression Required: An expression that hides a LabelValues item.

Example The following example shows you how to include LabelValues items 1 and 3 in
an array and then hide them in the Chart.

var NewArray = new Array()

NewAr r ay[0] =Acti veDocurnent . Sections["All Chart"]. XLabel s. Label Val ues. Iten(1)
NewAr r ay[1] =Acti veDocument . Sections["Al | Chart"]. XLabel s. Label Val ues. It enm(2)
Act i veDocunent . Sections["Al | Chart"]. XLabel s. Hi deSel ecti on(NewAr r ay)

HideSelection (Method) 10-41

ImportDataFile (Method)

Applies To: Document, WebClientDocument
Description: Imports a data file into a Query section.
Syntax: Expression. |l nport(Filename As String, FileType As

Bqgl nport Dat aFi | eFor mat)
Expression Required: An expression that returns a Sections object.

Constants: The BgIlmportDataFileFormat constant group contains the following values:
bgImportFormatCommaText
bgImportFormatExcel

bgImportFormatTabText

Example: The following example shows how to import a comma separated data file.

var Filename = "C \\Inmports\Sal esData. csv"
var MySection = ActiveDocunent. Sections. | nportDataFil e(Filenane,
bqgl nport For mat CommaText)

10-42 Methods

ImportSQLFile (Method)

Applies To:

Description:

Syntax:

Expression Required:

Example:

QuerySection

Imports a complete SQL statement from a text file into an existing query, and
retrieves the data set from the database server. When the file is imported, it is
scanned to determine the number of columns that will be returned by the SQL,
with the request line becoming populated with a column indicator for each of
the columns. Using this feature, you can take advantage of SQL statements
you have already written.

Before using this method, be sure that you are connected to a database server.
The Query section to which you are importing the SQL must have no tables.
In addition, the SQL file to be imported must begin with a SELECT statement
and you should know the number of columns to be displayed in the Results
section.Once the SQL file has been imported into the query you can drag items
from the table onto the Request line, use the custom SQL feature, or display its
properties.The imported SQL file cannot be edited, but you can specify a user-
friendly name for the Request line item and identify its data type.

Expression. | nport SQLFi | e(Fil ename As String, numCol ums
As Nunber)

An expression that returns a Query object.

The following example shows you how to set the imported SQL file name, and
process the query.

var Filename = "C:\\Program Fil es\\Bri o\\Bri oQuery\\ Sanpl es

\\ SQ.Load\\ Sal esDat a. sql "

var MySection = ActiveDocunent. Sections["Query"].InportSQLFile(Filename, 2)
Act i veDocument . Sections[" Query"]. Process()

ImportSQLFile (Method) 10-43

InterruptQueryProcess(Method)

Applies To: Document

Description: The OnlnterruptQueryProcess() method is a Brio Intelligence document level
function. This method stops the processing sequence and should only be used
in the OnPreProcess() event. The method takes no arguments.

Syntax: Expr essi on. OnlnterruptQueryProcess()

Expression Required: Brio Intelligence Document

Example: The following example displays the OnInterruptQueryProcess method for an
active document.

Act i veDocurnent . | nt err upt QueryProcess()

10-44 Methods

Item (Method)

Applies To:

Description:

Syntax:

the name or index.

Expression.|ltem NaneOr I ndex) As Obj ect

Expression Required: An expression that returns an object for any of the following objects:

Column

Control

ControlsDropDown

ControlsListBox
DMCatalogltem
DMResults
Document

Join
LabelValues
Limit
LimitValues
ListSelection
LocalJoins
LocalResults
OLAPLabel

OLAPMeasure

Columns, Controls, ControlsDropDown, ControlsListBox, DM Catalogltems,
DMResults, Documents, Joins, Limits, LimitValues, ListSelection, PivotLabels,
PivotLabelValues, RecentFiles, Requests, Sections, Shapes, Toolbars,
Topicltems, Topics

This is the accessor function for all collections. Item is the default method used
by all collections. It returns the value of an item in a collection referred to by

Item (Method)

10-45

Example:

OLAPSlicer
PivotLabel
PivotLabelValue

RecentFiles

Request
Section
Shape
Sortltems
Toolbar
Topicltem

Topic

The following example shows you how to return the 3 section, named

“Query”, in the current document.

var MySection
or
var MySection
or
var MySection
or
var MySection

Acti veDocunent .
Acti veDocunent .
Acti veDocunent .

Acti veDocunent .

Sections. |Item3)
Sections[3]
Sections. |t en(" Query")

Sections[" Query”]

10-46

Methods

Layer (Method)

Applies to:

Description:

Syntax:

Expression Required:

Constants:

Field object, Table object, ReportPivot collection, ReportChart collection,
Shapes collection

Sets the value of the layer value of an object in the report section. A single
object can be layered (stacked) in relative position to other objects. The layer
options include four rearrangement options: Send to Front, Send to Back,
Bring Forward, and Send Backward.

Send to Front brings the object all the way front and puts the object at the front
of the stack.

Send to Back sends the object all the way back and puts the object on the
bottom of the stack. For example, if there are a square on the bottom, a
triangle on top of the square and a circle on top of the triangle, and you apply
"Send to Back" to the circle, it will place the circle at the bottom of the stack.
The new order of the objects from bottom to top wil now be: circle, square,
triangle.

Bring Forward brings an object forward one layer. For example, if there are a
square on the bottom, a triangle on top of the square and a circle on top of the
triangle, and you apply "Bring Forward" to the triangle, it will be placed at layer
forward. The new order of the objects from top to bottom will be triangle,
circle, and square.

Send Backward sends the object back one layer. Given the same initial
placement of triangle, square, and circle layered from bottom to top, applying
"Send Backward" to the circle will place the circle one layer down. The new
order of the objects from bottom to top will be square, circle, triangle.

Expressi on. Spri ng(Name as String)

An expression that layers a report object.

The Layer method uses the BqLayer constant group.

Layer (Method) 10-47

This group consists of the following values:
bqLayerBack
bqLayerBackward
bqLayerForward
bqgLayerFront

Example: The following example shows you how to reposition the Pivot object one
object forward.

Acti veDocurent . Sections["Report"] . Body. Pi vot s["Pi vot"]. Layer (bgLayer For war d)

10-48 Methods

LoadFromFile (Method)

Applies To: Limit
Description: Loads a list of values into a limit from a file.
Syntax: Expressi on. LoadFronFi |l e(Fi |l enane As String) As Bool ean

Expression Required: An expression that returns a Limit object.

Example: The following example loads a list of values from a file named limits.txt into a
query limit on the “Store_Id” topic item.

var Filename = "d:\\LimtData.txt"
Act i veDocurent . Sections["Query"].Limts["Store_Id"].LoadFronFil e(Filenane)

LoadFromFile (Method) 10-49

LoadSharedLibrary (Method)

Applies To:

Description:

Syntax:

Expression Required:

Example:

Application

Initializes the communication between Brio Intelligence and an external
shared library (dll). Returns a SharedLibrary object that can be used to invoke
functions of the shared library.

Expressi on. LoadShar edLi brary(Name As String) As
Shar edLi brary

An expression that returns an Application object.

The following example calls the Beep function of the Kernal32.dll for 4
seconds with 5000Hz.

var olibrary;

oLi brary = LoadSharedLi brary("kernel 32.dl1");
oLi brary.Cal | ("Beep", "U,U", 5000, 4000);

10-50

Methods

ModifyComputed (Method)

Applies To: Columns

Description: Enables you to reference an existing column and change its expression while
still maintaining the column name (that is, without having to delete and
recreate the column which might be used by other columns).

Syntax: Expressi on. Modi f yConput ed(NaneOr | ndex As Val ue,
Expression As String)

Expression Required: An expresion that returns a Columns object.

Example: The first part of the script adds four undefined computed columns. The
second part of the script resolves the errors in the computed columns.

/1 This expression causes the four computed itens to becone undefined

Act i veDocurnent . Sections["Resul ts"]. Col ums. AddConput ed(" Twi ce","Unit_Sales * 2");
Act i veDocurent . Secti ons["Resul ts"]. Col ums. AddConput ed(" Fours", "Twi ce * 2")

Act i veDocurent . Sections["Resul ts"]. Col ums[" Twi ce"]. Renove()

Act i veDocurent . Sections[" Query"]. Process()

Act i veDocurnent . Sections["Resul ts"]. Col ums. AddConput ed(" Twi ce","Unit_Sales * 3");
/1 This expression resolves the problem

Act i veDocurent . Sections["Resul ts"]. Col ums. AddConput ed(" Twi ce","Unit_Sales * 2");
Act i veDocurent . Secti ons["Resul ts"]. Col ums. AddConput ed(" Fours", "Twi ce * 2")

Act i veDocurent . Sections[" Query"]. Process()

Act i veDocurent . Secti ons["Results"]. Col ums. Modi f yConput ed(" Twi ce",

"Unit_Sales *3";

ModifyComputed (Method) 10-51

Move (Method)

Applies To: Groupitems object, ReportGroup object, TableFacts object

Description: Moves an object in the report collection. For example, you might use this
method to reverse the order of two items in the Table Facts outliner.

Syntax: Expressi on. Move(Label NameBefore as String)

Expression Required: An expression that returns an object for any of the following:

Groupltems object
ReportGroup object

TableFacts object

Example: The following example shows you how to move the object "Unit Sales" before
"Amount Sales" in the TableFacts collection.

//State is Report Goup 1, City is Report G oup2.
/1 This script should nove City on top of State.
/] Description: void Myve(String Label NaneBef ore)
try

{
Acti veDocunent . Sections["Report"]. G oups["Report Group2"].Myve("Report G oupl")

catch(e)

Consol e. Witeln(e.toString())
}

10-52 Methods

New (Method)

Applies To:
Description:

Syntax:

Expression Required:

Example:

Documents

Creates a new blank Brio Intelligence document.

Expressi on. New([Name As String]) As Docunent
An expression that returns a Documents object.

The following example shows you how to create a new Brio Intelligence
document.

var MyName = "JavaScript Test"
var MyDoc = Docunents. New MyName)
MyDoc. Save()

New (Method)

10-53

OnActivate (Method)

Applies To:

Description:

Syntax:

Expression Required:

EIS Section

The OnActivate() method is a Brio Intelligence section level function. This
method is available regardless of the state of the application and can be
accessed through scripting. The OnActivate() method will execute a script
stored under the OnActivate event trigger. The method takes no arguments.
Any scripts associated with the OnActivate method are executed when
entering an EIS section.

Expressi on. OnActivate()

An expression that returns an object for any of the following:
ControlsCheckBox
CommandButton
ListBox
Radio ButtonGraphicsLine
Hz Line
Vt Line
Rectangle
Round Rectangle
Oval
Text Label
Picture
Embedded Section Objects
Query
Results
Pivot

Chart

10-54

Methods

Table
OLAPQuery
EIS

Example: The following example displays the OnActivate method for an active EIS
section.

Act i veDocurent . Sections["El S"]. OnActivate()

OnActivate (Method) 10-55

OnChange (Method)

Applies To:

Description:

Syntax:

Expression Required:

Example:

EIS Section

The OnChange() method is a Brio Intelligence EIS Object level function. This
method is only available when an EIS section is included in the Brio
Intelligence document, and the EIS section contains a text box.The
OnChange() method will execute a script stored in an EIS section text box
under the OnChange event trigger. The method takes no arguments.

Expressi on. OnChange()
An expression that returns a Textbox object.

The following example shows you how to associate an OnChange method in a
text box.

Text Box1. OnChange()

10-56

Methods

OnClick (Method)

Applies To:

Description:

Syntax:

Expression Required:

Example:

ControlsCheckBox, ControlsCommandButton, ControlsDropDown,
ControlsOptionsButton, ControlsTextBox, Shape

Simulates a user click event. This method exhibits the same behavior as simply
clicking on a control. Any scripts associated with an onclick event are
triggered.

Expression. dick()

An expression that returns an object for any of the following:
ControlsCheckBox
ControlsCommandButton
ControlsDropDown
ControlsOptionsButton
ControlsTextBox
Shape

The following example shows you how to invoke a command buttons event
handler.

MYEI'S = ActiveDocunent. Sections["El S"]
MYEI S. Cont rol s[" CommandButtonl"]. Ond i ck()

OnClick (Method) 10-57

OnDeactivate (Method)

Applies To:

Description:

Syntax:

Expression Required:

Example:

EIS Section

The OnDeactivate() method is a Brio Intelligence EIS section level event. This
method is available regardless of the state of the application and can be
accessed through scripting. The OnDeactivate() method will execute a script
stored under the OnDeactivate event trigger. The method takes no
arguments.Any scripts associated with the OnDeactivate method are executed
when leaving an EIS section.

Expressi on. OnDeacti vate()

An expression that returns an object for any of the
fol | owi ng:

= Controls
0 CheckBox, CommandButton, ListBox, Radio Button
» Graphics

0 Line,Hz Line,Vt Line,Rectangle,Round Rectangle,Oval, Text
Label,Picture

= Embedded Section Objects
0 Results, Pivot, Chart, Table, OLAPQuery
= EIS section script

= Customized script

The following example displays the DeActivate method for an active EIS
section.

Act i veDocurnent . Sections["El S"]. OnDeacti vat e()

10-58 Methods

OnDoubleClick (Method)

Applies To: EIS Section

Description: The OnDoubleClick() method is a Brio Intelligence EIS Object level function.
This method is only available when an EIS section is included in the Brio
Intelligence document and the EIS section contains a listbox.The
OnDoubleClick() method will execute a script stored in an EIS section listbox
under the OnDoubleClick event trigger. The method takes no arguments.

Syntax: Expressi on. OnDoubl eCl i ck()
Expression Required: An expression that returns a Listbox object.

Example: The following example shows you how to associate an OnDoubleClick method
with a list box.

Li st Box1. OnDoubl eCl i ck()

OnDoubleClick (Method) 10-59

OnEnter

Applies To: EIS Section

Description: The OnEnter() method is a Brio Intelligence EIS Object level function. This
method is only available when an EIS section is included in the Brio
Intelligence document and the EIS section contains a text box.

Syntax: Expression. OnEnter ()

Expression Required: An expression that returns a Textbox object.

Example: The following example shows you how to activate a text box.

Acti veDocurent . Sections["El S2"] . Shapes[" Text box1"] . OnEnt er ()

10-60 Methods

OnExit

Applies To: EIS Section

Description: The OnExit() method is a Brio Intelligence EIS Object level function. This
method is only available when an EIS section is included in the Brio
Intelligence document and the EIS section contains a text box.

Syntax: Expressi on. OnExi t ()

Expression Required: An expression that returns a Textbox object.

Example: The following example shows you how to exit a text box.

Act i veDocunent . Sections[" El S2"] . Shapes[" Text box1"] . OnExi t ()

OnExit 10-61

OnPostProcess (Method)

Applies To: Document

Description: The OnPostProcess() method is a Brio Intelligence document level function.
This method is available regardless of the state of the application. As long as
the application is running, this method is available through scripting. The
OnPostProcess method will execute a script stored under the OnPostProcess
event trigger. The method takes no arguments.

D Note Calling the Process() method from the OnPreProcess() or OnPostProcess() events can result in
an infinite loop.

Syntax: Expressi on. OnPost Process()

Expression Required: An expression that returns a Brio Intelligence Document object.

Example: The following example displays the OnPostProcess method for the active
document.

Act i veDocunent . OnPost Pr ocess()

10-62 Methods

OnPreProcess (Method)

Applies To: Document

Description: The OnPreProcess() method is a Brio Intelligence document level function.
The OnPreProcess method will execute a script stored under the OnPreProcess
event trigger. The method takes no arguments.

D Note Calling the Process() method from the OnPreProcess() or OnPostProcess() events can result in
an infinite loop.

Syntax: Expressi on. OnPr eProcess()
Expression Required: An expression that returns a Brio Intelligence Document object.

Example: The following example displays the OnPreProcess method for the active
document.

Act i veDocunent . OnPr eProcess()

OnPreProcess (Method) 10-63

OnShutdown (Method)

Applies To:

Description:

Syntax:

Expression Required:

[] Note

Example:

Document

The OnShutdown() method is a Brio Intelligence document level function.
This method is available regardless of the state of the application. As long as
the application is running, this method is available through scripting. The
OnShutdown method will execute a script stored under the OnShutdown
event trigger. The method takes no arguments.

Any OnShutDown events are executed before you are prompted to save or discard changes
made to a document in the Save dialog box.

Expressi on. OnShut down()

An expression that returns a Brio Intelligence Document object.

The following example shows you how to use the OnShutdown() method to
exit a document without executing Brio Intelligence. The second line of the
script shows you how to turn off the Prompt to Save dialog box when an
OnShutdown() method is executed.

Docunent s["Ei strigger.bqgy"]. OnShut down()
Application. Quit(false)

10-64

Methods

OnStartup (Method)

Applies To: Document

Description: The OnStartup() method is a Brio Intelligence document level function. It is
executed when a document is opened and can be used to initialize the
document and application for the user. This method is available regardless of
the state of the application. As long as the application is running, this method
is available through scripting. The OnStartup method will execute a script
stored under the OnStartup event trigger. The method takes no arguments.

Syntax: Expression. OnStartup()
Expression Required: An expression that returns a Brio Intelligence Document object.

Example: The following example displays the OnStartup method for an active
document.

Act i veDocunent . OnSt ar t up()

OnStartup (Method) 10-65

Open (Method)

Applies To: Connection, Documents

Description: Documents—Opens an existing Brio Intelligence document.

Connection—Opens an existing Open Catalog Extension file.
Syntax: Expressi on. Open(Fi |l ename As String)
Expression Required: An expression that returns a Connection, or Documents object.

Example 1 The following example shows you how to open an existing Brio Intelligence
document.

var MyFile = "C \\BQDocs\\JavaTest. bqy"
var MyDoc = Docunents. Open(M/Fi | e)
Alert (M/Doc. Name + " is open")

Example 2 The following example shows how to open an existing Open Catalog
Extension file.

var MyCCE "C:\\ BQDocs\\ SQL. oce"

var MyCon = ActiveDocurent. Sections["Query"]. Dat aVbdel . Connecti on. Open(My CCE)
MyCon. User nanme = "bri o"

MyCon. Set Passwor d("bri o")

MyCon. Connect ()

10-66 Methods

OpenURL (Method)

Applies To: Application

Description: Requests the browser to open a URL specified by the “url” parameter. The
target parameter refers to the browser window where the new url should be
displayed. Target may be the name of a browser frame or a keyword referring
to a specific browser window.

Target Description

<«

_self” The current browser window.

<«

_new” A new browser window.

D Note The OpenURL() method is only applicable for Web-based clients (Insight users).

Syntax: Expression. OpenURL(URL As String, Target As String)

Expression Required: An expression that returns an Application object.

Example: The following example shows you how to open a Web page in a new window.
i f(Application.Name !'= "BrioQuery")

var MYURL = http://ww. SeasonPass. com
Application. OpenURL(MYURL, " _new")

OpenURL (Method) 10-67

PivotThisChart (Method)

Applies To: Pi vot Col | ecti on
Description: Changes a chart object into the formof a Pivot report.
Syntax: Expr essi on. Pi vot Thi sChart ()

Expression Required: An expression that returns a Pivot object.

Example: The following example shows you how to change the BooksChart object into
the form of a Pivot report.

Acti veDocunent . Secti ons[" BooksChart"]. Pi vot Thi sChart ()

10-68 Methods

PivotTo (Method)

Applies To: PivotLabel

Description: Changes the position of a pivot label. By default, calling the PivotTo method
moves a pivot label from one label collection to another. PivotTo performs the
same action as selecting or deleting a pivot label out of one group and
reinserting into a different group.

Syntax: Expression. Pivot To([| ndex As Nunber])

Expression Required: An expression that returns a PivotLabel object.

Example: The following example shows you how to pivot a label from the top labels
collection to the 1st position in the side labels collection. The Index is an
optional property, which specifies where the label pivots. If the property is
empty then the pivot will place the label at the end of the list.

Act i veDocurnent . Sections["Pivot"]. TopLabel s["Year"] . Pivot To(1)

//To pivot back to its original position use:

Act i veDocurent . Sections["Pi vot"]. TopLabel s[" Year"] . Pi vot To()

PivotTo (Method) ~ 10-69

PrintOut (Method)

Applies To: ChartSection, DataModelSection, OLAPQuerySection, PivotSection,
QuerySection, Section, TableSection

Description: Sends the information in a report section to the printer.

Syntax: Expression. PrintQut ([FromPage As Long], [ToPage As
Long], [Copies As Long], [Filename As String])

Expression Required: An expression that returns an object for any of the following:
ChartSection
DataModelSection
OLAPQuerySection
PivotSection
QuerySection
Section
TableSection
Example: The following example shows you how to print multiple copies of a Pivot
section to the printer.
var StartPage = 1
var EndPage = 1

var NumCopi es =2
Acti veDocurent . Sections["Pivot"]. PrintQut(StartPage, EndPage, NumCopi es)

10-70 Methods

Process (Method)

Applies To: OLAPQuerySection, QuerySection

Description: Executes a query. This method is equivalent to selecting the Process Current
item from the Tools menu.

Syntax: Expressi on. Process()
Expression Required: An expression that returns an OLAPQuerySection or a QuerySection object.

Example: The following example shows you how to process every query in a document.
for (j =1; j <= ActiveDocunent. Sections. Count; j++)

if (ActiveDocunent. Sections[j].Type == bqQuery)

{
var MyCon = ActiveDocunent. Sections[j]. Dat aMbdel . Connecti on
MyCon. Usernane = "Bri o"
My Con. Set Password(" Bri o")
My Con. Connect ()
Acti veDocunent. Sections[j].Process()
Consol e. Witel n(ActiveDocunent. Sections[j].Nane + " was processed.")
}

Process (Method) 10-71

ProcessStoredProc (Method)

Applies To: QuerySection

Description: This method provides you with the option to process stored procedures to
obtain results.

This method is used in conjunction with the SetStoredProcParam (Method).

Syntax: Expressi on. ProcessSt or edProc()

Example: The following example shows you how to open and process a stored procedure
in the Query section.
Acti veDocurent . Sections[" Query"]. Set St or edPr ocPar an(" Par amL", 1)

Acti veDocurent . Sections[" Query"]. Set St or edPr ocPar an(" Par am2", 2)
Acti veDocunent . Secti ons[" Query"]. ProcessSt oredProc()

10-72 Methods

ProcessToTable (Method)

Applies To: QuerySection

Description: Executes the query and stores the results as a table on the database. Items on
the Request line become the column headings of the new table, and you can
append new columns to the table and query it as needed.

[] Tip The connection file and database to which you are connecting determine
whether or not you can use this feature. You must also have Create and Insert
priviledges on the database in order to process to a database table.

Syntax: Expressi on. ProcessToTabl e (Tabl eName As String,
bgProcessType As String, [optional] G antee As String).

Grantee is the person to whom access is granted—either PUBLIC, a single user
id, or list user ids that are comma delimited. Grantee is optional because it
depends on whether user is creating a new table or appending to an existing
table.

Expression Required: An expression that returns a QuerySection object.

Constants; The BgProcessType is constant group contains the following values:
bgProcessCreateTable

bgProcessAppendToTable

Example 1: In this example, the results are stored in a new table entitled “MyTable.”

Act i veDocurnent . Sections[" Query"]. ProcessToTabl e(* MyTabl €', bgProcessCreat eTabl e,
‘Public’)

Example 2: In this example, the results are appended to “MyTable.”

Act i veDocurnent . Sections[" Query"]. ProcessToTabl e(* MyTabl e’ , bgAppendToTabl e,
“Public)

ProcessToTable (Method) 10-73

Quit (Method)

Applies To: Application

Description: Shuts down the Brio Intelligence application.

D Note The Quit method will not shut down a browser window.

Syntax: Expression. Quit([Silent As Bool ean])
Expression Required: An expression that returns an Application object.

Example: The following example shows how to quit Brio Intelligence silently.

Application. Quit(false)

10-74 Methods

Recalculate (Method)

Applies To:

Description:

Syntax:

Expression Required:

Example:

ChartSection, DataModelSection, EISSection, OLAPQuerySection,
PivotSection, QuerySection, Section, TableSection

Forces a section to recalculate itself. Use this method to force a section to
recalculate. This is particularly important if you are using variables in
computed columns.

Expressi on. Recal cul ate()

An expression that returns an object for the Results and Table sections.

The following example forces a Results section to recalculate its values.

ActiveDocunent . Sections["Results"]. Recal cul ate()

Recalculate (Method)

10-75

Refresh (Method)

Applies To: DMCatalog
Description: Redisplays the tables in the table catalog.
Syntax: Expressi on. Refresh()

Expression Required: An expression that returns a DMCatalog object.

Example: The following example shows you how to refresh the items in the table catalog.

Act i veDocunent . Sections["Query"]. Catal og. Refresh()

10-76 Methods

RefreshAvailableValues (Method)

Applies To: Limit

Description: Generates a list of values for a limit. This method is equivalent to clicking the
“Show Values” button on the Limit dialog box.

Syntax: Expressi on. Ref reshAvai | abl eVal ues()
Expression Required: An expression that returns a Limit object.

Example: The following example shows how to update the available values for the “Unit
Sales” limit.

Act i veDocurent . Sections["Sal esQuery"].Limts["Unit Sales"].
Ref r eshAvai | abl eVal ues()

RefreshAvailableValues (Method) 10-77

RefreshDataNow (Method)

Applies To: ChartSection, PivotSection

Description: Use the RefreshDataNow (Method) to refresh a section immediately if you
have selected to manually refresh the current section through the object model
or the UL This method is used in conjunction with the RefreshData Property
when the property value has been set to: bqRefreshDataManually.

Syntax: Expressi on. Ref r eshDat aNow()

Expression Required: An expression that returns an object for the Pivot or Chart sections.

Example: In the following example, the Pivot section is set to be refreshed manually and
immediately when the command is executed.

Acti veDocunent . Sections[" Pi vot"]. Ref reshDat a=bqRef r eshDat aManual | y
Acti veDocunent . Sections[" Pi vot"]. RefreshDat aNow()

10-78 Methods

Remove (Method)

Applies To:

Description:

Syntax:

Expressi on. Remove(NameOr | ndex) or

Expression Required: An expression that returns an object to any of the following:

Categoryltems
ChartSection
Column
ControlsDropDown
ControlsListBox
DataModelSection
EISSection

Join

Limit

LocalJoin
LocalResult
OLAPLabel
OLAPMeasure
OLAPQuerySection
OLAPSlicer
PivotLabel

PivotSection

Categoryltems, ChartSection, Column, ControlsDropDown, ControlsListBox,
DataModelSection, EISSection, Join, Limit, OLAPQuerySection, PivotLabel,
PivotSection, QuerySection, Request, Section, TableSection, Topic

Removes an individual item from the CategoryItems collection. In all other
cases, Remove is called without a name or index to delete an individual object.

Expressi on. Renove()

Remove (Method)

10-79

QuerySection
Request
Section
TableSection
Topic

Example: The following example shows you how to remove the “Product ID” column
from a Results section

Acti veDocurent . Sections["Resul ts"]. Col ums[Product |d].Renmove()

10-80 Methods

RemoveAll (Method)

Applies To: AxisLabels, Categoryltems, Columns, ControlsDropDown, ControlsListBox,
Joins, Limits, LimitValues, Requests, Topics

Description: Removes all the items from a collection.
Syntax: Expr essi on. RenmoveAl | ()

Expression Required: An expression that returns a collection for any of the following:
Limits
AxisLabels
Categoryltems
Columns
ControlsDropDown
ControlsListBox
Join
LimitValues
LocalJoins
OLAPLabels
OLAPMeasures
OLAPSlicers
Requests
Topics
Example: The following example shows how to remove every column from a Results or
Table section.

Act i veDocunent . Secti ons[" Resul ts"]. Col ums. RenoveAl | ()

RemoveAll (Method) 10-81

RemoveExportSection (Method)

Applies To:

Description:

Syntax:

Example:

/| Export SELECTED Secti ons of
. AddExport Sect i
. AddExport Sect i
. AddExport Sect i
. AddExport Sect i
. AddExport Sect i
. AddExport Sect i
. AddExport Sect i
. AddExport Sect i
. AddExport Sect i
. AddExport Sect i

Act i veDocunent
Act i veDocunent
Act i veDocunent
Act i veDocunent
Act i veDocunent
Act i veDocunent
Act i veDocunent
Act i veDocunent
Act i veDocunent
Act i veDocunent

ChartSection, DataModelSection, Document, EISSection,
OLAPQuerySection, PivotSection, QuerySection, Section, TableSection

When sections are exported successfully, the Export() method clears the
export buffer. If sections are unsuccessful in being exported, then use this
method to flush the export buffer. All sections set for export are cleared from
the export buffer. For instance, if you specify a Report, Pivot, and Chart
section to be exported via the AddExportSection() method, a call to
RemoveExportSections() would nullify the section set up for export. You
could then specify the Export() method to export all sections.

Expressi on. RenoveExport Secti ons()

In the following example, sections are set to be exported using the
AddExportSection () method, then cleared from the export buffer using the
Remove ExportSections() method, and then all of the documents sections are
exported using the Export ()method.

. bgqy docunent

/1 Fl ushes the Export buffer
Acti veDocurent . RenoveExport Secti ons()

/] Export ALL sections of

on(’
on('
on(’
on('
on('
on('
on('
on('
on(’
on(’

Report’)
Report2’)
Resul ts’)
Tabl e’)

Pi vot ")

Pi vot 2")

Pi vot 3")
Chart’)
Chart2')
OLAPQuery’)

.bgy docunent since Export
Acti veDocunent . Export (* C \\ Tenp\\ MyExportFil e. htni,

buf fer was fl ushed
bgExport For mat HTM.)

10-82 Methods

ResetCustomerSQL (Method)

Applies To: QuerySection

Description: Resets the original SQL statement prior to processing. The CustomSQLFrom,
CustomSQLWhere, and ResetCustomSQL methods correspond to the edit
SQL functionality in the user interface's Custom SQL dialog. However, no
Custom SQL dialog will display when this method is executed.

Syntax: Expressi on. Cust onSQLFr on(Cust onSQ.Str As String)
Expression Required: An expression that returns a query object.

Example: The following example sets the From clause and the Where clause, processes
the query, and then restores the original SQL statement.

//Set the FROM cl ause, Set the WHERE cl ause, PROCESS, and then RESET SQL

Act i veDocurent . Secti ons[" Query"]. Cust onSQLFr on{" FROM Fr om Sal es_Fact,

From Peri ods, From Products")

Act i veDocument . Secti ons[" Query"]. Cust onSQLWher e("WHERE (Peri ods. Day_I| d=Sal es_Fact
.Day_ld AND Products. Product _I d=Sal es_Fact. Product _I d) AND

(Periods. Quarter="Ql')")

Act i veDocurent . Sections[" Query"]. Process()

Act i veDocurent . Sections[" Query"]. Reset Cust onSQL() ;

ResetCustomerSQL (Method) 10-83

ResizeToBestFit (Method)

Applies To: Column

Description: Changes the width of a column to fit the data without clipping any
information or displaying too much white space.

Syntax: Expressi on. Resi zeToBest Fit ()
Expression Required: An expression that returns a Column object.

Example: The following example shows you how to change all the columns in a result set
to best fit the data.

for (j =1; j < = ActiveDocunent. Sections["Results"]. Col ums. Count; j++)
Acti veDocunent . Sections["Results"]. Colums[j]. ResizeToBestFit()

10-84 Methods

Save (Method)

Applies To:

Description:

Syntax:

Expression Required:

Example:

Connection, Document, WebClientDocument
Saves the changes to a document or to an Open Catalog Extension file.
Expressi on. Save()

An expression that returns an object for any of the following:
Connection
Document

WebClientDocument

The following example shows you how to create a new Brio Intelligence
document and save it.

var MyDocs "c:\\ Mydocs"

var MyNanme "JavaScript Test"
var MyDoc = Docunents. New(MyNane)
MyDoc. Save()

Save (Method)

10-85

SaveAs (Method)

Applies To:

Description:

Syntax:

Expression Required.

Example:

Connection, Document, WebClientDocument

Saves a document or Open Catalog Extensions file with a new name and/or
location.

Expressi on. SaveAs(Fil enane As String)

An expression that returns an object for any of the following:
Connection
Document

WebClientDocument

The following example shows you how to save a document using a different
name.

var MyDocs = "c:\\ Mydocs"

var MyNane = "JavaScri pt Test. bqy"

var MyFil ename = MyDocs + "\\"+ MyNane
Act i veDocurnent . SaveAs(MyFi | enane)

10-86

Methods

Select (Method)

Applies To: ControlsDropDown, ControlsListBox, ControlsTextBox
Description: Changes the user selection of items in a control.
Syntax: Expressi on. Sel ect (1 ndex As Long)

Expression Required: An expression that returns an object for any of the following:
ControlsDropDown
ControlsListBox
ControlsTextBox
Example: The following example shows you how to set the selection of one dropdown
list based selected index in another dropdown list.

var Myl ndex = DropDownl. Sel ect edl ndex=1
Dr opDown2. Sel ect (Myl ndex)

Select (Method) 10-87

SendSQL (Method)

Applies To:

Description:

[] Note

Syntax:

Expression Required:

Example:

var SQ. = "insert
var CCE =

var user = "brio"
var pass = "brio"

Application

Sends a SQL string to a datasource. No data is retrieved from the database.

Currently, this will not send a SQL statement to the same database session to
which your query is connected.

If your SendSQL string is sending data modification commands, your database may require a
commit statement. The commit behavior of the database may restrict which type of SQL string
you may be able to send.

Since the SendSQL method requires an .oce as an argument, it does not apply to a script
written specifically for Insight.

Expressi on. SendSQ.(Ccenane As String, Usernane As
String, Password As String, SQLString As String)

An expression that returns an Application object.

The following example shows you how to send a SQL Statement to a database
associated with an OCE.

into test (store_id, store) values (2, 'Conputer Cty')"

"c:\\OCEs\\ Oracl e. oce"

Appl i cati on. SendSQL(OCE, user, pass, SQ.)

10-88

Methods

SetODSPassword (Method)

Applies To:

Description:

Syntax:
Expression Required:

Example:

WebClientDocument

Sets the OnDemand Server password. This method is a Web-enabled method
and does not apply to Brio Intelligence. It can be used to automate logging on
to the OnDemand Server.

Expressi on. Set ODSPasswor d(Password As String)

An expression that returns a WebClientDocument object.

The following example shows you how to set the OnDemand Server Password
from a password field in an EIS section. The name of the password field is
TextBox1.

var MyPass = Text Box1l. Text
if (Application.Nane != "BrioQuery")
Act i veDocunent . Set ODSPasswor d(MyPass)

SetODSPassword (Method) 10-89

SetPassword (Method)

Applies To: Connection

Description: Sets the password that is used by the Open Catalog Extension when connecting
to the database.

Syntax: Expr essi on. Set Passwor d(Password As Stri ng)

D Note It is very important that you enclose the password with parentheses. If you don’t, the string is
created as a variable and there is no way to unassign it.

Expression Required: An expression that returns a Connection object.

Example: The following example shows you how to set the Password from a password
field in an EIS section. The name of the password field is TextBox1.
var MyPass = Text Box1l. Text

if (Application. Name !'= "BrioQuery")
Acti veDocurnent . Secti ons[" Query"]. Dat aMbdel . Connecti on. Set Passwor d(MyPass)

10-90 Methods

SetStoredProcParam (Method)

Applies To:

Description:

Syntax:

Example:

QuerySection

This method provides you with the option to programmatically set up (select)
stored procedures for obtaining results.

The optional index parameter specifies the nth position in the stored
procedure argument list (with the first parameter being indexed at 1). If no
index value is provided, the assumed order is the order in which they are
defined (again, beginning at 1). If there is a mix of some method calls with the
index value and some without, the order will be those with indexes first
followed by definition order of those without indexes.

This method is used in conjunction with the ProcessStoredProc (Method).

Expr essi on. Set St or edPr ocPar m(Par anet er As Val ue,
[Optional] Param ndex As Nunber)

The following example shows you how to open and process a stored procedure
in the Query section.

Act i veDocurent . Secti ons[" Query"]. Set St or edPr ocPar an(" Par amlL", 1) ;
Act i veDocurent . Sections[" Query"]. Set St or edPr ocPar an(" Par an2", 2) ;
Act i veDocument . Sections[" Query"]. ProcessStoredProc();

SetStoredProcParam (Method) 10-91

Shell (Method)

Applies To: Application

Description: Launches an external application and passes a command line argument to the
application.

Syntax: Expr essi on. Shel | (CommandLi ne As Stri ng,

[optional] Arguments As String)
Expression Required: An expression that returns an Application object.

Example: The following example launches notepad with a text file.

var App = "c:\\Wnnt\\not epad. exe"
var Args = "C \\Docs\\Readne. txt"
Application. Shel | (App, Args)

10-92 Methods

SortByFact (Method)

Applies To:

Description:

Syntax:

Expression Required:

Constants:

Example:

PivotLabelsTotals Collection, Categoryltems Collection

Sets a data value (rather than "label") criterion in the sort conditions available
in the Pivot and Chart sections. This method corresponds to the Sort by Values
feature in the Pivot and Chart report sections where the second list selection
orders each value of the target item specified in the first list selection by its
corresponding numeric value in the second list.

Expressi on. Sort ByFact (Fact Nanme As String, Sort Functi on
As BqgSort Function, [optional]SortOrder As BqgSort Order)

An expression that returns a PivotLabelsTotals or Categoryltems collection.

The BqSortFunction constant group contains of the following values:
bgSortFunctionAverage
bgSortFunctionCount
bgSortFunctionMaximum
bqSortFunctionMinimum
bgSortFunctionNonNullAverage
bgSortFunctionNonNullCount
bgSortFunctionNullCount
bgSortFunctionSum

The BgSortOrder constant group contains the following values:
bqSortAscend
bqSortDescend

The following example shows you how to sort the Product Name item by its
corresponding numeric value "Amount Sales".

Act i veDocurent . Secti ons["Pi vot2"] . TopLabel s["Product Name"]. Sort ByFact (" Anmount
Sal es", bqgSort Functi onSum bqSort Ascend)

SortByFact (Method) 10-93

SortByLabel (Method)

Applies To:

Description:

Syntax:

Expression Required:

Constants:

Example:

PivotLabelsTotals Collection, Categoryltems Collection

Sets the primary sort criterion on an item by label or name, rather than by
reference to corresponding numeric data values. This method corresponds to
the Sort by Labels feature in the Pivot and Chart report sections

Expressi on. Sort ByLabel ([Sort Order As BgSort Order])
An expression that returns a PivotLabelsTotals or Categoryltems collection.

The BgSort Order constant group contains the following values:
bqSortAscend
bqSortDescend

The following example shows you how to sort the top labels "Product Name"
by region.

Acti veDocunent . Secti ons["Pi vot2"] . TopLabel s["Product Nane"].
Sort ByLabel (bgSort Ascend)

10-94

Methods

SortNow (Method)

Applies To: SortItems Collection

Description: Sets the Sort Now feature on items placed on the Sort Line in Results. The Sort
Now feature initiates the sorting function immediately on items on the Sort
Line.

Syntax: Expressi on. Sort Now()

Expression Required: An expression that returns a SortItems collection.

Example: The following example shows you how to use the SortNow method for items
on the Sort Line in the Results section.

Act i veDocurent . Sections["Results"]. Sortltens. Sort Now()

SortNow (Method) 10-95

Spring (Method)

Applies To: Field object, Table object, ReportPivot collection, ReportChart collection,
Shapes collection

Description: Allows you to maintains relative vertical spacing between dynamic objects.
That is, you can "spring" one object to another so that if the first object is
moved, increased or diminished, the second object moves in the same flow.

Syntax: Expressi on. Spri ng(Nanme as String)
Expression Required: An expression that springs a report object.

Example: The following example shows you how to spring the the table object and
"smart" report objects.

Acti veDocurent . Sections["Report"] . Body. Tabl es[" Tabl e"]. Spring("Chart") Acti veDocum
ent. Sections["Report"].Body. Tabl es[" Tabl e"]. Spri ng("Pi vot")

10-96 Methods

SyncWithDatabase (Method)

Applies To: DataModel
Description: Causes a Data Model to synchronize itself with the underlying database tables.
Syntax: Expressi on. SyncW t hDat abase()

Expression Required: An expression that returns a Data Mdel object.

Example: The following example shows you how to synchronize a Data Model with the
database.

var MyDM = Acti veDocurent. Secti ons[" Dat anodel "] . Dat aMbdel
MyDM SyncW t hDat abase()

SyncWithDatabase (Method) 10-97

UnhideAll (Method)

Applies To: AxisLabels (XLabels, Ylabels, and ZLabels)

Description: Allows you to restore all hidden label value item(s) that are hidden through the
HideSelection and FocusSelection methods.

Syntax: Expr essi on. XLabel s. Unhi deAl | ()
Expression Required: An expression that unhides an AxisLabels item.

Example The following example shows you how to unhide all label value items on the
Xlabels.

Acti veDocunent . Sections["Al | Chart"]. XLabel s. Unhi deAl | ()

10-98 Methods

Unselect (Method)

Applies To: ControlsListBox

Description: Causes an item in a list box to be unselected whether it has been selected or
not.

Syntax: Expressi on. Unsel ect (1 ndex As Nunber)

Index is the nth itemin the ListBox (index based 1).

Expression Required: An expression that unselects a ListBox object.

Dependency The Multiple Select property must be enabled for the ListBox object in order to

use this method.

Example: In the following example, a listbox has been populated with four values, which
can all be selected and counted in a text box. The Unselect method has been
added for each of the four values and any out of bound values.

/1Selects all values in ListBoxl and perforns a count

var cnt = ListBoxl. Count
for (var i = 1; i <= cnt; i++)

{
Li st Box1. Sel ect (i)

Text Box1. Text =Li st Box1. Sel ect edLi st . Count
//Unselects first index val ue in ListBoxl
Li st Box1. Unsel ect (1)

Text Box1. Text =Li st Box1. Sel ect edLi st . Count
/] Unsel ects second index value in ListBox1l
Li st Box1. Unsel ect (2)

Text Box1. Text =Li st Box1. Sel ect edLi st . Count
//Unselects third index val ue in ListBoxl
Li st Box1. Unsel ect (3)

Text Box1. Text =Li st Box1. Sel ect edLi st . Count
//Unsel ects fourth index value in ListBoxl
Li st Box1. Unsel ect (4)

Text Box1. Text =Li st Box1. Sel ect edLi st . Count

Unselect (Method)

10-99

UnSpring (Method)

Applies To: Field object, Table object, ReportPivot collection, ReportChart collection,
Shapes collection

Description: Allows you to remove the relative vertical spacing between dynamic objects.
That is, you can "unspring” one object from another so that if the first object
was sprung (moved, increased or diminished), the second object moved in the
same flow.

Syntax: Expressi on. Unspring(Name as String)

Expression Required: An expression that unsprings a report object.

Example: The following example shows you how to spring and unspring a table and
chart object in the Body section.

Acti veDocurnent . Secti ons["Report"] . Body. Tabl es[" Tabl e"]. Spring("Chart")
Acti veDocurent . Sections["Report"].Body. Charts["Chart"]. UnSpri ng()

10-100 Methods

UseAlternateMetadatalLocation (Method)

Applies To: Connection
Description: Sets a alternate datasource for retrieving metadata information.
Syntax: Expressi on. UseAl t er nat eMet adat aLocat i on(Val ue As

Bool ean, [MetadataCce As String])
Expression Required: An expression that returns a Connection object.

Example: The following example shows you how to change the metadata location for the
current Data Model.
var MyDM = Acti veDocument. Secti ons[" Dat aMbdel "] . Dat aMbdel

var MyOCE = "c:\\OCEs\\ Met aOr acl e. oce"
MyDM Connect i on. UseAl t er nat i eMet adat aLocat i on(true, MyOCE)

UseAlternateMetadataLocation (Method) 10-101

Write (Method)

Applies To: Console

Description: Prints the output text specified by the OutputData parameter to the console
window.

Syntax: Expression. Wite(CQutputData As Val ue)

Expression Required: An expression that returns a Console object.

Example: The following example shows you how to print the names of document
sections on a single line.
Consol e. Wite(Acti veDocument. Name +"'s sections are: ")

for (j=1; j < ActiveDocunent. Sections. Count; j++)
Consol e. Wite(ActiveDocurment. Sections[j].Nane + ", ")

10-102 Methods

Writeln (Method)

Applies To: Console

Description: Prints the output text specified by the OutputData parameter to the console
window and puts a new line after the inserted text.

Syntax: Expression. Witel n(Qut put Data As Val ue)
Expression Required: An expression that returns a Console object.

Example: The following example shows you how to print the names of document
sections on individual lines.
Consol e. Witel n(Acti veDocunment . Name +"'s sections are: ")

for (j=1; j < ActiveDocunment. Sections. Count; | ++)
Consol e. Witeln("Section #"'+ +" =" +ActiveDocunent. Sections[j]. Nane)

Writeln (Method) 10-103

10-104 Methods

Properties

A property stores information and can be used to change a document. This

chapter provides an alphabetical reference to the properties available for
Product Name Variable objects.

Object properties are simple string, numeric or true/false statements that can

be set or read. For example, a section has a property called Name. Name can be

set simple by assigning a string value; or read by assigning Name to a variable.

An object tracks its properties. Properties can be:

Read-only—A designer can access the value, but cannot change the data.

Read-Write—A designer can access or change the value. Changing a
property affects actions. For example, changing a toolbar property can
make it visible or not visible.

Object properties can be accessed directly by using a name or index as in the

following examples:

By name using [“ “] ora.
By index using [|
Use . when accessing a known object property

Use [] when accessing elements within a collection.

11-1

Active (Property)

Applies To: ChartSection, DataModelSection, Document, EISSection,
OLAPQuerySection, PivotSection, PluginDocument, QuerySection, Section,
TableSection

Description: Section Object: Returns true if the section object refers to the current section;

otherwise, false.

Document Object: Returns true if the document object refers to the current
document; otherwise, false.

Action: Read-only, Boolean
Example: The following example shows you how to find the active section in the
document.

var SectionCount = ActiveDocunent. Sections. Count
for(j =1 ; j <= SectionCount ; j++)

i f(ActiveDocunent. Sections[j].Active == true)
Alert ("The Active section is "+ActiveDocunent. Sections[j].Nane)

11-2 Properties

AdaptiveState (Property)

Applies To: PluginDocument (Insight and Quickview Only)

Description: Returns the current Adaptive state mode to which plug-in belongs.

Action: Read-only

Constants: The BgAdaptiveState constant group consists of the following values:
bqStateAnalyzeOnly

bqgStateAnalyzeProcess
bqgStateDataModelAnalyze
bgStateNormal
bgStateQueryAnalyze
bqStateViewOnly

bqStateViewProcess

Example: The following example shows you how to use the AdaptiveState property to
conditionally execute certain scripts.

var CurState = ActiveDocunent. AdaptiveState

if(CurState == bgStateAnal yzeOnly || CurState == bqStateVi ewOnly)
ActiveDocurent. Sections["Start Here"].Activate()

el se
Acti veDocunent. Sections["Query"]. Activate()

AdaptiveState (Property) 11-3

Alignment (Property)

Applies To: Column object, Shape object
Description: Returns or sets the horizontal alignment of the text in a column or shape.
Action: Read-write
Constants: The BqHorizontalAlignment constant group consists of the following values:
bqAlignCenter
bgAlignLeft
bgAlignRight
Example: The following example shows how to change the horizontal alignment of text

in a column.

var MyResul t s=Acti veDocunent. Secti ons[" Sal esResul ts"]
var Col Count = MyResul ts. Col ums. Count
for (j =1 ,; j <= Col Count ; j++)
if (MyResults.Colums[j].DataType == bqgDataTypeString)
MyResul ts. Col ums[j].Ali gnment = bgAlignLeft
el se
M/Resul ts. Col ums[j]. Al ignment = bgAlignRi ght

11-4 Properties

AllowNonJoinedQueries (Property)

Applies To:

Description:

Action:

Example:

Act i veDocunent .
Act i veDocunent .
Act i veDocunent .
Act i veDocunent .

true

Act i veDocunent .

Connection

Returns or sets the value of a connection objects AllowNonJoinedQueries

property. Setting AllowNonJoinedQueries equal to true allows queries with
nonjoined topics to be processed.

Read-write, Boolean

The following example opens a connection file named, SQL.oce, sets the
username and password, changes the connection file to support nonjoined

topics, and connects to the data source.

Sections[" Query"]. Dat aMbdel
Sections[" Query"]. Dat aMbdel
Sections[" Query"]. Dat aMbdel
Sections[" Query"]. Dat aMbdel

Sections[" Query"]. Dat aMbdel

. Connection
. Connection
. Connection
. Connection

. Connection

. Open("c:\\OCEs\\ SQ.. oce")

.Usernanme = "brio"

. Set Password("bri obri o")
. Al'l owNonJoi nedQueries =

. Connect ()

AllowNonJoinedQueries (Property)

11-5

API (Property)

Applies To: Connection
Description: Returns or sets the value of the API associated with a connection file.
Action: Read-write

Constants: The BgApi constant group consists of the following values:
bqApiCTLib
bqApiEssbase
bgApiMetaCube
bqApiNone
bgApiODBC
bqApiOLEDB
bgApiOpenClient
bgApiOracleExpress6
bgApiPersonalOracleExpress5
bqApiSQLNet

Example: The following example shows you how to create a connection file from scratch
and save it to a local file.

var nyCon

myCon = Application. Creat eConnection()

myCon. Api =bgApi SQLNet

myCon. Dat abase = bgDat abaseSQ.Ser ver

myCon. Host Nane ="Pl ut oSQLSVR'

myCon. SaveAs(" C:\\ Program Fi | es\\ Bri o\\Bri oQuery\\ Program\ Qpen Cat al og

Ext ensi ons\\ Pl ut o0SQ.. oce")

// Now use this connection in a datanodel

Acti veDocurent . Secti ons[" Sal esQuery"] . Dat aMbdel . Connecti on. Open(" C:\\ Program
Files\\Brio\\BrioQuery\\Program\ Open Catal og Extensions\\PlutoSQL. oce")

11-6 Properties

AutoAlias (Property)

Applies To: Data Model

Description: Returns or Sets the value of a Data Model AutoAlias property.

Action: Read-write, Boolean

Example: The following example shows you how to activate AutoAliasing and
AutoJoining.

Act i veDocurent . Sections[" Query"]. Dat aMbdel . Aut oAli as = true
Act i veDocurent . Sections[" Query"]. Dat aMbdel . Aut oJoin = true

AutoAlias (Property) 11-7

AutoCommit (Property)

Applies To:

Description:

Action:

Example:

var nyCon
= Application. Creat eConnection()
. Api =bgApi SQLNet

myCon
myCon
myCon
myCon
myCon
myCon

. Dat abase
. Host Nane

. Aut oConmi t
. SaveAs("C\\ Program Fil es\\ Bri o\\Bri oQuery\\ Program \ OCpen Cat al og

Ext ensi ons\\ Pl ut o0SQ.. oce")

// Now use this connection in a datanodel

Acti veDocurent . Secti ons[" Sal esQuery"] . Dat aMbdel . Connecti on. Open(" C:\\ Program
Files\\Brio\\BrioQuery\\Program\ Open Catal og Extensions\\PlutoSQL. oce")

Connection

Returns or sets the value of a connection object Autocommit property. Set this
property to false if your database does not support Autocommit.

Read-write, Boolean

The following example shows you how to create a connection from scratch
and save it to a local file.

bgDat abaseSQ.Ser ver
"Pl ut 0SQLSVR'
= fal se

11-8

Properties

AutoFrequency (Property)

Applies To: XaxisLabel

Description: Returns or sets the value of a chart objects’ AutoFrequency object. This
property enables/disables the chart function to choose automatically the
display frequency on the X-axis.

Action: Read-write, Boolean

Example: The following example shows you how to change a chart X-axis to support
Auto Frequency.

Act i veDocunent . Sections["Chart"]. Label sAxi s. XAxi s. Aut oFrequency = true

AutoFrequency (Property) 11-9

Autolnterval (Property)

Applies To: LeftAxis

Description: Returns or sets the value of a chart objects AutoInterval property. This
property enables/disables the chart function to choose automatically the data
interval on the left axis.

Action: Read-write, Boolean

Example: The following example shows you how to change a charts left-axis to support
auto interval.

Acti veDocunent . Sections["Chart"]. Val uesAxi s. Left Axi s. Autolnterval = true

11-10 Properties

Autoloin (Property)

Applies To: Data Model

Description: Returns or sets the value of a Data Model objects AutoJoin property. This
property enables/disables the Data Model function to create automatic joins
between topics that are added to it.

Action: Read-write, Boolean
Example: The following example shows you how to turn on Auto Aliasing and Auto
Joining.

Act i veDocurent . Sections[" Query"]. Dat aMbdel . Aut oAli as = true
Act i veDocurent . Sections[" Query"]. Dat aMbdel . Aut oJoin = true

AutoJoin (Property) 11-11

AutoProcess (Property)

Applies To: QuerySection

Description: Returns or sets the value of a Query Section objects AutoProcess property.
This property enables/disables a query’s ability to automatically process itself
when it is opened or downloaded from the repository.

Action: Read-write, Boolean

Example: The following example shows you how to enable AutoProcess.

Acti veDocurnent . Sections[" Query"]. Aut oProcess = true

11-12 Properties

AutoScale (Property)

Applies To: LeftAxis, RightAxis

Description: Returns or sets the value of a chart axis’s AutoScale property. This property
enables/disables a chart axis’s ability to automatically determine the best scale.

Action: Read-write, Boolean

Example: The following example enables Autoscaling on the left and right values axis.

Act i veDocunent . Sections["Chart"]. Val uesAxi s. Left Axi s. AutoScal e = true
Act i veDocunent . Sections["Chart"]. Val uesAxi s. R ght Axi s. AutoScal e = true

AutoScale (Property) 11-13

AvailableValues (Property)

Applies To: Limit

Description: Returns a collection of values that represent the entire list of valid criteria for a
limit.

Action: Read-only

Example: The following example shows you how to take every value from the

AvailableValues collection and add them to the SelectedValues collection. This
is essentially the same as performing a select all values and transferring the
selection in the Limit User Interface.

Lim tCount = ActiveDocunent. Sections["Results"].Limts[1].Avail abl eVal ues. Count
for (i=1;i<=LimtCount;i++)

M/Val = ActiveDocunent. Sections["Results"].Limts[1]. Availabl evVal ues[i]
Acti veDocurent. Sections["Resul ts"].Limts[1]. Sel ect edVal ues. Add(MyVal)
}

11-14 Properties

AxisPlotValues (Property)

Applies To: Line Chart Facts

Description: Returns or sets the axis plot value of each fact in a line Chart. This property
corresponds to the features on the Line Chart Axis Properties dialog box.

Action: Read-write

Constants: The BqChartAxisPlotValue constant group consists of the following values:
bqChartAxisPlotPrimary
bqChartAxisPlotSecondary
Example: The following example shows you how to set the axis plot value to the primary
or left axis.

Act i veDocurent . Sections["Chart"]. Facts["Unit_Sal es"] . Axi sPl ot Val ue=
bgChart Axi sPl ot Pri mary

AxisPlotValues (Property) 11-15

AxisType (Property)

Applies To: Categoryltems
Description: Returns an enumerated type that represents the type of axis (X, Y or Z).
Action: Read-only
Constants: The BqChartAxisType group consists of the following values:
bqChartXAxis
bqChartYAxis
bqChartZAxis
Example: The following code shows how to determine the type of chart axis.

swit ch(ActiveDocunment. Sections["Chart"]. XCat egori es. Axi sType)

case bqgChart XAxi s:
Alert("The axis is X)
Br eak

case bqgChart YAxi s:
Alert("The axis is Y)
Br eak

case bqChart ZAxi s:
Alert("The axis is 2)
Br eak

}

11-16 Properties

BackgroundAlternateColor (Property)

Applies To: Result object, Table object, ReportTable object
Description: Sets the background color of staggered (alternate) rows in a table.
Action: Read-write, BqColor Type
Constants: The BackgroundAlternateColor property uses the BqColorType constant
group, which consists of the following value.

bqAqua

bgBlack

bgBlue

bgBlueGray

bgBrightGreen

bgBrown

bgDarkBlue

bgDarkGreen

bgDarkRed

bgDarkTeal

bgDarkYellow

bqGold

bqGray40

bqGray50

bqGray80

bqGreen

bgIndigo

bqLavender

bqLightBlue

BackgroundAlternateColor (Property)

11-17

bqLightGreen
bgLightOrange
bqLightTurquoise
bqLightYellow
bgLime
bqOliveGreen
bqOrange
bgPaleBlue
bqgPink
bqPlum

bqRed
bqSeaGreen
bqSkyBlue
bqTan

bqTeal
bqTransparent
bqTurquoise
bqViolet
bqWhite
bqYellow

Example: The following example shows you to set the alternate background color of
every other row to yellow.

Acti veDocunent . Secti ons[" Resul ts"]. BackgroundAl t er nat eCol or = bqLi ght Yel | ow
Acti veDocunent . Secti ons[" Resul t s"]. BackgroundAl t er nat eFrequency = 1

11-18 Properties

BackgroundAlternateFrequency (Property)

Applies To: Result object, Table object, ReportTable object

Description: Defines how often alternate colored rows occur. For example, an alternate
color row can occur on every other row, or every third row.

Action: Read-write, Number

Example: The following example shows you how to set alternate colored row to occur on
every other row. It also changes the background alternate color to light yellow.

Act i veDocurent . Secti ons[" Tabl e2"] . Backgr oundAl t er nat eCol or = bqLi ght Yel | ow
Act i veDocurnent . Secti ons[" Tabl e2"] . Backgr oundAl t er nat eFrequency = 1

BackgroundAlternateFrequency (Property) 11-19

BackgroundColor (Property)

Applies To: Result object, Table object, ReportTable object
Description: Sets the background color of rows in a Table section.
Action: Read-write, BqColorType
Constants: The BackgroundColor property uses the BqColorType constant group, which
consists of the following value.

bqAqua

bgBlack

bgBlue

bgBlueGray

bgBrightGreen

bgBrown

bgDarkBlue

bgDarkGreen

bgDarkRed

bgDarkTeal

bgDarkYellow

bqGold

bqGray40

bqGray50

bqGray80

bqGreen

bgIndigo

bqLavender

11-20 Properties

Example:

bqLightBlue
bqLightGreen
bqgLightOrange
bqLightTurquoise
bqLightYellow
bgLime
bqOliveGreen
bqOrange
bgPaleBlue
bqgPink
bqPlum
bqRed
bqSeaGreen
bqSkyBlue
bqTan

bqTeal
bqTransparent
bqTurquoise
bqViolet
bqWhite
bqYellow

light green in the Table section.

Act i veDocurent . Secti ons[" Tabl e"]. BackgroundCol or = bqgLi ght Green

The following example shows you how to set the background color of rows to

BackgroundColor (Property)

11-21

BackgroundShowAlternateColor (Property)

Applies To: Result object, Table object, ReportTable object

Description: Sets the display of the alternate color property. That is, if you set this property
to "true," the ability to display alternate colored rows is enabled. If you set this
property to "false," alternated colored rows cannot be displayed.

Action: Read-write, Boolean

Example: The following example shows you how to disable the ability to display
alternate colored rows:

Acti veDocunent . Secti ons[" Tabl e2"] . Backgr oundShowAl t er nat eCol or = fal se

11-22 Properties

BeginLimitName (Property)

Applies To: Parentheses object

Description: When the Parentheses collection is invoked, this property sets the limit value
before which the beginning parentheses is inserted. This property is often used
in conjunction with the EndLimitName property.

Action: Read only. BeginLimitName as String

Example: The following example shows you how to display the name of the beginning
limit value enclosed in a parenthetical expression on the limit line:

Al ert (ActiveDocunent. Sections["Query"].Limts.Parentheses["State
Province, City"]. Begi nLi m t Nane)

BeginLimitName (Property) 11-23

BorderColor (Property)

Applies To: Result object, Table object, ReportTable object
Description: Sets the color of a table border.
Action: Read-write, BqColorType
Constants: The BorderColor property uses the BqColorType constant group, which
consists of the following value.

bqAqua

bgBlack

bgBlue

bgBlueGray

bgBrightGreen

bgBrown

bgDarkBlue

bgDarkGreen

bgDarkRed

bgDarkTeal

bgDarkYellow

bqGold

bqGray40

bqGray50

bqGray80

bqGreen

bgIndigo

bqLavender

11-24 Properties

bqLightBlue
bqLightGreen
bqgLightOrange
bqLightTurquoise
bqLightYellow
bgLime
bqOliveGreen
bqOrange
bgPaleBlue
bqgPink
bqPlum
bqRed
bqSeaGreen
bqSkyBlue
bqTan
bqTeal
bqTransparent
bqTurquoise
bqViolet
bqWhite
bqYellow
Exanpl e: The foll owi ng exanpl e shows you how to set the color of the table border

tored in a Table section.
Acti veDocunent . Secti ons[" Tabl e2"]. Border Col or = bgRed

BorderColor (Property) 11-25

BorderWidth (Property)

Applies To: Result object, Table object, ReportTable object

Description: Sets the width of a border in points.

Action: Read-write, Number

Example: The following example shows you how to set the border width to 4 points.

Acti veDocurent . Sections["Results"].BorderWdth = 3

11-26 Properties

BottomMargin (Property)

Applies To:

Description:

[] Note

Action:

Example:

ReportSection object

Sets the bottom margin of the report. Margins are set for the entire report.

When using this property and the SuspendCalculation property is set to true (which it is by
default), then you must use the Recalculate method to force the Report section to recalculate
itself.

Read-write, Number

The following example shows you how to set the bottom margin of the report
to .25 inches.

Act i veDocunent . Sections[" Report"].Bottomvargin = .25

BottomMargin (Property) 11-27

ChartType (Property)

Applies To: ChartSection

Description: Returns or sets the type of chart. This property controls which type of chart is

displayed in the chart section.

Action: Read-write

Constants: The BqChartType constant group consists of the following values:
bqChartTypeArea
bqChartTypeAreaLine
bqChartTypeBarLine

bqChartTypeClusterBar
bqChartTypeHorizontalBar
bqChartTypeHorizontalStackBar
bqChartTypeLine
bqChartTypeNone
bqChartTypePie
bqChartTypeRibbon
bqChartTypeStackArea
bqChartTypeVerticalBar
bqChartTypeVerticalStackBar

Example: The following example shows you how to change chart properties based on the

type of chart.

if (ActiveDocunent. Sections["Chart"]. Chart Type == bqChart TypeBar Li ne)

{

Acti veDocunent . Sections[" Chart"
Acti veDocunent . Sections[" Chart"
Acti veDocunent . Secti ons[" Chart"
Acti veDocunent . Secti ons[" Chart"

. BarLi neChart. d usterBy =

[R Y —y—

bgCl ust er ByZ

. BarLineChart.lgnoreNulls = fal se

. Bar Li neChart. ShiftPoints = bqShift Center

. Bar Li neChart. St ackCl uster Type = bgBar Li ned uster

11-28 Properties

Act i veDocunent . Sections["Chart"]. BarLi neChart. ShowBar Val ues = fal se

}

ChartType (Property) 11-29

Checked (Property)

Applies To: ControlsCheckBox, ControlsRadioButton
Description: Returns or sets the selection of a check box or radio button controls.
Action: Read-write, Boolean
Example: The following example shows you how to change the selection of a Radio
button or check box. This script assumes that you are running in the same EIS
as two controls: RadioButtonl, CheckBox1.
i f (Radi oButtonl. Checked ==true)
CheckBox1. Checked = fal se
el se
CheckBox1. Checked = true
11-30 Properties

Clusterby (Property)

Applies To: BarChart, BarLineChart
Description: Returns or sets the type of clustering used when displaying Bar or Bar Line
charts.

Action: Read-write

Constants: The BqClusterBarType constant group consists of the following values:
bqClusterByY
bqClusterByZ

Example: The following example shows you how to cluster the data according to the

values on the Z-axis.

Act i veDocurent . Sections["Chart"]. BarChart. C usterBy = bqCl usterByZ

Clusterby (Property) 11-31

Color (Prop

Applies To:

Description:

Action:

Constants:

Example:

erty)

Font, Fill, Line

Returns or sets the color of text associated with a font object. The color
property may be set using the values in the BqColorType constant group or by
using a hexadecimal number that represents a RGB color value.

Read-write

The following values are some of the values that are contained in the
BqColorType constant group. For a complete list see the
Product Name Variable object model Script Editor.

bqAqua
bgBlack
bgBlue
bBlueGray
bgBrightGreen
bgBrown
bgDarkBlue
bgDarkYellow
bqLightBlue
bgLightOrange
bqWhite
bqYellow

This example shows you how to set the color, width and dash style of the
border of an EIS text label box.

MyCol or = ActiveDocunent. Sections["ElIS"]. Shapes[" Text Label "]

MyCol or. Li ne. Col or
MyCol or. Li ne. Wdth

= bgRed
=4

MyCol or. Li ne. DashStyl e = bgDashSt yl eDot Dot Dash

11-32 Properties

ColumnType (Property)

Applies To:

Description:

Action:

Constants:

Example:

for (j =

col um?™)

Column

Returns a value that represents the type of Results or Table column. Possible
column types are: Normal, Computed, Date and Grouped.

Read-only

The BqColumnType constant group consists of the following values:
bqColumnNone
bqComputedColumn
bgDateColumn
bqGroupedColumn
bgStandardColumn

The following example shows you how to determine the column type in a
Results section.

1; j < = ActiveDocurent. Sections["Results"].Col ums. Count ;j ++)

M/Col = ActiveDocunent. Sections["Results"].Colum[j].
switch (MyCol . Type)

case bqConput edCol umm:

Alert ("The colum naned "+MyCol . Nane + "is a Conputed col um")
Br eak

case bqgDat eCol um:

Alert ("The colum named "+MyCol . Name + "is a Date col um")

Br eak

case bqG oupedCol umm:

Alert ("The colum naned "+M/Col . Nanme + " is a Grouped colum")
Br eak

case bqSt andar dCol umm:

Alert ("The colum nanmed "+MCol . Name + "" is a Standard

Br eak

ColumnType (Property) 11-33

Connected (Property)

Applies To: Connection

Description: Returns a value that represents the current connection status of a connection
object. Returns true if the user is connected to the data source; otherwise, false.

Action: Read-only, Boolean

Example: The following example shows how to check the connection status of a
connection object and prompt the user to connect.

var MyCon =ActiveDocument. Secti ons["Sal esQuery"] . Dat aMbdel . Connecti on
if (MyCon. Connected ==fal se)

if (Alert
("Do you want to connect to the database?", "Get Connected"," Yes"," No")==1)
MyCon. Connect ()

11-34 Properties

Count (Property)

Applies To:

Description:

Action:

Example:

var NunSecti ons

AxisLabels, Categoryltems, Columns. Controls, ControlsDropDown,
ControlsListBox, DMResults, Documents, Joins, Limits, LimitValues,
ListSelection, LocalJoins, LocalResults, LAPLabel, OLAPLabels,
OLAPMeasure, OLAPMeasures, OLAPSlicer, OLAPSlicers, PivotLabels,
PivotLabelValue, PivotLabelValues, RecentFiles, Repository, Requests,
Sections, Sorts, StoredProcedures, Toolbars, Topicltems, Topics

Returns a value that represents the number of items in a collection. The count
property is a standard property of all collections.

Read-only, Integer

The following example shows you how to determine the number of sections in
a document and the number of columns in a Results section.

Act i veDocunent . Secti ons. Count

var NumCol umms = Acti veDocument . Sections[" Resul ts"]. Col ums. Count

Count (Property) 11-35

CSSExport (Property)

Applies To: ReportSection object

Description: Sets the property to export an html page with a Style Sheet (CSS)

Action: Read-write, Boolean

Example: The following example shows you how to export the Style Sheet with the

report section.

Acti veDocurent . Sections["Report"].CSSExport = true

11-36 Properties

CurrentDir (Property)

Applies To: Application

Description: Returns a value that represents the working directory of the application. The
working directory specifies the path used by Product Name Variable when
using relative referencing.

Action: Read-write, String
Example: The following example shows you how to change the working directory of the
application.

D Note JavaScript treats “\” as a special character.

var MyDir = "c:\Docunent s\ Denpos\ JavaScri pt"
Application.CurrentDir = MyDi r

CurrentDir (Property) 11-37

CustomSQL (Property)

Applies To: Limit

Description: Returns or sets the value of the CustomSQL strings in a limit.

Action: Read-write, String

Example: The following example shows you how to set the value of the custom SQL for a
limit.

var SQLString = "SELECT Nane From Custonmers WHERE Cust_ID > 200"
Acti veDocunent . Sections["Query"].Limts[1].CustonSQ = SQ.String

11-38 Properties

CustomValues (Property)

Applies To: Limit

Description: Returns a collection of values that represent the entire list of custom values for
a limit.

Action: Read-only

Example: The following example shows you how to add all of the values from the

CustomValues collection to the SelectedValues collection. This is essentially
the same as performing a select custom values in the Custom Values list of the
Limit User Interface.

Li m t Count =

Act i veDocurent . Sections[" Sal esResul ts"]. Limts["Anmpunt Sal es"]. Cust onVal ues. Count
for (i=1;i<=LimtCount;i++)

{

MyVal =

Act i veDocurent . Sections[" Sal esResul ts"]. Limts["Amunt Sal es"]. Cust onVal ues.
Iten(i)

Act i veDocurent . Sections[" Sal esResul ts"].Limts["Amunt Sal es"]. Sel ect edVal ues.
Add(MyVal)

}

CustomValues (Property) 11-39

DashStyle (Property)

Applies To: Line
Description: Returns or sets the type of border style for a shape or control.
Action: Read-write
Constants: The BgDashStyle constant group consists of the following values:
bgDashStyleDash
bgDashStyleDot
bgDashStyleDotDash
bgDashStyleDotDotDash
bgDashStyleSolid
Example: The following example shows you how to change border color, width and the

dash style of a rectangle.

MyRect angl e = Acti veDocunent. Sections["ElI S"]. Shapes[" Rect angl e"]
MyRect angl e. Li ne. Col or = bqRed

MyRect angl e. Line.Wdth = 4

MyRect angl e. Li ne. DashStyl e = bgDashsSt yl eDot Dot Dash

11-40 Properties

Database (Property)

Applies To: Connection
Description: Returns or sets the name of the database vendor and version number.
Action: Read-write
Constants: The following values are some of the values that are contained in the

BqDataBase constant group. For a complete list see the
Product Name Variable object model Script Editor.

bgDatabaseAS400
bgDatabaseBroadbase
bgDatabaseDB2Olap
bgDatabaseEssbase6
bgDatabaseInformix7
bgDatabaseSQLServer7
bgDatabasenone
bgDatabaseODBC
bgDatabaseOracle8
bgDatabaseRedBrick5Warehouse
bgDatabaseSybaseSystem11

bgDatabaseTeraData

Database (Property)

11-41

Example: The following example shows how to create a new connection (OCE) from
scratch using JavaScript.

var nyCon

myCon = Application. Creat eConnection()

myCon. Api =bgApi SQLNet

myCon. Dat abase = bqgDat abaseSQLSer ver

myCon. Host Nane ="Pl ut oSQLSVR'

myCon. SaveAs(" C:\\ Program Fi | es\\ Bri o\\Bri oQuery\\ Program\ Qpen Cat al og

Ext ensi ons\\ Pl ut o0SQ.. oce")

// Now use this connection in a datanodel

Acti veDocurent . Secti ons[" Sal esQuery"] . Dat aMbdel . Connecti on. Open(" C:\\ Program
Files\\Brio\\BrioQuery\\Program\ Open Catal og Extensions\\PlutoSQL. oce")

11-42 Properties

Databaselist (Property)

Applies To: Connection, Sybase Only and SQL Server only

Description: Returns or sets the list of databases to which the OCE can connect..
Action: Read-write, String

Example:

var nyCon

myCon = Application. Creat eConnection()

myCon. Api =bgApi SQLNet

myCon. Dat abase = bqgDat abaseSQLSer ver

myCon. Host Nane ="Pl ut oSQLSVR'

myCon. Dat abaseli st = "nmaster, custoner, sales"

myCon. SaveAs(" C:\\ Program Fi | es\\ Bri o\\Bri oQuery\\ Program\ Qpen Cat al og
Ext ensi ons\\ Pl ut oSQ.. oce"

// Now use this connection in a datanodel
Act i veDocurent . Secti ons[" Sal esQuery"] . Dat aMbdel . Connecti on. Open(" C:\\ Program
Files\\Brio\\BrioQuery\\Program\ Open Catal og Extensions\\PlutoSQL. oce")

DatabaselList (Property)

11-43

DatabaseName (Property)

Applies To: DMCatalogltem

Description: Returns the name of the database associated with a table in the table catalog.

Action: Read-only

Example: The following example prints out the name of the database for each table in the
Table Catalog.

var Tabl eCatal og = ActiveDocunent. Secti ons["Sal esQuery"] . Dat aMbdel . Cat al og
var Tabl eCount = ActiveDocunent. Tabl eCat al og. Cat al ogl t ens. Count

for (j=1;j<=Tabl eCount;j ++)

Consol e. Witeln (Tabl eCat al og. Cat al ogl tens[j]. Nane)

11-44 Properties

DataFunction (Property)

Applies To: Chart and Pivot Facts

Description: Returns aggegrate values which summarize groupings of data when applied to
Chart and Pivot facts. In the user interface, data functions are available from
the right-click menu and Chart and Pivot menus only ifa fact value is selected.
Data functions are particularly useful when you need to show the kind of value
represented in the Chart and Pivot report. For example, you can show the
total sale, average sale, and maximum sale of each product by Quarter. The
supported data functions for Pivot and Chart Facts are:

Sum (default function)
Average

Count

Maximum

Minimum

Percent Grand

Percent Column
Percent Row

Null Count

Non-Null Count

Action: Read-only

DataFunction (Property) 11-45

Constants:

Example:

The DataFunction property uses the BqDataFunction constant. The
BqDataFunction constant consists of the following values:

bgDataFunctionAverage

bgDataFunctionCount

bgDataFunctionIncrease (Pivot Totals properties, not Facts)
bgDataFunctionMaximum

bgDataFunctionMinimum

bgDataFunctionNone
bgDataFunctionNonNullAverage
bgDataFunctionNonNullCount
bgDataFunctionNullCount
bgDataFunctionPercentOfColumn
bgDataFunctionPercentOfRow
bgDataFunctionPercentofGrand (For Totals, not Facts)

bgDataFunctionSum

The following example shows you how to set the "Product Line" TopLabels
column in the Pivot section to the average data function.

Acti veDocunent . Secti ons[" Sal esPi vot"]. TopLabel s["Product Line"].Totals[2].
Dat aFuncti on=bqgDat aFuncti onAver age

11-46

Properties

DataType (Property)

Applies To: Column, Request
Description: Returns the data type associated with an object.
Action: Read-only
Constants: The BgDataType constant group consists of the following values:
bgDataTypeDate
bqDataTypelnteger
bgDataTypeNone
bgDataTypeNumber
bgDataTypeString
Example: This script example returns the data type associated with all columns in a

Results section.

var Col Count = ActiveDocunent. Sections["Results"]. Col ums. Count

for (j =1 ; j <= Col Count ; j++)

{

Consol e. Witel n(ActiveDocument. Sections["Resul ts"].Colums[j]. Dat aType)

}

DataType (Property)

11-47

DBLibAllowChangeDatabase (Property)

Applies To: Connection

Description: DB-Lib Only. Returns or sets the value of the DBLibAllowChangeDatabase
property. Allows the user to change the database during login.

Action: Read-write, Boolean

Example: The following example shows how to create a new connection (OCE) from
scratch using JavaScript.

var nyCon

myCon = Application. Creat eConnection()
myCon. Api = bgApi Opend i ent

myCon. Dat abase = bqgDat abaseSQLSer ver
myCon. Host Nane ="Pl ut oSQLSVR'

myCon. DBLi bAl | owChangeDat abase = true
myCon. SaveAs("d: \\ OCEs\\ Pl ut oSQL. oce")

// Now use this connection in a datanopdel
Acti veDocurent . Sections[" Query"]. Dat aMbdel . Connecti on. Open
("d:\\ OCEs\\ Pl ut oSQ.. oce")

11-48 Properties

DBLibApiSeverity (Property)

Applies To: Connection

Description: DB-Lib only. Returns or sets the value of the DBLibApiSeverity property.
Changes the APT’s error level severity.

Action: Read-write, Long

Example: The following example shows how to create a new connection (OCE) from
scratch using JavaScript.

var nyCon

myCon = Application. Creat eConnection()
myCon. Api = bgApi Opend i ent

myCon. Dat abase = bqgDat abaseSQLSer ver
myCon. Host Name ="Pl ut o0SQLSVR"

myCon. DBLi bApi Severity = 2

myCon. SaveAs("d: \\ OCEs\\ Pl ut oSQL. oce")

// Now use this connection in a datanodel
Act i veDocurent . Secti ons[" Query"]. Dat aMbdel . Connecti on. Open
("d:\\ OCEs\\ Pl ut o0SQ.. oce")

DBLibApiSeverity (Property) 11-49

DBLibDatabaseCancel (Property)

Applies To: Connection

Description: DB-Lib only. Returns or sets the value of the DBLibDatabaseCancel property.
Changes the Database cancel options.

Action: Read-write

Constants: The BgDbLibCancelMode constant group consists of the following values:
bgDbLibCancel
bgDbLibLogoff
bgDbLibPrompt

Example: The following example shows how to create a new connection (OCE) from

scratch using JavaScript.

var nyCon

myCon = Application. Creat eConnection()
myCon. Api = bgApi Opend i ent

myCon. Dat abase = bqgDat abaseSQLSer ver
myCon. Host Nane ="Pl ut oSQLSVR'

myCon. DBLi bDat abaseCancel = bqDbLi bPronpt
myCon. SaveAs("d: \\ OCEs\\ Pl ut oSQL. oce")

// Now use this connection in a datanopdel
Acti veDocurent . Sections[" Query"]. Dat aMbdel . Connecti on. Open
("d:\\ OCEs\\ Pl ut oSQ.. oce")

11-50 Properties

DBLibPacketSize (Property)

Applies To: Connection

Description: DB-Lib only. Returns or sets the value of the DBLibPacketSize property.
Changes the packet size of the query.

Action: Read-write, Numeric

Example: The following example shows how to create a new connection (OCE) from
scratch using JavaScript.

var nyCon

myCon = Application. Creat eConnection()
myCon. Api = bgApi Opend i ent

myCon. Dat abase = bqgDat abaseSQLSer ver
myCon. Host Nane ="Pl ut oSQLSVR'

myCon. DBLi bPacket Si ze = 200

myCon. SaveAs("d: \\ OCEs\\ Pl ut oSQL. oce")

// Now use this connection in a datanodel
Act i veDocurent . Secti ons[" Query"]. Dat aMbdel . Connecti on. Open
("d:\\ OCEs\\ Pl ut o0SQ.. oce")

DBLibPacketSize (Property) 11-51

DBLibServerSeverity (Property)

Applies To: Connection

Description: DB-Lib Only. Returns or sets the value of the DBLibServerSeverity property.

Changes the Server’s error level severity.

Action: Read-write, Numeric

Example: The following example shows how to create a new connection (OCE) from
scratch using JavaScript.

var nyCon

myCon = Application. Creat eConnection()

myCon. Api = bgApi Opend i ent

myCon. Dat abase = bqgDat abaseSQLSer ver

myCon. Host Name ="Pl ut oSQLSVR"

myCon. DBLi bSer ver Severity = 2

myCon. SaveAs("d: \\ OCEs\\ Pl ut oSQL. oce")

/| Now

use this connection in a datanodel

Acti veDocurent . Sections[" Query"]. Dat aMbdel . Connecti on. Open
("d:\\ OCEs\\ Pl ut oSQ.. oce")

11-52

Properties

DBLibUseQuotedldentifiers (Property)

Applies To: Connection
Description: DB-Lib Only. Returns or sets the value of the DBLibUseQuotedIdentifiers
property.

Enable or disable the use of quoted indentures when connecting via DB-Lib.
Action: Read-write, Boolean

Example: The following example shows how to create a new connection (OCE) from
scratch using JavaScript.

Var nyCon

myCon = Application. Creat eConnection()
myCon. Api = bgApi Opend i ent

myCon. Dat abase = bqgDat abaseSQLSer ver
MyCon. Host Name ="Pl ut oSQLSVR'

MyCon. DBLi bUseQuot edl dentifiers = true
MyCon. SaveAs("d:\\ OCEs\\ Pl ut oSQL. oce")

// Now use this connection in a datanopdel
Act i veDocurent . Secti ons[" Query"]. Dat aMbdel . Connecti on. Open
("d:\\ OCEs\\ Pl ut oSQ.. oce")

DBLibUseQuotedidentifiers (Property) 11-53

DBLibUseSQLTable (Property)

Applies To: Connection

Description: DB-Lib Only. Returns or sets the value of the DBLibUseSQLTable property. If
enabled the connection will use SQL to get tables.

Action: Read-write, Boolean

Example: The following example shows how to create a new connection (OCE) from
scratch using JavaScript.

var nyCon

myCon = Application. Creat eConnection()
myCon. Api = bgApi Opend i ent

myCon. Dat abase = bqgDat abaseSQLSer ver
MyCon. Host Name ="Pl ut 0SQLSVR'

MyCon. DBLi bUseSQLTabl e = true

myCon. SaveAs("d: \\ OCEs\\ Pl ut oSQL. oce")

// Now use this connection in a datanopdel
Acti veDocurent . Sections[" Query"]. Dat aMbdel . Connecti on. Open
("d:\\ OCEs\\ Pl ut oSQ.. oce")

11-54 Properties

Description (Property)

Applies To: Connection

Description: Returns or sets the description associated with an Open Catalog Extension
(OCE).

Action: Read-write, String

Example: The following example creates a connection file from scratch and then applies

it to the current document.

var nyCon = Application. Creat eConnecti on()

myCon. Description = "This OCE configures the connection via ODBC, to a SQ.Server
6.5 database named pluto."

myCon. Api = bgApi Opend i ent

myCon. Dat abase = bqgDat abaseSQLSer ver

myCon. Host Nane ="Pl ut oSQLSVR'

myCon. SaveAs("d: \\ OCEs\\ Pl ut oSQL. oce")

// Now use this connection in a datanodel
Act i veDocurent . Secti ons[" Query"]. Dat aMbdel . Connecti on. Open
("d:\\ OCEs\\ Pl ut o0SQ.. oce")

Description (Property) 11-55

Display (Property)

Applies To:

Description:

Action:

Constants:

Example:

CornerLabels , DataLabels

Returns the display value of a corner or data label. The Display property uses
the BqPivotLabelDisplay constant. Valid options for displaying the label are
side, top, both or none. The default corner label value is none.

Read-write, String

The BqPivotLabelDisplay constant group consists of the following values:
BqPivotLabelDisplayBoth
BqPivotLabelDisplayNone
BqPivotLabelDisplaySide
BqPivotLabelDisplayTop

The following example shows you how to return a corner label at the top of the
pivot report .

Acti veDocunent . Secti ons[" Sal esPi vot"]. Corner Label s.
Di spl ay=bqPi vot Label Di spl ayBot h

11-56

Properties

DisplayName (Property)

Applies To: Limit, Request, Topicltem

Description: Returns or sets the display name of one the objects listed above.

Action: Read-write, String

Example: The following example writes the names of all the topics and topic items to the

console window.

var Tcount = ActiveDocunent. Sections["Query"]. Dat aMdel . Topi cs. Count
for (j =1, j <= Tcount ; | ++)

var nyTopi ¢ = ActiveDocunent. Sections["Query"]. Dat aMbdel . Topi ¢cs[j]

Consol e. Witeln("Topic : "+nyTopi c. Physi cal Nane)

var TI Count =

Act i veDocument . Secti ons[" Query"]. Dat aMbdel . Topi cs[j] . Topi cl tens. Count
for (k =1 ; k <= TICount ; k ++)

{
var nyltem = Acti veDocunent. Sections["Query"]. Dat aModel .
Topics[j]. Topicltens[k]
Console. Witeln(" Item "+ nmyltem D spl ayNane)
}

DisplayName (Property) 11-57

Effect (Property)

Applies To: Font

Description: Returns or sets the font effect of text associated with a font object.

Action: Read-write

Constants: The BqFontEffect constant group consists of the following values:
bqFontEffectNone

bqFontEffectStrikeThrough
bqFontEffectSubScript
bqFontEffectSuperScript
bqFontEffectUnderline

Example: The following example changes the font effect of the text in a text label named,
Description.

Acti veDocurnent . Secti ons["El S2"] . Shapes[" Descri ption"]. Font. Ef fect =
bgFont Ef f ect Under | i ne

11-58 Properties

EnableAsyncProcess (Property)

Applies To: Connection

Description: Enable or disable asynchronous processing of a query associated with the
connection object.

Action: Read-write, Boolean

Example: The following example creates a connection file from scratch and then applies
it to the current document.

var nyCon = Application. Creat eConnecti on()

myCon. Description = "This OCE configures the connection via ODBC, to a SQ.Server
6.5 database named pluto."

myCon. Api = bgApi Opend i ent

myCon. Dat abase = bqgDat abaseSQLSer ver

myCon. Host Nane ="Pl ut oSQLSVR'

myCon. Enabl eAsyncProcess = true

myCon. SaveAs("d: \\ OCEs\\ Pl ut oSQL. oce")

// Now use this connection in a datanopdel
Act i veDocurent . Secti ons[" Query"]. Dat aMbdel . Connecti on. Open
("d:\\ OCEs\\ Pl ut o0SQ.. oce")

EnableAsyncProcess (Property) 11-59

Enabled (Property)

Applies To: Control, ControlsCheckBox, ControlsCommandButton, ControlsDropDown,
ControlsListBox, ControlsRadioButton, ControlsTextBox

Description: Returns or sets the current state of a control object. If a control is disabled,
then you cannot access it by way of the EIS section. The control is shown in the
EIS section in a “grayed out or disabled state.

Action: Read-write, Boolean

Example: The following examples enables every shape and control object in an EIS
section named, EIS.

var El SSection = ActiveDocunent. Sections["El S"]
var ShapeCount = El SSecti on. Shapes. Count

for (j=1;j <= ShapeCount ;j ++)

{

El SSecti on. Shapes[j]. Enable = true
}

11-60 Properties

EnableTransActionMode (Property)

Applies To: Connection

Description: Returns or sets the value of the EnableTransactionMode property. If set to
true, transaction mode will be enabled for the OCE or current connection.

Action: Read-write, Boolean

Example: The following example creates a connection file from scratch and then applies
it to the current document.

var nyCon = Application. Creat eConnecti on()

myCon. Description = "This OCE configures the connection via ODBC, to a SQ.Server
6.5 database named pluto."

MyCon. Enabl eTransActi on = true

myCon. Api = bgApi Opend i ent

myCon. Dat abase = bqgDat abaseSQLSer ver

myCon. Host Nane ="Pl ut oSQLSVR'

myCon. SaveAs("d: \\ OCEs\\ Pl ut oSQL. oce")

// Now use this connection in a datanopdel
Act i veDocurent . Secti ons[" Query"]. Dat aMbdel . Connecti on. Open
("d:\\ OCEs\\ Pl ut o0SQ.. oce")

EnableTransActionMode (Property) 11-61

EndLimitName (Property)

Applies To: Parentheses object

Description: When the Parentheses collection is invoked, this property sets the limit value
after which the ending (closing) parentheses is inserted. This property is often
used in conjunction with the BeginLimitName property.

Action: Read only. EndLimitName as String

Example: The following example shows you how to display the name of the ending limit
value enclosed in a parenthetical expression on the limit line:

Al ert (ActiveDocunent. Sections["Query"].Limts.Parentheses["State
Province, City"]. EndLi mi t Name)

11-62 Properties

ExportWithoutQuotes (Property)

Applies To: PivotSection, ResultsSection, TableSection, OLAPQuerySection

Description: When exporting section data, enables or disables the double quotes
surrounding column/cell values containing real values. The default value is
disabled.

Action: Read-write, Boolean

Example 1: The following example exports Results to a tab delimited text file that retains

double quotes surrounding the Results column data.

Act i veDocurent . Sections["Resul ts"]. Export W t hout Quot es=f al se
Act i veDocurent . Sections["Resul ts"]. Export ("C:\ Tenp\ Export Test\ MFile",
bgExport For mat Text)

Example 2: The following example exports Results to a tab delimited text file without
double quotes surrounding the Results column data.
Act i veDocurent . Sections[" Resul t s"]. Export Wt hout Quot es=t r ue

Act i veDocurent . Sections["Resul ts"]. Export ("C:\ Tenp\ Export Test\ MFile",
bgExport For mat Text)

ExportWithoutQuotes (Property) 11-63

Filename (Property)

Applies To: Connection

Description: Returns the full name and path of the OCE file associated with the connection
object.

Action: Read-only, String

Example: The following example creates a connection file from scratch and then applies

it to the current document.

var nyCon = Application. Creat eConnecti on()

myCon. Description = "This OCE configures the connection via ODBC, to a SQServer
6.5 database nanmed pluto.". Api = bgApi Opend i ent

myCon. Dat abase = bgDat abaseSQ.Ser ver

myCon. Host Name ="Pl ut oSQLSVR"

myCon. SaveAs("d: \\ OCEs\\ Pl ut oSQL. oce")

/I Now use this connection in a

dat anodel Acti veDocument . Secti ons[" Query"]. Dat aMbdel . Connect i on. Open

("d:\\ OCEs\\ Pl ut o0SQ.. oce")

var OCEFi | ename = ActiveDocunent. Secti ons[" Query"]. Dat aMbdel . Connecti on. Fi | ename
Console. Wite ("Successfully opened the OCE naned : "+OCEFi | enane)

11-64 Properties

FilePath (Property)

Applies To: Picture Chart

Description: Sets the file name of a picture object.

Action: Read-write, Name

Example: The following example shows you how to set the file path name for the picture

entitled "report".

Act i veDocurent . Secti ons["Report"] . Body. Shapes["Picture"].FilePath =
"c:\\brio\\report. bnmp"

FilePath (Property) 11-65

FillUnderRibbon (Property)

Applies To: Area Chart

Description: If set to true, the area under the ribbon on an area chart is filled in.

Action: Read-write, Boolean

Example: The following example enables the FillUnderRibbion attribute of an area chart

for the section named “Sales Chart”.

var MyChart = ActiveDocunent. Sections["Sal es Chart"]
MyChart. AreaChart. Fill Under R bbon = true

11-66 Properties

Focus (Property)

Applies To:

Description:

Action:

Constants

Example:

Legend Collection

Returns or sets the focus of the legend on a selected chart axis type (X-axis, Y-
axis, or Z axis. This property uses the BqChartAxisType constant group.

Read only

The BqChartAxisType constant group consists of the following values:
BqChartXAxis
BqChartYAxis
BgXhartZAxis

The following example shows you how to change the chart axis type to the X-
axis category.

Act i veDocurent . Sections[" Chart"]. Legend. Focus=bgChart XAxi s

Focus (Property) 11-67

Formula (Property)

Applies To: Fields collection

Description: Sets a computable value for a Field item in the Report section. This property is
analogous to editing or entering a formula for a selected field in the
Expression bar.

Action: Read-write, String

Example: The following example shows you how to concatenate the name of the report
and the current date in the ReportName field.

Acti veDocunent . Sections[" Sal es Report"]. Report Header . Fi el ds[" Report Nanme
Field"].Fornmula = "Report Nanme() + ' '+ new Date()"

11-68 Properties

FullName (Property)

Applies To: Limit

Description: Returns or sets the value of limits full name. The full name may include the
topic, which it is associated with (Query and Data Model Limits only).

Action: Read-write, String

Example: The following example prints out the full names of all the limits in a query
section named “SalesQuery”.

var MyQuery = ActiveDocunment. Sections["Sal esQuery"]
var LimtCount = MyQuery. Limts. Count
for (j =1 ; j <= LimtCount ; j++)
Console. Witeln("Limt fullnanme is " + MyQuery.Limts[j]. Full Nane)

FullName (Property) 11-69

Group (Property)

Applies To: ControlsRadioButton

Description: Returns or sets the value of an EIS Radio buttons group property. Use the
group property to join together two or more Radio buttons.

Action: Read-only, String
Example: The following example shows you how to assign a group name to
radiobuttons.

Radi oBut t onl. Gr oup="Sal es"
Radi oBut t on2. Gr oup="Sal es"
Radi oBut t on3. Gr oup="Sal es"

11-70 Properties

Height (Property)

Applies To: PieChart

Description: Returns or sets the height properties of a specific Pie chart.

Action: Read-write, Numeric

Example: The following example shows you how to change the height of a pie chart in

the chart section named “Sales Pie Chart”.

var MyChart = ActiveDocunent. Sections[" Pie Chart"]
MyChart. Pi eChart. Hei ght = 10

Height (Property) 11-71

HorizontalAlignment (Property)

Applies To: TableFacts object
Description: Returns or sets the horizontal alignment of text in a table column. This
property corresponds to the features on the Alignment Properties dialog box.
Action: Read-write, BqHorizontalAlignment
Constants: The HorizontalAlignment property uses the BqHorizontalAlignment constant
group, which consists of the following values:
bqAlignCenter
bgAlignLeft
bgAlignRight
Example: The following example shows you how to align left the horitzontal text in the
"Unit Sales" column.
Act i veDocurent . Secti ons["Report"] . Body. Tabl es[" Tabl e"]. Facts["U
nit Sales"].Horizontal Ali gnment =bgAl i gnLeft
11-72 Properties

Hostname (Property)

Applies To: Connection

Description: Returns or sets the name of the datasource.

Action: Read-write, String

Example: The following example creates a connection file from scratch and then applies

it to the current document. The data source name in this example is
“PlutoSQLSVR” which is a user DSN using the SQL Server 6.5 driver.

var nyCon = Application. Creat eConnecti on()

myCon. Description = "This OCE configures the connection via ODBC, to a SQ.Server
6.5 database nanmed pluto.". Api = bgApi Opend i ent

myCon. Dat abase = bqgDat abaseSQLSer ver

myCon. Host Nane ="Pl ut oSQLSVR'

myCon. Enabl eAsyncProcess = true

myCon. SaveAs("d: \\ OCEs\\ Pl ut oSQL. oce")

// Now use this connection in a datanodel
Act i veDocurent . Secti ons[" Query"]. Dat aMbdel . Connecti on. Open
("d:\\ OCEs\\ Pl ut o0SQ.. oce")

Hostname (Property) 11-73

HTMLExportBreakCount (Property)

Applies To: PivotSection, ResultsSection, TableSection, OLAPQuerySection

Description: Enables users to set the number of rows per exported HTML page. The default
is 100. Setting the value to 0 causes the HTML pages to not break.

Action: Read-write, Number

Example 1: The following example retrieves the value of HTMLExportBreakCount.

var breakVal =Acti veDocunent . Secti ons["Pi vot"].
HTMLExport Br eakCount ;

Example 2: The following example sets the number of rows per HTML page to 1000.

Act i veDocurent . Secti ons[" Resul t s"=1000

11-74 Properties

Ignore (Property)

Applies To: Limit

Description: Returns or sets the value of a limits ignore property. If set to true, the limit is
not applied to the query to recalculate results.

Action: Read-write, Boolean

Example: The following example shows you how to temporarily ignore all the Data
Model limits prior to processing the query.

var MyQuery = ActiveDocunment. Sections["Query" MyDM = MyQuery. Dat aMbdel
var DMLi nmitCount = MyDM Linmits. Count
for (j =1 ; j <= DMLimitCount ; j++)
M/DM Limts[j].lgnore = true
// Assunmes you are already connected
MyQuery. Process()

Ignore (Property) 11-75

IgnoreNulls (Property)

Applies To: BarLineChart, LineChart

Description: Returns or sets the value of the IgnoreNulls property. If set to true, null values
will be ignored when displaying the chart.

Action: Read-write, Boolean

Example: The following example shows you how to set the Bar Line and Line charts to
ignore null values.
var MyChart = ActiveDocunent. Sections[“Chart”]

MyChart. Bar Li neChart.lgnoreNulls = true
MyChart. Li neChart.lgnoreNulls = true

11-76 Properties

IncludeNulls (Property)

Applies To: Limit

Description: Returns or sets the value of the IncludeNulls property. If set to true then null
values will be included as part of the limit.

Action: Read-write, Boolean

Example: The following example shows you how to set all the limits in the Data Model to
support null values.

var MyQuery = ActiveDocunent. Sections[“Query”]
var MyDM = MyQuery. Dat aMbdel
var DMLi nmitCount = MyDM Linmits. Count
for (j =1 ; j <= DMimtCount ; j++)
M/DM Limts[j].IncludeNulls = true
/1 Assunmes you are already connected
MyQuery. Process()

IncludeNulls (Property) 11-77

Index (Property)

Applies To: PivotLabel, PivotFact, Column
Description: Returns or sets the value of the index property.
Action: Read-write, PivotLabel and PivotFact

Read-only, Column

Example 1: The following example shows how to change the position of a PivotFact.

Acti veDocurnent . Sections[" Sal esPivot"]. Facts["Unit Sales"].|ndex=3

Example 2: The following example shows how to change the position of a Column.

Acti veDocurent . Sections[" Sal esResul ts"]. Col ums["Unit Sal es"].|ndex=3

11-78 Properties

IntervalFrequency (Property)

Applies To: LeftAxis

Description: Returns or sets the value of a chart’s left axis IntervalFrequency property.
Action: Read-write, Number

Example: The following example shows how to change the left axis to display the data in

intervals of 20,000.

Act i veDocunent . Sections["Al | Chart"].Val uesAxi s. Left Axi s. I nt erval Frequency=20000

IntervalFrequency (Property) 11-79

KeepWithNext (Property)

Applies To:

Description:

[] Note

Action:

Example:

PageHeader object, PageFooter object, ReportHeader object, ReportHeader
object, Body object

Returns or sets the value which instructs BrioQuery to keep bands within a
group together when paginating a report. If the lower band cannot also fit on
the page when the report is paginated, both bands will be moved to the
following page.

When using this property and the SuspendCalculation property is set to true (which it is by
default), then you must use the Recalculate method to force the Report section to recalculate
itself.

Read-write, Boolean

The following example shows you how to keep the body band together when a
page is paginated.

Acti veDocurent . Sections["Report"] . Body. KeepWt hNext = true

Recal cul at e()

11-80 Properties

KeepTogether (Property)

Applies To:

Description:

[] Note

Action:

Example:

PageHeader object, PageFooter object, ReportHeader object, ReportHeader
object, Body object

Returns or sets the value which instructs Brio Intelligence not to split a band
when a break is encountered. When a break is encountered, the entire band is
moved to the next page.

When using this property and the SuspendCalculation property is set to true (which it is by
default), then you must use the Recalculate method to force the Report section to recalculate
itself.

Read-write, Boolean

The following example shows you how not to split the page header bade when
a break is encountered in a report.

Act i veDocurnent . Secti ons[" Report"] . PageHeader . KeepToget her

Recal cul at e()

KeepTogether (Property) 11-81

LabelFrequency (Property)

Applies To: XAxis

Description: Returns or sets the frequency of labels displayed on a chart’s X-axis.

Action: Read-write, Number

Example: The following example shows how to change the frequency of when to display

the labels on the X-axis.

Acti veDocurent . Sections[" Chart"]. Label sAxi s. XAxi s. Label Frequency =3

11-82 Properties

LabelText (Property)

Applies To: LeftAxis, RightAxis, XAxisLabel, ZaxisLabel

Description: Returns or sets the value of the text associated with a chart Axis or label.
Action: Read-write, String

Example: The following example shows how to set the text for the different labels.
var MyChart = ActiveDocunent. Sections["Chart"]

MyChart. Val uesAxi s. Lef t Axi s. Label Text = "Left Axis"

MyChart. Val uesAxi s. Ri ght Axi s. Label Text = "Left Axis"

MyChart. Label sAxi s. XAxi s. Label Text = "Xaxi s"

MyChar t . Label sAxi s. ZAxi s. Label Text " Zaxi s"

LabelText (Property)

11-83

LastPrinted (Property)

Applies To: ChartSection, DataModelSection, EISSection, OLAPQuerySection,
PivotSection, QuerySection, ResultsSection, TableSection

Description: Returns a data object corresponding to the last date a section was printed. To
get the date value you will need to use the methods and properties of the Date
Object.

Action: Read-only, Date Object

Example: The following example shows how to print the date the document was last

printed to the console window.

Consol e. Witel n(Acti veDocunent . Sections["Pivot"].LastPrinted.toString())
Thu Jun 03 13:56:13 GMI-0700 (Pacific Daylight Tine) 2001

11-84 Properties

LastSaved (Property)

Applies To: Document, PluginDocument

Description: Returns a value corresponding to the date on which a document was last saved.
To get the date value you will need to use the methods and properties of the
Date Object.

Action: Read-only, Date Object

Example: The following example shows how to print the date the document was last

saved to the console window.

Consol e. Witel n(Acti veDocunent . Last Saved. toString())
Thu Jun 03 13:56:13 GMI-0700 (Pacific Daylight Tine) 2001

LastSaved (Property) 11-85

LastSQLStatement (Property)

Applies To: Document, PluginDocument

Description: Returns the last SQL statement generated by a query.

Action: Read-only

Example The following example shows you how to display the last SQLStatement

generated by a query in an Alert box.

Alert (ActiveDocunent. Sections["Query"].Last SQLSt atenent)

11-86 Properties

LeftMargin (Property)

Applies To:

Description:

[] Note

Action:

Example:

ReportSection object

Sets the left margin of the report. Margins are set for the entire report.

When using this property and the SuspendCalculation property is set to true (which it is by
default), then you must use the Recalculate method to force the Report section to recalculate
itself.

Read-write, Number

The following example shows you how to set the left margin of the report to
.25 inches.

Act i veDocunent . Sections["Report"].LeftMargin = .25

LeftMargin (Property) 11-87

LimitValueType (Property)

Applies To: Limit collection

Description: Returns or sets the value of the selected limit value set. That is, you can select
in advance whether to use the Available values (Show values) or Custom values
on the Limit dialog box.

Action: Read-write

Constants: The BgLimitValueType constant group consists of the following values:
bqLimitValueTypeAvailable
bqLimitValueTypeCustom
bgLimitValueTypeSQL
Example: The following example shows you how to select the custom values for the
second limit item on the Limit dialog.

Acti veDocurent . Sections["Query"].Limts[2].LimtValueType=bqLi m tVal ueTypeCust om

11-88 Properties

LogicalOperator (Property)

Applies To:

Description:

Action:

Constants:

Example:

Limit collection

Sets the value of the limit logical operator of each limit object. The limit
LogicalOperator property is ignored when only one limit value appears for the
particular section. The limit LogicalOperator property is also always ignored
for the first limit value when there is more than one limit value. If more than
one limit value appears in a particular section, then the LogicalOperator of the
second limit applies to the relationship between the first and second limit
values; the LogicalOperator of the third limit applies to the relationship
between the second and third limit values, and so on.

Read-write

The BqLogicalOperator constant group consists of the following values:
bgLogicalOperatorAND (default value)
bqLogicalOperatorOR

The following example shows you how to set the "OR" logical operator on a
limit object.

ActiveDocument.Sections["SalesQuery"].Limits["Year"].LogicalOperator=bqLogical OperatorOR

LogicalOperator (Property) 11-89

MarkerBorderColor (Property)

Applies To:

Description:

Action:

Constants:

Example:

Legend Collection

Returns or sets the color of a marker's border. A marker depicts an individual
data value or point that emerges in a cell.

Read-write

The following values are some of the values that are contained in the
BqColorType constant group. For a complete list see the
Product Name Variable object model Script Editor.

bqAqua
bgBlack
bgBlue
bBlueGray
bgBrightGreen
bgBrown
bgDarkBlue
bgDarkYellow
bqLightBlue
bqLightOrange
bqWhite
bqYellow

The following example shows you how to set the marker border color to blue.

Acti veDocurent . Sections["Al | Chart"].Legend.ltens["Unit Sal es"]. Line.
Mar ker Bor der Col or =bgBl ue

11-90

Properties

MarkerFillColor (Property)

Applies To: Legend Collection

Description: Returns or sets the fill color property of a marker. A marker depicts an
individual data value or point that emerges in a cell.

Action: Read-write

Constants: The following values are some of the values that are contained in the
BqColorType constant group. For a complete list see the
Product Name Variable object model Script Editor.

bqAqua
bgBlack
bgBlue
bBlueGray
bgBrightGreen
bgBrown
bgDarkBlue
bgDarkYellow
bqLightBlue
bqLightOrange
bqWhite
bqYellow

Example: The following example shows you how to set the marker fill color to green.

Act i veDocurent . Sections["Al | Chart"].Legend.ltens["Unit Sal es"]. Line.
Mar ker Fi | | Col or =bqGr een

MarkerFillColor (Property) 11-91

MarkerSize (Property)

Applies To: Legend Collection

Description: Returns or sets the size property of a marker. A marker depicts an individual
data value or point that emerges in a cell.

Action: Read-write, Number
Example: The following example shows you how to set the marker size property to six
points.

Acti veDocunent . Sections["Al I Chart"].Legend. |l tens["Unit Sal es"].Line.MarkerSi ze=6

11-92 Properties

MarkerStyle (Property)

Applies To: Legend Collection

Description: Returns or sets the style property of a marker, such as diamond-shaped,
circular, rectangular or triangular. A marker depicts an individual data value
or point that emerges in a cell.

Action: Read-write

Constants: The BgMarkerStyle constant group consists of the following values:
bgMarkerStyleCircle
bgMarkerStyleDiamond

bgMarkerStyleRectangle
bgMarkerStyleTriangle

Example: The following example shows you how to set the marker style property.

Act i veDocurent . Sections["Al | Chart"].Legend.ltens["Unit Sal es"]. Line.
Mar ker St yl e=bgMar ker Styl eTri angl e

MarkerStyle (Property) 11-93

MetadataPassword (Property)

Applies To: Connection

Description: Returns or sets the password used in the metadata connection.

Action: Read-write, String

Example: The following example creates a connection file from scratch and then applies

it to the current document. The data source name in this example is
“PlutoSQLSVR” which is a user DSN using the SQL Server 6.5 driver.

var nyCon = Application. Creat eConnecti on()

myCon. Description = "This OCE configures the connection via ODBC, to a SQ.Server
6.5 database named pl uto.

myCon. Api = bgApi Opend i ent

myCon. Dat abase = bqgDat abaseSQLSer ver

myCon. Host Nane ="Pl ut oSQLSVR'

myCon. Met adat aUser nanme = "bri o"

myCon. Met adat aPassword = "bri obri o"

myCon. UseAl t er nat eMet adat aLocat i on(true, c: \\ OCEs\\ Pl ut oMet a. OCE)
myCon. Enabl eAsyncProcess = true

myCon. SaveAs("d: \\ OCEs\\ Pl ut oSQL. oce")

// Now use this connection in a datanopdel
Acti veDocurent . Sections[" Query"]. Dat aMbdel . Connecti on. Open
("d:\\ OCEs\\ Pl ut o0SQ.. oce")

11-94 Properties

MetadataUser (Property)

Applies To: Connection

Description: Returns or sets the value of the username used to connect to the metadata data
source.

Action: Read-write, String

Example: The following example creates a connection file from scratch and then applies

it to the current document. The data source name in this example is
“PlutoSQLSVR” which is a user DSN using the SQL Server 6.5 driver.

var nyCon = Application. Creat eConnection()

myCon.

Description = "This OCE configures the connection via ODBC, to a SQ.Server

6.5 database named pl uto.

myCon.
myCon.
myCon.
myCon.
myCon.
myCon.
myCon.
myCon.

/ | Now

Api = bgApi Opend i ent

Dat abase = bgDat abaseSQ.Ser ver

Host Name ="Pl ut oSQLSVR"

Met adat aUser name = "bri 0"

Met adat aPassword = "briobri 0"

UseAl t er nat eMet adat aLocat i on(true, c: \\ OCEs\\ Pl ut oMet a. OCE)
Enabl eAsyncProcess = true

SaveAs("d:\\ OCEs\\ Pl ut oSQL. oce")

use this connection in a datanodel

Act i veDocurnent . Secti ons[" Query"]. Dat aMbdel . Connecti on. Open
("d:\\ OCEs\\ Pl ut o0SQ.. oce")

MetadataUser (Property) 11-95

MetaFileChoice (Property)

Applies To: Connection

Description: Returns or sets the value of the MetaData source from the Bqmeta0.ini file.

Action:

The metadata source is the name of the predefined metadata vendor.

Read-write, String

Example: The following example creates a connection file from scratch and then applies

it to the current document. The data source name in this example is
“PlutoSQLSVR” which is a user DSN using the SQL Server 6.5 driver.

var nyCon = Application. Creat eConnection()

myCon.

Description = "This OCE configures the connection via ODBC, to a SQ.Server

6.5 database named pl uto.

myCon.
myCon.
myCon.
myCon.
myCon.
myCon.
myCon.
myCon.
myCon.

/| Now

Api = bgApi Opend i ent

Dat abase = bgDat abaseSQ.Ser ver

Host Name ="Pl ut oSQLSVR"

Met adat aUser nanme" bri o"

Met adat aPassword = "briobri 0"

Met aFi | eChoi ce = "Broadbase"

UseAl t er nat eMet adat aLocat i on(true, c: \\ OCEs\\ Pl ut oMet a. OCE)
Enabl eAsyncProcess = true

SaveAs("d:\\ OCEs\\ Pl ut oSQL. oce")

use this connection in a datanodel

Acti veDocurent . Sections[" Query"]. Dat aMbdel . Connecti on. Open
("d:\\ OCEs\\ Pl ut oSQ.. oce")

11-96

Properties

MultiSelect(Property)

Applies To: ControlsListBox

Description: Returns or sets the value of the Multiselect property. If set to true, multiple
items may be selected from a list box control.

Action: Read-write, Boolean

Example: The following example shows you how to configure a list box to support
multiple user selections.

var M/EI'S = Acti veDocunent. Sections["ElI S"]
MYEI S. Shapes"Li stbox1"].Mil ti Sel ect = true

MultiSelect(Property) 11-97

Name (Property)

Applies To:

Description:

Action:

Example:

for (j =1;

i

Application, ChartSection, Column, Control, ControlsCheckBox,
ControlsCommandButton, ControlsDropDown, ControlsListBox,
ControlsRadioButton, ControlsTextBox, DataModelSection, DMCatalogltem,
DMResult, Document, EISSection, OLAPQuerySection, PivotLabelValue,
PivotSection, PluginDocument, QuerySection, ReportObjectContainer,
Repositoryltem, Section, SortItem, StoredProcedure, TableSection, Toolbar

Returns or sets the name of an object listed above.

Read-only, String

Application, Column, Control, ControlsCheckBox,
ControlsCommandButton, ControlsDropDown, ControlsListBox,
ControlsRadioButton, ControlsTextBox, PivotLabelValue, Toolbar

Read-write, String

ChartSection, DataModelSection, DMCatalogltem, DMResult, Document,
EISSection, OLAPQuerySection, , PivotSection, PluginDocument,
QuerySection, Section, TableSection

The following example prints a list of all the sections in a document to the
console.

<= ActiveDocunent. Sections. Count ; j ++)

Consol e. Witel n(ActiveDocunment. Sections[j]. Nane)

11-98 Properties

Negate (Property)

Applies To: Limit

Description: Returns or sets the value of the negate property. If negate is set to true then the
negation will be applied to the limit operator. For example, if a limit is set to
select only the values Equal to a criteria and the negate property is true, then
the values returned from the query will be NOT Equal to the criteria.

Action: Read-write, Boolean

Example: The following example shows you how to set the negate property of a limit.

var MyLimt = ActiveDocument. Sections["Query"].Linmts["State"]
MyLim t. Negate = true

Negate (Property) 11-99

NumberFormat (Property)

Applies To: Column

Description: Returns or sets the value of the number format property. Use this property to
format the data in a results or table column.

Action: Read-write, String

Example: The following example shows you how to apply currency number formatting
to data in the Results section.

Acti veDocunent . Secti ons[" Sal esResul ts"]. Col uims[" Anount Sal es"] .
Nunber For mat =" $#, ##0. 00"

11-100 Properties

ODBCDatabasePrompt (Property)

Applies To: Connection

Description: ODBC Only. Returns or sets the value of the ODBCDatabasePrompt property.
If set to true, users will be prompted to enter the name of the ODBC database.

Action: Read-write, Boolean

Example: The following example creates a connection file from scratch and then applies
it to the current document. The data source name in this example is
“PlutoSQLSVR” which is a user DSN using the SQL Server 6.5 driver.

var nyCon = Application. Creat eConnection()

myCon. Descri ption"This OCE configures the connection via ODBC, to a SQ.Server 6.5
dat abase nanmed pluto."

myCon. Api = bgApi Opend i ent

myCon. Dat abase = bqgDat abaseSQLSer ver

myCon. Host Name ="Pl ut o0SQLSVR"

myCon. ODBCDat abasePronpt = true

myCon. SaveAs("d: \\ OCEs\\ Pl ut oSQL. oce")

// Now use this connection in a datanopdel
Act i veDocurent . Secti ons[" Query"]. Dat aMbdel . Connecti on. Open
("d:\\ OCEs\\ Pl ut o0SQ.. oce")

ODBCDatabasePrompt (Property) 11-101

ODBCEnableLargeBufferMode (Property)

Applies To: Connection

Description: ODBC Only. Returns or sets the value of the ODBCEnableLargeBufferMode
property. If set to true, then ODBC connections will use Larger buffer mode.

Action: Read-write, Boolean

Example: The following example creates a connection file from scratch and then applies
it to the current document. The data source name in this example is
“PlutoSQLSVR”, which is a user DSN using the SQL Server 6.5 driver.

var myCon = Application. Creat eConnection()nyCon. Description = "This OCE confi gures
t he connection via ODBC, to a SQServer 6.5 database naned pluto."

myCon. Api = bgApi Opend i ent

myCon. Dat abase = bqgDat abaseSQLSer ver

myCon. Host Nane ="Pl ut oSQLSVR'

myCon. ODBCEnabl eLar geBuf f er Mode = true

myCon. SaveAs("d: \\ OCEs\\ Pl ut oSQL. oce")

// Now use this connection in a datanopdel
Acti veDocurnent . Sections[" Query"]. Dat aMbdel . Connecti on. Open
("d:\\ OCEs\\ Pl ut o0SQ.. oce")

11-102 Properties

ODSUsername (Property)

Applies To:

Description:

Action:

Example:

[] Note

WebClientDocument (Brio Insight & Brio Quickview Only)

Returns or sets the value of the username when connecting to the OnDemand
Server. This property only applies if a Web document has been saved to a local
file system. This property can be used to reconnect without prompting to
logon to the ODS.

Read-write, String

The following example shows you how to connect to the OnDemand server
from a script.

This script only applies to documents that have already been registered to the OnDemand
server and saved locally.

Act i veDocunent . ODSUser nane = "Bri o"
Act i veDocurnent . Set ODSPasswor d(" Bri oBri 0")

ODSUsername (Property) 11-103

Operator (Property)

Applies To: Limit

Description: Returns or sets the value of a limits operator. The operator is applied to the
limit criteria when executing a query or recalculating a results set. If the
operator is set to Equal, only the values, which are exactly equal to the limit
criteria, are returned or displayed.

Action: Read-write

Constants: The BqLimitOperator constant group consists of the following values:
bqLimitOperatorBeginsWith
bgLimitOperatorBetween
bqLimitOperatorContains
bqLimitOperatorCustomSQL
bgLimitOperatoEndsWith
bqLimitOperatorEqual
bqLimitOperatorGreaterThan
bgLimitOperatorGreaterThanOrEqual
bgLimitOperatorIsNull
bqLimitOperatorLessThan
bgLimitOperatorLessThanOrEqual
bgLimitOperatorLike

bgLimitOperatorNotEqual

11-104 Properties

Example: The following example shows you how to modify values of an existing results
limit.

MyLimt = ActiveDocunent. Sections["Results"].Limts[1]
//Clear all the values which are currently set

MyLim t. Sel ect edVal ues. RenoveAl | ()

/1 add new val ues to the sel ectedval ues coll ection
MyLim t. Sel ect edVal ues. Add(2000)

//Change the limt criteria

MyLim t. Operator = bgLi nitOperatorlLessThan

Operator (Property) 11-105

Orientation (Property)

Applies To:

Description:

[] Note

Action:

Constants:

Example:

ReportSection object

Returns the value of portrait (vertical) or landscape (horizontal) for the page
orientation of the printed report.

When using this property and the SuspendCalculation property is set to true (which it is by
default), then you must use the Recalculate method to force the Report section to recalculate
itself.

Read-only, String
The Orientation property uses the BqOrientation constant group, which
consists of the following values:

bqOrientationLandscape

bqOrientationPortrait

The following example shows you how to set the page orientation to
landscape:

Acti veDocunent . Sections["Report"].Orientation = bqOrientati onLandscape

11-106 Properties

Owner (Property)

Applies To: DMCatalogltem

Description: Returns the value of the database owner name associated with table in the table
catalog.

Action: Read-only, String

Example: The following example shows you how to write all the information about the

tables in the Table Catalog to the console window.
with (ActiveDocunent. Sections["Query"] . Dat aModel)

var Nunfabl es = Catal og. Cat al ogl t ens. Count
for (I =1 ; | <= Nunabl es ;| ++)
{
Qut put String "Dat abase Name =" + Catal og. Cat al ogltens[|]. Dat abaseNane
Qut put St ri ng Qutput String +": Database Omer=" + Catal og. Catal ogltens[I]. OQawner
Qut put St ri ng Qutput String +": Tabl e Name=" + Catal og. Catal ogltens[|]. Nane
Consol e. Witel n(QutputString)

}
}

Owner (Property) 11-107

PageBreak (Property)

Applies To:

Description:

[] Note

Action:

Constants:

Example:

PageHeader object, PageFooter object, ReportHeader object, ReportHeader
object, Body object

Returns or sets the value which instructs BrioQuery on where to page break in
the report. Note that a page break cannot be inserted before a report header
group or in the page header, body or page footer.

When using this property and the SuspendCalculation property is set to true (which it is by
default), then you must use the Recalculate method to force the Report section to recalculate
itself.

Read-only, Boolean

The PageBreak property uses the BqPageBreak constant group. This constant
group consists of the following values:

bqPageBreakBoth
bqPageBreakAfter
bqPageBreakBefore
bgPageBreakNone

The following example shows you how to insert a page break after the Report
Header group.

Acti veDocurent . Sections["Report"] . Report Header . PageBreak = bgPageBr eakAft er

11-108 Properties

Password (Property)

Applies To: ControlsTextBox

Description: Returns or sets the value of a text box’s password setting. If this property is
true, the text in the text box will be replaced with ****.

Action: Read-only, String
Example: The following example shows you how to set the password property on a text
box.

Act i veDocurnent . Sections["El S"]. Shapes[" Text Box1"]. Password = true

Password (Property) 11-109

Path (Property)

Applies To: Document, PluginDocument

Description: Returns a string containing the full path and name of the document.

D Note A plugin document name will be the temporary name and path of the document on the local
file system. For information about Web server path, refer to the URL property.

Action: Read-only, String

Example: The following example prints out the path information for all the open
documents to the console window.

for (j =1 ; j < = Documents.Count ; j++)\
Console. Witeln(Docunents[j].Name + is |ocated on +Docunments[j]. Path)

11-110 Properties

PathSeparator (Property)

Applies To: Application

Description: Returns the separator used by the operating systems file system.
Windows — “\
UNIX - </

Macintosh —

Action: Read-only, String
Example: The following example shows you how to use the path separator to build a
path.

var PS = Application. Pat hSepar at or
Al ert (PS)

PathSeparator (Property) 11-111

Pattern (Property)

Applies To: FillFormat object

Description: Returns or sets the background fill pattern of an object. The fill pattern refers
to the level of shading used in the background object.

Action: Read-only

Constants: The Pattern property uses the BqFillPattern constant group, which consists of
the following values:

bgFillPattern100
bqFillPattern25
bgFillPattern50
bgFillPattern75
bgFillPatternNone
Example: The following example shows you how to use the path separator to build a
path:
var PS = Application. Pat hSepar at or
var nyDir = "c:"+PS+"Docunent s" +PS+"Bri o Docs" +PS+" Sal es Reports"
Alert(nmyDir)

11-112 Properties

PhysicalName (Property)

Applies To: Topic, Topicltem

Description: Returns the actual name of the topic or topicitem. This name cannot be
changed through scripting or through the user interface.

Action: Read-only, String

Example: The following example writes the names of all the topics and topic items to the
console window.

var Tcount = ActiveDocunent. Sections"Query"]. Datalvbdel . Topi ¢s. Count
for (j = 1; j <= Tcount ; | ++)

var nyTopi ¢ = ActiveDocunent. Sections["Query"]. Dat aMbdel . Topi ¢cs[j]

Consol e. Witeln("Topic : "+nyTopi c. Physi cal Nane)

var TI Count =

Act i veDocument . Sections[" Query"]. Dat aMbdel . Topi cs[j] . Topi cl tens. Count

for (k =1 ; k <= TlICount ; k ++)

{

var nyltem = ActiveDocunent. Sections[" Query"]. Dat aMbdel . Topics[j]. Topi cltens[Kk]
Console. Witeln("Topic Item "+ myltem Physi cal Nanme)

}

}

PhysicalName (Property) 11-113

ProcessEventOrigin (Property)

Applies To: Document

Description: Identifies how the Process() event was initiated.

Action: Read-only

Constants: The BgRequestEventOriginType constant group consists of the following
values:

bgRequestEventOriginScript
bqRequestEventOriginMenu

bqRequestEventOriginToolbar

Example: The following example shows how to identify the origin of the process event.
Console. Witeln("Start OnPreProcess")

//determ ne process event origin
Consol e. Witeln("Process Event Oigin is: " + ActiveDocument. ProcessEvent Ori gin)

/lwite process event origin to the selected console technique
swi t ch(Acti veDocument . ProcessEvent Ori gi n)

{

case O:

Console. Witeln("Switch: Process Event Origin is 0, Menu")

br eak;

case 1:
Consol e. Witeln("Switch: Process Event Origin is 1, Tool bar")
br eak;

case 2:
Consol e. Witeln("Switch: Process Event Origin is 2, Script")
br eak;

defaul t:
br eak;

}

Consol e. Witel n("End OnPreProcess")

11-114 Properties

Prompt (Property)

Applies To: Limit

Description: Returns or sets the value of the text displayed on the limit dialog box.
Action: Read-write, String

Example: The following example shows you how to change the text displayed in a

variable limit.

var MyLimt = ActiveDocunment. Sections"Query"].Limts["State"]
MyLimt. VariableLimt = true
MyLimt. Prompt = "Please select a state fromthe |ist box bel ow. "

Prompt (Property) 11-115

QueryinProcess (Property)

Applies To:

Description:

Action:

Example:

Document

Identifies the name of the query being processed. This property is only
appropiate for use in the OnPreProcess() and OnPostProcess() events.

Read-only, String

The following example shows you how to display the name of the query being
processed in an Alert box.

Console. Witeln("Start OnPreProcess")
swi t ch(ActiveDocument . Queryl nProcess)
{
case "Query":
Alert("Query");
br eak;
case "Query2":
Alert ("Query2");
br eak;
case "OLAPQuery":
Al ert (" OLAPQuery");
br eak;
default: Alert("Default");
br eak;

}

11-116

Properties

QuerySize (Property)

Applies To: QuerySection

Description: Returns the estimated number of rows the current query will return if
processed.

Action: Read-only, Integer

Example: The following example shows you how to check the size of the query before

processing and ask the user if they want to process the query given the size.

var MyCon = ActiveDocunent. Sections"Query"]. DataMbdel . Connecti on
MyCon. User nanme = "Bri o"

My Con. Set Passwor d(" Bri oBri 0")

MyCon. Connect ()

var @S = ActiveDocunent. Sections["Query]. QuerySi ze

if (@ > 5000)

{
var Msg = "The query you are about to run, returns "+QS+ rows. "Are you sure
you want to continue?"
var retVal = Alert(Msg, Al ert, Yes, No)
if (retval == 1)
Acti veDocunent. Sections["Query"].Process()

QuerySize (Property) 11-117

RefreshData (Property)

Applies To:

Description:

[] Note

Action:

Constants:

Examplel :

PivotSection, ChartSection

You can set a separate refresh frequency for each Pivot and Chart in your
document. When the query is processed, reports are populated with data
according to their refresh frequencies. There are three methods available for
refreshing reports: After Process, OnActivate and Manually. These options are
mutually exclusive. An additional option, the RefreshDataNow method, is
only available when "Manually" is the selected option.

Refresh options are set on a per-report basis. For example, if you have ten Pivot reports that
you want to refresh when activated, you need to set the When Section Displayed option for
each report.

Read-Write

The BqRefreshData constant group consists of the following values:
bqRefreshDataAfterProcess
bgRefreshDataManually
bqRefreshDataOnActivate

In this example, a request is made to manually refresh the Pivot section, after
which an immediate refresh to the current section is invoked.

// Manual Refresh of Data
Acti veDocunent . Sections[" Pi vot"]. Ref reshDat a=bqRef r eshDat aManual | y
Acti veDocunent . Sections[" Pi vot"]. RefreshDat aNow()

11-118 Properties

Example 2: In example 2, a request is made to establish an automatic link to the Results
section to update the report whenever the query is processed.

/I Refresh Data After Processing
Act i veDocunent . Sections[" Pi vot"]. Ref reshDat a=bqRef r eshDat aAf t er Process

Example 3: In example 3, a request is made to refresh when the section is accessed and
displayed.

// Refresh Data Wen Section is D splayed
Act i veDocunent . Sections[" Pi vot"]. Ref reshDat a=bgRef reshDat aOnAct i vat e

RefreshData (Property) 11-119

ResetPrintProperties (Property)

Applies To: Application

Description: Provides users with the option to use the most current default print settings or
to use the documents original print settings. When ResetPrintProperties is
false (the default), the original default print settings are used for all sections of
the document. When ResetPrintProperties is true, the document uses the most
current default print settings.

D Note Unexpected print behavior may occur when this option is enabled in the user interface and
disabled through the object model in a document OnStartup script.

Action: Read-write, Boolean

Example: This example shows you how to set the SetPrintProperties to true.

Appl ication. Reset PrintProperties=true

11-120 Properties

RightMargin (Property)

Applies To:

Description:

[] Note

Action:

Example:

ReportSection object

Sets the right margin of the report. Margins are set for the entire report.

When using this property and the SuspendCalculation property is set to true (which it is by
default), then you must use the Recalculate method to force the Report section to recalculate
itself.

Read-write, Number

The following example shows you how to set the left margin of the report to
.25 inches.

Act i veDocunent . Sections["Report"].LeftMargin = .25

RightMargin (Property) 11-121

Rotation (Property)

Applies To: PieChart

Description: Returns or sets the value of a pie charts rotation. Use this property to change
the visual perspective of a pie chart.

Action: Read-write, Numeric

Example: The following example shows you how to change the rotation of a pie chart.

Acti veDocunent . Sections["Al |l Chart"].Pi eChart. Rot ati on=45

11-122 Properties

RowCount (Property)

Applies To: ResultsSection, TableSection

Description: Returns the number of rows in a results or table section.

D Note The number of rows in section can be affected by local limits. Consequently, this property does
not always equal the number of rowsreturned by a query. Use the QuerySize property to
determine the number of rows returned by a query.

Action: Read-only, Integer

Example: The following example shows you how to transfer a list of values from a table
column to a list box in an EIS section.

var RC = ActiveDocunent. Sections[" Tabl e"]. RowCount
for (J =1; j <= RC; j++)
{
var MyVal = ActiveDocunent. Sections["Table"].Colum["State"]. GetCell (j)
Act i veDocument . Secti ons["EI S"] . Shapes[" Li st Box1"]. Add(MyVal)

RowCount (Property) 11-123

RowLimit (Property)

Applies To: QuerySection, DataModelSection

Description: Sets the maximum of rows to be retrieved by a query against the Data Model.
This property corresponds to the Rows field on the General tab of the Data
Model Options dialog.

Action: Read-Write, Number

Example: The following example shows you how to set the row limit to 100 and then

process the query.

Acti veDocunent . Sections[" Query2"]. Dat aMbdel . RowLi mi t Active = true
Acti veDocunent . Secti ons[" Query2"]. DataMbdel . RowLimit = 100
Acti veDocurent . Sections[" Query2"]. Process()

11-124 Properties

RowLimitActive (Property)

Applies To: QuerySection, DataModelSection

Description: Returns the enable/disable for Row Limit setting property. This property
corresponds to the Return First field on the General tab of the Data Model
Options dialog.

Action: Read-only, Boolean

Example: The following example enables the Row Limit setting, sets the maximum

number of rows to retrieve, and processes the query.

Act i veDocunent . Sections[" Query2"]. Dat aMbdel . RowLi mi t Active = true
Act i veDocunent . Secti ons[" Query2"]. DataMbdel . RowLimit = 200
Act i veDocurent . Sections[" Query2"]. Process()

RowLimitActive (Property) 11-125

RowNumber (Property)

Applies To: ResultsSection, TableSection

Description: Returns the selected row in a Results/Table section. The RowNumber
property can be called from the OnRowDoubleClick event as well as from
within any other BQ event, including those in the EIS section,
Startup/Shutdown, and Custom Menu items. RowNumber is determined by
what row is selected in the Row/Table section. This property also applies to a
Results/Table section that is "actively" embedded in an EIS section when you
select a row from the embedded Results/Table. Selecting a Results/Table
section sets the RowNumber property to a number that represents the nth row
in the section. When no row is selected, the RowNumber property is reset to 0.

Action: Read-only, Integer

Example: The following example shows you how to display the RowNumber.

Alert (ActiveDocunent. Sections["Results"].RowNumber)

11-126 Properties

SaveResults (Property)

Applies To:

Description:

[] Note

Action:

Example:

QuerySection

Returns or sets the value of the “Save Results with document” options. Setting
this property equal to true will save the results of a query with the document.

Saving results with the document is performed on a query-by-query basis.

Read-write, Boolean

The following example shows you how to save the results with the query
section named “SalesQuery”.

Act i veDocurent . Secti ons[" Sal esQuery"]. SaveResul t s=true

SaveResults (Property) 11-127

SaveWithoutUsername (Property)

Applies To: Connection

Description: Returns or sets the value of the SaveWithoutUsername property. Setting this
property equal to true will NOT save the database username with the Open
Catalog Extension file.

Action: Read-write, Boolean

Example: The following example creates a connection file from scratch and then applies
it to the current document. The data source name in this example is
“PlutoSQLSVR”, which is a user DSN using the SQL Server 6.5 driver.

var nyCon = Application. Creat eConnection()

myCon. Description = "This OCE configures the connection via ODBC, to a SQ.Server
6.5 database named pluto."

myCon. Api = bgApi Opend i ent

myCon. Dat abase = bqgDat abaseSQLSer ver

myCon. Host Nane ="Pl ut oSQLSVR'

myCon. Enabl eAsyncProcess = true

myCon. SaveW t hout User name = true

myCon. SaveAs("d: \\ OCEs\\ Pl ut oSQL. oce")

// Now use this connection in a datanopdel
Acti veDocurent . Sections[" Query"]. Dat aMbdel . Connecti on. Open
("d:\\ OCEs\\ Pl ut o0SQ.. oce")

11-128 Properties

ScaleMax (Property)

Applies To: LeftAxis, RightAxis

Description: Returns or sets the maximum scale values for the right and/or left chart axis.
Action: Read-write, Numeric

Example: The following example shows you how to change the maximum scale of left

and right chart axes.

Act i veDocunent . Sections["Al | Chart"]. Val uesAxi s. Lef t Axi s. Scal eMax=2000000
Act i veDocunent . Sections["Al | Chart"]. Val uesAxi s. Ri ght Axi s. Scal eMax=2000000

ScaleMax (Property) 11-129

ScaleMin (Property)

Applies To: LeftAxis, RightAxis

Description: Returns or sets the minimum scale values for the right and/or left chart axes.
Action: Read-write, Numeric

Example: The following example shows you how to change the minimum scale of a left

and right chart axis.

var MyChart = ActiveDocunent. Sections["Chart"]
MyChart. Val uesAxis. Left Axis. ScaleMn = 25
MyChart. Val uesAxi s. R ght Axi s. ScaleMn = 25

11-130 Properties

ScaleX (Property)

Applies To: Picture object

Description: Sets the horizontal scale of a picture object.This property corresponds to the
Percent Scale Width field on the Picture Properties screen.

Action: Read-write, Numeric
Example: The following example shows you how to reduce the width of the picture by
50%.

Act i veDocurent . Secti ons[" Report"] . Body. Shapes["Picture"]. Scal eX = 50

ScaleX (Property) 11-131

ScaleY (Property)

Applies To: Picture object

Description: Sets the vertical scale of a picture object. This property corresponds to the
Percent Scale Height field on the Picture Properties screen.

Action: Read-write, Numeric
Example: The following example shows you how to increase the width of the picture by
50%.

Acti veDocurnent . Sections["Report"] . Body. Shapes["Picture"]. Scal eY = 150

11-132 Properties

Scrollable (Property)

Applies To: ControlsTextBox

Description: Returns or sets the value of the textbox’s scrollable property. Setting this
property to true will enable vertical scrolling of text in the Text box control.

Action: Read-write, Boolean

Example: The following example shows you how to change the properties of a text box.

Act i veDocurnent . Sections["El S"]. Shapes[" Text Box1"]. Scrol | abl e= true

Scrollable (Property) 11-133

ScrollbarsAlwaysShown (Property)

Applies To: EISSection

Description: Provides the option of having scrollbars always showing for embedded section
objects. This property does not apply to hyperlinked embedded section objects
or view-only embedded sections with auto-sizing enabled.

The default setting, show scrollbars after the embedded section is selected, is

false.
Action: Read-write, Boolean
Example: The following example shows how to enable embedded section objects to

always show scrollbars.

Acti veDocurnent . Sections["El S"]. Shapes["Chart 1"]. Scrol | bar sAl waysShown=t r ue

11-134 Properties

Selectedindex (Property)

Applies To: ControlsDropDown

Description: Returns or sets the selections index in a dropdown control. Setting this value
will cause the dropdown to change its selection.

Action: Read-write, Integer

Example: The following example shows you how to display the number of the selected
item in an Alert dialog box.

I ndex=Acti veDocunent. Secti ons["El S2"] . Shapes[" Dr opDownl"] . Sel ect edl ndex=3
Alert ("The user selected " + String(lndex))

SelectedIndex (Property) 11-135

Shadow (Property)

Applies To: Picture object

Description: Sets the value to display a drop-shadow to a line or shape so that objects
appear as three-dimensional. This property corresponds to the Shadow field
on the Borders and Background screen in the user interface.

Action: Read-write, Boolean

Example: The following example shows you how to set the shadow property to the
picture object.

Acti veDocurent . Sections["Report"] . Body. Shapes["Picture"]. Shadow = true

11-136 Properties

ShiftPoints (Property)

Applies To: BarLineChart

Description: Returns or sets the value of the BarLine chart’s ShiftPoints property.

Action: Read-write

Constants: The BgBarLineShift constant group consists of the following values:
bgShiftCenter
bqShiftLeft

Example: The following example shows you how to change a Bar Line charts shift points.

Act i veDocunent . Sections["Al | Chart"] . BarLi neChart. Shi ftPoi nt s=bqShiftLeft

ShiftPoints (Property) 11-137

Show3DO0bjects (Property)

Applies To: ChartSection

Description: Returns or sets the value of the chart sections Show3DObjects property.
Setting this property to true will display charts using 3D objects, setting it to
false will display charts using 2D objects.

Action: Read-write, Boolean

Example: The following example shows you how to change a chart to display 3D objects.

Acti veDocurnent . Sections"Chart"]. Show3dDObj ects = true

11-138 Properties

ShowAdvanced (Property)

Applies To: Connection

Description: Returns or sets the Show advanced options property of a connection file.
Setting this property to true will enable the advanced properties dialog in the
OCE wizard.

Action: Read-write, Boolean

Example: The following example shows you how to set the advanced property.

Act i veDocurent . Secti ons[" Query"]. Dat aMbdel . Connecti on. Open

("d:\\ OCEs\\ Pl ut o0SQ.. oce")

Act i veDocunent . Secti ons[" Query"]. Dat aModel . Connect i on. ShowAdvanced = true
Act i veDocurent . Secti ons[" Query"]. Dat aMbdel . Connecti on. Save()

ShowAdvanced (Property) 11-139

ShowAllPositive (Property)

Applies To: PieChart

Description: Returns or sets the ShowAllPositive Property for Pie charts. Setting this
property to true will display all values (both positive and negative) as positive
when displaying a pie chart.

Action: Read-write, Boolean

Example: The following example shows you how to display all the values as positive
values in a pie chart.

var MyChart = ActiveDocunment. Sections["Sales Pie Chart"]
MyChart. Pi eChart. ShowAl | Positive = true

11-140 Properties

ShowBackPlane (Property)

Applies To: ChartSection

Description: Returns or sets the ShowBackPlane property of a chart. Setting this property
equal to true will cause charts to display a back plane.

Action: Read-write, Boolean
Example: The following example shows you how to display the back plane in a chart
section.

var MyChart = ActiveDocunent. Sections["Sal es Chart"]
MyChart . ShowBackPl ane = true

ShowBackPlane (Property) 11-141

ShowBarValues (Property)

Applies To: BarChart, BarLineChart

Description: If set to true data values are displayed on the tops of individual bars in Bar and
Bar Line Charts.

Action: Read-write, Boolean

Example: The following example shows you how to display the values on top of the bars
in bar and bar line charts.

var MyChart = ActiveDocunent. Sections["All Chart"]
MyChart . Bar Chart . ShowBar Val ues = true

11-142 Properties

ShowBorder (Property)

Applies To: ChartSection

Description: Returns or sets a charts ShowBorder property. Setting this property equal to
true will display a border around a chart.

Action: Read-write, Boolean

Example: The following example shows you how to display the chart border.

var MyChart = ActiveDocunent. Sections["Sal es Chart"]
MyChar t . ShowBorder = true

ShowBorder (Property) 11-143

ShowBrioRepositoryTables (Property)

Applies To: Connection

Description: Returns or sets a connections ShowBrioRepositoryTables property. Setting this
property equal to true will display the Brio Repository Tables in the table
catalog associated, which is associated with the Open Catalog Extension.

Action: Read-write, Boolean

Example: The following example creates a connection file from scratch and then applies
it to the current document. The data source name in this example is:
“PlutoSQLSVR”, which is a user DSN using the SQL Server 6.5 driver.

Var nyCon = Application. Creat eConnecti on()

MyCon. Description = "This OCE configures the connection via ODBC, to a SQServer
6.5 database named pluto."

myCon. Api = bgApi Opend i ent

myCon. Dat abase = bqgDat abaseSQLSer ver

MyCon. Host Nane =" Pl ut oSQLSVR'

MyCon. Enabl eAsyncProcess = true

MyCon. ShowBr i oRepositoryTables = true

MyCon. SaveAs("d:\\ OCEs\\ Pl ut oSQ.. oce")

// Now use this connection in a datanopdel
Acti veDocurent . Sections[" Query"]. Dat aMbdel . Connecti on. Open
("d:\\ OCEs\\ Pl ut o0SQ.. oce")

11-144 Properties

ShowCatalog (Property)

Applies To: Document, PluginDocument

Description: Returns or sets a document objects ShowCatalog property. Setting this
property equal to true will display the Section/Catalog pane. This has the same
effect as selecting/deselecting the Section/Catalog item from the view menu.

Action: Read-write, Boolean

Example: The following example shows you how to hide and show various user interface
elements in Brio based on the application they are running.

if (Application. Name == "BrioQuery")
Act i veDocunent . ShowCat al og = true
Act i veDocunent . ShowMenuBar = true

}

el se

/] Save space in plugin by hiding catal og and turning off nmenu bar
Act i veDocunent . ShowCat al og = fal se
Appli cati on. ShowMenuBar = fal se

ShowCatalog (Property) 11-145

ShowColumnTitles (Property)

Applies To:

Description:

[] Note

Action:

Example:

ReportTable object

Sets the value to either display or not display table column titles.

When using this property and the SuspendCalculation property is set to true (which it is by
default), then you must use the Recalculate method to force the Report section to recalculate
itself.

Read-write, Boolean

The following example shows you how to not to display table column titles.

Acti veDocunent . Secti ons[" Report"].Body. Tabl es[" Tabl e"]. ShowCol umTitles = fal se

11-146 Properties

ShowColumnTotal (Property)

Applies To:

Description:

[] Note

Action:

Example:

TableFact object

Sets the attribute to display a column total (break total) on a table fact column
in the report section.

When using this property and the SuspendCalculation property is set to true (which it is by
default), then you must use the Recalculate method to force the Report section to recalculate
itself.

Read-write, Boolean

The following example shows you how to display the column total for the
"Amount Sales" table column.

Act i veDocurnent . Secti ons[" Report"] . Body. Tabl es[" Tabl e"] . Fact s[" Anbunt
Sal es"]. ShowCol umTot al = true

ShowColumnTotal (Property) 11-147

ShowFullNames (Property)

Applies To: DMCatalog

Description: Returns or sets a table catalogs ShowFullNames property. Setting this property
equal to true will display the full names of tables in the table catalog.

Action: Read-write, Boolean

Example: The following example shows you how to display the full names of tables in a
table catalog.

var nyQuery = ActiveDocunment. Sections["Query"]
myQuery. Dat aMbdel . Cat al og. Showrul | Nanes = true

11-148 Properties

ShowHorizontalPlane (Property)

Applies To: ChartSection

Description: Returns or sets a chart sections ShowHorizontalPlane property. Setting this
property equal to true will display the horizontal plane of a chart.

Action: Read-write, Boolean

Example: The following example shows you how to display the chart border.

var MyChart = ActiveDocunment. Sections”"Sal es Chart"]
MyChar t . ShowBorder = true
MyChar t . ShowHori zont al Pl ane = true

ShowHorizontalPlane (Property) 11-149

ShowlconJoins(Property)

Applies To: DataModel

Description: Returns or sets a DataModels ShowlconJoins property. Setting this property
equal to true will display the joins between topics that have been made into
icons in the Data Model.

Action: Read-write, Boolean

Example: The following example shows you how to show icon joins in a Data Model.

Acti veDocurnent . Secti ons[" Query"]. Dat avMbdel . Show conJoi ns = true

11-150 Properties

ShowIintervalTickmarks (Property)

Applies To: ValuesAxis

Description: Returns or sets a charts ValueAxis ShowIntervalTickmarks property. Setting
this property equal to true will display the tickmarks on a charts values axis.

Action: Read-Write, Boolean

Example: The following example shows you how to enable Interval tickmarks for a chart.

Act i veDocunent . Sections["Chart"]. Val uesAxi s. Showl nterval Ti ckmarks = true

ShowIntervalTickmarks (Property) 11-151

ShowIintervalValues (Property)

Applies To: ValueAxis

Description: Returns or sets a charts ValueAxis ShowIntervalValues property. Setting this
property equal to true will display the interval values on a charts values axis.

Action: Read-write, Boolean

Example: The following example shows you how to enable Interval tickmarks for a chart.

Acti veDocunent . Sections"Chart"]. Val uesAxi s. Showl nt erval Val ues = true

11-152 Properties

ShowlLabel (Property)

Applies To: LeftAxis , RightAxis, XAxisLabel, ZaxisLabel

Description: Returns or sets a charts ShowLabel property. Setting this property equal to true
will display the label associated with an axis.

Action: Read-write, Boolean

Example: The following example shows you how to show all the labels for the various
chart objects.

Act i veDocurent . Sections["Chart"]. Activate()
ActiveSection. Val uesAxi s. Ri ght Axi s. ShowLabel = true
ActiveSection. Label sAxi s. XAxi s. ShowLabel = true
ActiveSection. Val uesAxi s. Left Axi s. ShowLabel = true
ActiveSection. Label sAxi s. ZAxi s. ShowLabel = true

ShowLabel (Property) 11-153

ShowlLabels (Property)

Applies To: PieChart

Description: Returns or sets a pie chart’s ShowLabels property. Setting this property equal
to true will display the labels associated with a pie chart.

Action: Read-write, Boolean

Example: The following example shows you how to set pie chart specific properties.

Acti veDocurent . Sections["Chart"]. Pi eChart. ShowLabel s = true
Acti veDocurent . Sections["Chart"]. Pi eChart. ShowPercentages = true

11-154 Properties

ShowlLegend (Property)

Applies To: ChartSection

Description: Returns or sets a charts ShowLegend property. Setting this property equal to
true will display the legend associated with a chart.

Action: Read-write, Boolean

Example: The following example shows you how to enable the chart legend.

Act i veDocument . Sections[" Chart"]. ShowL,egend = true

ShowLegend (Property) 11-155

ShowLocalResults (Property)

Applies To: DMCatalog

Description: Returns or sets a table catalogs ShowLocalResults property. Setting this
property equal to true will display the list of local results in the table catalog.

Action: Read-write, Boolean

Example: The following example shows you how to search through the document for
more than one results set and then display the local results in the Table
Catalog.

var ResultsCount = 0
for (j =1 ; j <= ActiveDocunent. Sections.Count ; j++)
if (ActiveDocunent. Sections[j].Type == bqQuery)
Resul t sCount ++
if (ResultsCount > 1)
Acti veDocurent. Sections[" Query"] . Dat aMbdel . ShowLocal Results = true

11-156 Properties

ShowMenuBar (Property)

Applies To: Application

Description: Returns or sets the applications ShowMenuBar property. Setting this property
equal to true will display the applications menu bar. The default value is true.

Action: Read-write, Boolean

Example: The following example shows how to hide and show various user interface
elements in Brio based on the application they are running.

if (Application.Name == "BrioQuery Designer")
{

Act i veDocunent . ShowCat al og = true
Appli cati on. ShowMenuBar = true

el se
/] Save space in plugin by hiding catal og and turning off nmenu bar

Act i veDocunent . ShowCat al og = fal se
Appli cati on. ShowMenuBar = fal se

ShowMenuBar (Property) 11-157

ShowMetadata (Property)

Applies To: Connection

Description:

Action:

Example:

equal to true will display metadata settings in the Open Catalog Extensions

wizard.

Read-write, Boolean

it to the current document. The data source name in this example is
“PlutoSQLSVR”, which is a user DSN using the SQL Server 6.5 driver.

var nyCon = Application. Creat eConnection()

myCon.

Description = "This OCE configures the connection via ODBC,

6.5 database named pluto."
myCon. Api = bgApi OpenCl i ent

myCon.
myCon.
myCon.
myCon.
myCon.

/ | Now

Acti veDocurent . Sections[" Query"]. Dat aMbdel . Connecti on. Open

Dat abase = bgDat abaseSQ.Ser ver
Host Name ="Pl ut o0SQLSVR"

Enabl eAsyncProcess = true
Showivet aData = true

SaveAs("d:\\ OCEs\\ Pl ut oSQL. oce")

use this connection in a datanodel

("d:\\ OCEs\\ Pl ut o0SQ.. oce")

11-158

Properties

Returns or sets a connections ShowMetadata property. Setting this property

The following example creates a connection file from scratch and then applies

to a SQ.Server

ShowOutliner (Property)

Applies To: ChartSection, OLAPQuerySection, PivotSection, QuerySection,
ResultsSection, TableSection

Description: Returns or sets a ShowOutliner property. Setting this property equal to true
will display the Outliner associated with a section. The default value is true.

Action: Read-write, Boolean

Example: The following example shows you how to display the chart outliner.

Act i veDocunent . Sections["Chart"]. ShowQutliner = true

ShowOutliner (Property) 11-159

ShowPercentages (Property)

Applies To: PieChart

Description: Returns or sets a pie charts ShowPercentages property. Setting this property
equal to true will display the percentages next to the pie slices in a pie chart.

Action: Read-write, Boolean

Example: The following example shows how to set pie chart specific properties.

Acti veDocurent . Sections["Chart"]. Pi eChart. ShowLabel s = true
Acti veDocurent . Sections["Chart"]. Pi eChart. ShowPercentages = true

11-160 Properties

ShowRowNumbers (Property)

Applies To: TableSection

Description: Returns or sets a table sections ShowRowNumbers property. Setting this
property equal to true will display the row numbers in the left most region of a
table section.

Action: Read-write, Boolean

Example: The following example displays the row numbers.

Act i veDocurent . Secti ons" Resul ts"]. ShowRowNunbers = true

ShowRowNumbers (Property) 11-161

ShowSectionTitleBar (Property)

Applies To: Document, PluginDocument

Description: Returns or sets a documents ShowSectionTitleBar property. Setting this
property equal to true will display the section specific title bar. Changing this
property is equivalent to showing/hiding the section title bar from the view

menu.
Action: Read-write, Boolean
Example: The following example shows you how to hide and show various user interface

elements in Brio based on the application you are running.
if (Application.Na == "BrioQuery Designer")

Act i veDocurent . ShowCat al og = true
Acti veDocunent . ShowSectionTitl eBar = true
Appl i cation. ShowSt atusBar = true
Appl i cation. ShowMenuBar = true
}

el se

/] Save space in plugin by turning off various user interface elenents
Act i veDocurent . ShowCat al og = fal se
Act i veDocurent . ShowSecti onTitl eBar = fal se
Application. ShowSt atusBar = fal se
Appl i cati on. ShowMenuBar = fal se

11-162 Properties

ShowStatusBar (Property)

Applies To: Application

Description: Returns or sets the applications ShowStatusBar property. Setting this property

equal to true will display the status bar. Changing this property is equivalent to
showing/hiding the status bar from the view menu.

Action: Read-write, Boolean

Example: The following example shows you how to hide and show various user interface

elements in Brio based on the application they are running.

if (Application. Name == "BrioQuery Designer")

}

Act i veDocunent . ShowCat al og = true

Acti veDocunent . ShowSectionTitl eBar = true
Appl i cation. ShowSt atusBar = true

Appli cati on. ShowMenuBar = true

el se

/] Save space in plugin by hiding by various user interface el enents

Act i veDocunent . ShowCat al og = fal se

Act i veDocunent . ShowSecti onTitl eBar = fal se
Appli cati on. Showst at usBar = fal se

Appli cati on. ShowMenuBar = fal se

ShowStatusBar (Property) 11-163

ShowSubtitle (Property)

Applies To: ChartSection

Description: Returns or sets the charts ShowSubTitle property. Setting this property equal
to true will display the sub title.

Action: Read-write, Boolean

Example: The following example shows you how to add a sub-title to a chart.

var MyChart=Acti veDocunent. Sections["Chart"]
MyChart. SubTitle="This is the Sub Title"
MyChart. ShowSubTi t | e=true

11-164 Properties

ShowTickmarks (Property)

Applies To: XAxis, ZAxis

Description: Returns or sets the charts ShowTickmarks property. Setting this property equal
to true will display the tickmarks on X-axis and/or Z-axis.

Action: Read-write, Boolean

Example: The following example shows how to display tickmarks on the X-axis and hide
them on the Z-axis.
var MyChart = ActiveDocunent. Sections["Chart"]

MyChart . Label sAxi s. XAxi s. ShowTi cknmarks = true
MyChart . Label sAxi s. ZAxi s. ShowTi ckmarks = fal se

ShowTickmarks (Property) 11-165

ShowTitle (Property)

Applies To: ChartSection

Description: Returns or sets the charts ShowTitle property. Setting this property equal to
true will display the chart title.

Action: Read-write, Boolean

Example: The following example shows you how to add a title to a chart.

var MyChart=Acti veDocunent. Sections["Chart"]
MyChart. Title="This is the Title"
MyChart. ShowTi t| e=true

11-166 Properties

ShowValues (Property)

Applies To: XAxis, ZAxis

Description: Returns or sets the charts ShowValues property. Setting this property equal to
true will display the values along the X-axis and/or the Z-axis.

Action: Read-write, Boolean

Example: The following example shows how to display the values on the X-axis and hide
them on the Z-axis.
var MyChart = ActiveDocunent. Sections["Chart"]

MyChart . Label sAxi s. XAxi s. Showval ues = true
MyChart . Label sAxi s. ZAxi s. Showal ues = fal se

ShowValues (Property) 11-167

ShowValuesAtRight (Property)

Applies To: ValuesAxis

Description: Returns or sets the charts ShowValuesAtRight property. Setting this property
equal to true will display the values to the right of the values axis.

Action: Read-write, Boolean

Example: The following example shows how to display the values to the right of the axis.

var MyChart = ActiveDocunent. Sections"Chart"]
MyChart. Val uesAxi s. Showval uesAt Ri ght = true

11-168 Properties

ShowVerticalPlane (Property)

Applies To: ChartSection

Description: Returns or sets the charts ShowVerticalPlane property. Setting this property
equal to true will display the vertical plane in a chart section.

Action: Read-write, Boolean

Example: The following example shows how to display the vertical plane on a chart.

Act i veDocunent . Sections["Chart"]. Showerti cal Pl ane=true

ShowVerticalPlane (Property) 11-169

Size (Property)

Applies To: Font

Description: Returns or sets the value of a font objects size property. This property controls
the size of the text associated with a font object.

Action: Read-write, Numeric

Example: The following example shows how to change the size of the text associated with
a text label.
var MyLabel = ActiveDocunent. Sections"El S"]. Shapes[" Text Label 1"]

MyLabel . Font. Size = 14
MyLabel . Font. Styl e = bgFont Styl eBol dltalic

11-170 Properties

SortFactName (Property)

Applies To: PivotLabels Collection

Description: Returns or sets the sort criteria for a pivot fact. This property is used in
conjunction with the SortByFact (Method).

Action: Read only, String
Example The following example shows you how to sort the side label "Product Name"
by the fact value.

Act i veDocunent . Secti ons[" Pi vot 3"] . Si deLabel s[" Product Nane"]. Sort Fact Nane="Uni t
Sal es”

SortFactName (Property) 11-171

SortFunction (Property)

Applies To: PivotLabels Collection

Description: Returns or sets aggregate statistical functions programmatically. This property
takes a BqSortFunction group value, which duplicates the data functions
available in the Pivot and Chart sections. This property is used in conjunction
with the SortByFact (Method) which allows you to sort by a numeric data

item.
Action: Read only, String
Constants: The BqSortFunction group constant consists of the following values:

bgSortFunctionAverage
bySortFunctionCount
bgSortFunctionMaximum
bgSortFunctionMinimum
bgSortFunctionNonNullAverage
bgSortFunctionNonNullCount
bgSortFunctionNullCount
bgSortFunctionSum

Example The following example shows you how to sort values based on the average
statistical function.

Acti veDocurent . Sections["Pi vot 3"] . Si deLabel s[" Product Nane"]. Sort Functi on=
bgSort Functi onAver age

11-172 Properties

SortOrder (Property)

Applies To: Sort Items

Description: Returns or sets the ascending or descending sort order property.

Action: Read-write

Constants The constant associated with this property is a member of the constant group

called BqSortOrder. The BqSortOrder constant group consists of the
following values:

bqSortAscend
bqSortDescend

Example: The following example shows you how to sort in ascending order in the Table
section.

Act i veDocunent . Sections[" Tabl e"]. Sortltens[1]. Sort O der =bgSort Ascend

SortOrder (Property) 11-173

SpecificMetadataLogin (Property)

Applies To: Connection

Description: Returns or sets a connection objects SpecificMetadataLogin property. Setting
this property to true will use the login information specified in the default
connection for the metadata connection.

Action: Read-write, Boolean

Example: The following example creates an OCE from scratch and then applies it to the

>

current document. The data source name in this example is: “PlutoSQLSVR?”,
which is a user DSN using the SQL Server 6.5 driver.

var nyCon = Application. Creat eConnection()

myCon. Descri ption"This OCE configures the connection via ODBC, to a SQ.Server 6.5
dat abase named pluto."

myCon. Api = bgApi Opend i ent

myCon. Dat abase = bqgDat abaseSQLSer ver

myCon. Host Nane ="Pl ut oSQLSVR'

myCon. Enabl eAsyncProcess = true

myCon. Speci fi cMet adatalogin = true

myCon. SaveAs("d: \\ OCEs\\ Pl ut oSQL. oce")

// Now use this connection in a datanopdel
Acti veDocurent . Sections[" Query"]. Dat aMbdel . Connecti on. Open
("d:\\ OCEs\\ Pl ut o0SQ.. oce")

11-174 Properties

SQLName (Property)

Applies To: Request

Description: Returns the value of a request object’s SQLName property. The value of this
property is the name of the request object, which is used in building the SQL
statement.

Action: Read-only, String

Example: The following example shows you how to display all the names used in the

SQL statement corresponding to the request line items.

var Request Count = ActiveDocunent. Sections["Query"]. Requests. Count
for (j =1 ; j <= RequestCount ; j++)
{

var Di splayName = ActiveDocunent. Sections["Query"].Requests[j].D splayNane
var SQLNane = ActiveDocunent. Sections["Query"].Requests[j].SQLNane
Console. Witeln("The col um named "+ Di splayName + "is actually known by "+
SQLNanme + "to the database.")

}

SQLName (Property) 11-175

SQLNetRetainDateFormats (Property)

Applies To: Connection

Description: SQLNet Only. Returns or sets the value of a connection objects
SQLNetRetainDateFormats property. Setting this property equal to true will
retain the date formats specified by SQLNet.

Action: Read-write, Boolean

Example: The following example creates a connection file from scratch and then applies
it to the current document.

Var nyCon = Application. Creat eConnecti on()

MyCon. Description = "This OCE configures the connection via ODBC, to a SQServer
6.5 dat abase naned pluto."

MyCon. Api = bgApi SQ.Net

MyCon. Dat abase = bgDat abaseOracl e71

MyCon. Host Nane =" Pl ut oORACLE"

MyCon. SQ.Net Ret ai nDat eFormats =true

MyCon. SaveAs("d: \\ OCEs\\ Pl ut oORACLE. oce")

// Now use this connection in a datanodel
Acti veDocurent . Sections[" Query"]. Dat aMbdel . Connecti on. Open
("d:\\ OCEs\\ Pl ut oORACLE. oce")

11-176 Properties

StackClusterType (Property)

Applies To: BarLineChart
Description: Returns or sets the value of the BarLineChart objects StackClusterType
property.

Action: Read-write

Constants: The BqClusterBarType constant consists of the following values:
bqClusterByY
bqClusterByZ

Example: The following example shows how to change the type of BarLineChart.

var MyChart = ActiveDocunent. Sections["Chart"]
MyChart . Bar Li neChart. St ackCl ust er Type = bgd usterByY

StackClusterType (Property)

11-177

StringRetrieval (Property)

Applies To: Connection

Description: Returns or sets the value of a connection objects StringRetrieval property. If
this property is set to true then the connection will use string retrieval, if the
property is set to false then the connection will use binary retrieval.

Action: Read-write, Boolean

Example: The following example creates a connection from scratch and then applies it to
the current document.

Var nyCon = Application. Creat eConnecti on()

MyCon. Description = "This OCE configures the connection via ODBC, to a SQServer
6.5 dat abase naned pluto."

myCon. Api = bgApi SQLNet

myCon. Dat abase = bgDat abaseOracl e71

myCon. Host Name =" Pl ut oORACLE"

myCon. StringRetrieval =true

myCon. SaveAs("d: \\ OCEs\ \ Pl ut oORACLE. oce")

// Now use this connection in a datanodel
Acti veDocurent . Sections[" Query"]. Dat aMbdel . Connecti on. Open
("d:\\ OCEs\\ Pl ut oORACLE. oce")

11-178 Properties

Style (Property)

Applies To: Font

Description: Returns or sets the value of a font objects style property. This property changes
the look and feel of the text associated with the font object.

Action: Read-write
Constants: The BgFontStyle constant consissts of the following values:
bqFontStyleBold

bqFontStyleBoldItalic
bqFontStyleltalic
bqFontStyleNone
bqFontStyleRegular

Example: The following example shows you how to change the size of the text associated
with a text label.
var MyLabel = ActiveDocument. Sections["ElIS"]. Shapes["Text Label 1"]

MyLabel . Font . Size = 14
MyLabl e. Font . Styl e = bgFont Styl eBol dltalic

Style (Property) 11-179

SubTitle (Property)

Applies To: ChartSection

Description: Returns or sets the value of a charts sub title.

Action: Read-write, String

Example: The following example shows how to add a sub title to a chart.

Acti veDocunent . Sections["Chart"]. SubTitle ="This is the sub title"
Acti veDocurent . Sections[" Chart"]. ShowSubTi tl e=true

11-180 Properties

SuppressDuplicates (Property)

Applies To: Column

Description: Returns or sets the value of a column objects SuppressDuplicates property.
Setting this property equal to true will suppress duplicate values in an
individual column.

Action: Read-write, Boolean

Example: The following example shows you how to suppress duplicate results on specific
columns within a Results section.

var Col 1 " St at e”

var Col 2 "aty"

Act i veDocurnent . Secti ons"Resul ts"]. Col ums[Col 1] . SupressDuplicates = true
Act i veDocurent . Sections["Resul ts"]. Col ums|[Col 2] . SupressDuplicates = true

SuppressDuplicates (Property) 11-181

SurfaceValues (Property)

Applies To: PivotSection

Description: Returns or sets the value of the Pivot Section's surface values property. Surface
values instruct the entire Pivot to perform calculations based on surface values
as opposed to the entire underlying results set. Changes to the property are
selected in the UI when the property is set. Changes to the UT are reflected
when the property is read. The default value is false.

Action: Read-write, Boolean

Example 1: The following example shows you how to turn on surface values.

/] Surface Val ues ON
Acti veDocunent . Sections["Pivot"]. SurfaceVal ues=true

Example 2: The following example shows you how to turn off surface values.

/] Surface Values OFF
Acti veDocunent . Sections["Pivot"]. SurfaceVal ues=f al se

11-182 Properties

SuspendRecalculation (Property)

Applies To: Limit (Results limits only)

Description: Returns or sets the value of a results limit object SuspendRecalculation

Action:

Example:

var

MyLi
MyLi
MyLi
MyLi
MyLi
MyLi

My Li
mt.
mt.
mit.
mit.
mt.
nit.

property. Setting this property equal to true will prevent the results limit from
recalculating after every modification. This greatly enhances performance of
results limit calculations.

D Note You must use the Recalculate() method to force a recalculation when using this property.

Read-write, Boolean

The following example shows you how to increase the performance of limits
applied to a results set using the Suspend Recalculation property.

mt = ActiveDocunent. Sections["Results"].Limts["Units"]
SuspendRecal cul ation = true

Sel ect edVal ues. RenoveAl | ()

Sel ect edVal ues. Add(10)

Sel ect edVal ues. Add(11)

Sel ect edVal ues. Add(12)

SuspendRecal cul ation = fal se

Act i veDocunent . Secti ons[" Resul t s]. Recal cul at e()

D Note Instead of calculating the results limit four times, the script above only calculates it once.

SuspendRecalculation (Property) 11-183

Text (Property)

Applies To: ControlsTextBox

Description: Returns or sets the value of the text that is displayed in a Text box control or
Text label shape.

Action: Read-write, String

Example: The following example shows you how to set an initial value for a text box.

Acti veDocunent . Sections[" El S2"] . Shapes[" Text Box1"] . Text="Hell o Wor| d"
Alert (ActiveDocunent. Sections["ElIS2"]. Shapes[" Text Box1"]. Text)

11-184 Properties

TextWrap (Property)

Applies To: Column

Description: Returns or sets the value of a column objects Textwrap property. Setting this
property equal to true will cause the text in a column to wrap and extend the
height of the column.

Action: Read-write, Boolean

Example: The following example shows you how to force text to wrap on specific
columns within the Results section.

var Col 1 " St at e”

var Col 2 "aty"

Act i veDocurnent . Sections["Results"]. Col ums[Col 1] . Text Wap = fal se
Act i veDocurnent . Sections["Results"]. Col uims[Col 2] . TextWap = true

TextWrap (Property) 11-185

TickmarkFrequency (Property)

Applies To:

Description:

Action:

Example 1:

Acti veDocunent .
Acti veDocunent .

Example 2:

Acti veDocunent .
Acti veDocunent .

XAxis

Returns or sets the value of a charts XAxis objects TickmarkFrequency
property. This property effects the number of tickmarks displayed on the X-
axis.

Read-write, Numeric

The following example shows how to display a tickmark for every value on the
X-axis.

Sections["Al | Chart"] . Label sAxi s. XAxi s. Ti ckmar kFr equency=1
Sections["Al | Chart"] . Label sAxi s. XAxi s. ShowTi ckmar ks=true

The following example shows how to display a tickmark for every other value
on the X-axis.

Sections["A | Chart"] . Label sAxi s. XAxi s. Ti ckmar kFr equency=2
Sections["Al | Chart"] . Label sAxi s. XAxi s. ShowTi ckmar ks=true

11-186 Properties

TimeLimit (Property)

Applies To: Connection, DataModel, QuerySection

Description: Returns or sets the value of the timelimit property. This property controls the
maximum time limit a query can process before timing out. It can be set on the
OCE, DataModel or Connection level. The time increment is minutes.

Action: Read-write, Numeric
Example: The following example shows you how to set the Time limit property for all
the supported objects.

/I Connecti ons

var nyCon = Application. Creat eConnection()
myCon. Api = bgApi SQLNet

myCon. Dat abase = bgDat abaseOracl e71

myCon. Host Narme =" Pl ut oORACLE"

myCon. Ti meLinit = 20

myCon. SaveAs("d: \\ OCEs\ \ Pl ut oORACLE. oce")

/ | Dat aMbdel
Act i veDocument . Secti ons[" Query] . Dat aMbdel . TineLinit = 30

/1 Query
Act i veDocurnent . Sections["Query]. TineLimt = 30

TimeLimit (Property) 11-187

TimeLimitActive (Property)

Applies To: QuerySection, DataModelSection

Description: Returns the enable/disable for Time Limit setting property. It is associated
with the TimeLimit property.

Action: Read-only, Boolean

Example: The following example shows you how to enable the Time Limit setting, set the
maximum time limit to process a query before timing out,. and process the
query.

Acti veDocunent . Sections[" Query"]. DataModel . Ti meLi mi t Active = true

Acti veDocurnent . Sections[" Query"]. Datavbdel . TineLimt = 30
Acti veDocurent . Sections[" Query"]. Process()

11-188 Properties

Title (Property)

Applies To: ChartSection

Description: Returns or sets the value of the title property. This property changes the value
of the title displayed on a chart.

Action: Read-write, String

Example: The following example shows you how to add a title to a chart.

var MyChart = ActiveDocunent. Sections"Chart"]
MyChart.Title = "This is the Title"
MyChart. ShowTitle = true

Title (Property) 11-189

TopicName (Property)

Applies To: Joins, Local Join

Description: Retrieves the parent of the Topic item, which is the Topic Name in a join or
local join. It also allows you to retrieve the Topic Item Names of joins (and not
local joins).

Action: Read-only, String
Example 1 The following example shows you how to retrieve the topic names 1 and 2
from a join.

/1 Get Join Topic Nanes

Text Box1. Text =Act i veDocunent . Secti ons[" Query"] . Dat aModel . Joi ns["1"]. Topi c1Nane;
Text Box2. Text =Act i veDocunent . Secti ons[" Query"] . Dat aModel . Joi ns["1"]. Topi c2Nane;
Text Box3. Text =Act i veDocunent . Secti ons[" Query"] . Dat aModel . Joi ns["1"] . Type;

Example 2 The following example shows you how to retrieve the Topic Item Names from
a join.

/ Get Join Topic Item Names

Text Box4. Text =Act i veDocunent . Secti ons[" Query"] . Dat aMbdel . Joi ns["1"] . Topi cl teml. Di
spl ayName

Text Box5. Text =Acti veDocunent . Secti ons[" Query"] . Dat aMbdel . Joi ns["1"] . Topi cl tenR. Ph
ysi cal Nanme

Example 3 The following example shows you how to retrieve the topic names 1 and 2
from a local join.

/] Get Local Join Topic Nanes

Text Box6. Text =Act i veDocunent . Secti ons["Query"] . Dat aModel . Local Joi ns["1"] . Topi c1Na
me;

Text Box7. Text =Act i veDocunent . Secti ons["Query"] . Dat aModel . Local Joi ns["1"] . Topi c2Na
me;

Text Box8. Text =Act i veDocunent . Secti ons[" Query"] . Dat aModel . Local Joi ns["1"] . Type;

11-190 Properties

TopMargin (Property)

Applies To:

Description:

[] Note

Action:

Example:

ReportSection object

Sets the top margin the report. Margins are set for the entire report.

When using this property and the SuspendCalculation property is set to true (which it is by
default), then you must use the Recalculate method to force the Report section to recalculate
itself.

Read-write, Number

The following example shows you how to set the left margin of the report to
.25 inches.

Act i veDocunent . Sections["Report"]. TopMargin = .25

TopMargin (Property) 11-191

Type (Property)

Applies To: Join, Section, Toolbar, Topic, Shape, JoinsOptions

Description: Returns the value of the type property.

Section Objects — This property represents the type of section. (Chart,
Pivot, Query, etc..)

Join — This property refers to the type of join. (Left, right, Outer, etc.)

Toolbar — This property represents the type of toolbar. (Standard,
format, etc.)

Topic — This property represents the type of topic. (Standard, Meta, etc.)

Shape — This property represents the type of drawing object or control in
an EIS section. (Line, Rectangle, etc)

Joins Options — This property represents the type of join option. (All
Topics, Auto Join, etc.)

Action: Read-only

Constants: Section Objects — BqSectionType
bqChart
bgDataModel
bqgDetail
bqEIS
bqOLAP
bgPivot
bqQuery
bqReport
bqResults
bqTable

11-192 Properties

Join — BqJoinType
bqJoinLeft
bqJoinOuter
bqgJoinRight
bgJoinSimpleEqual
bqJoinSimpleGreaterThan
bqJoinSimpleGreaterThanOREqual
bqJoinSimpleLessThan
bqJoinSimpleLessThanOrEqual
bqJoinSimpleNotEqual
Toolbar — BqToolbars
bqToolbarFormat
bqToolbarNavigation
bqToolbarSections
bqToolbarStandard
Topic — BqTopicType
bqTopicTypeMeta
bqTopicTypeNone
bqTopicTypeQueryObject
bqTopicTypeResults
bqTopicTypeStoredProcedure
Shape — BqShapeType
bgButton
bqCheckBox
bgDropBox
bgEmbeddedSection

Type (Property) 11-193

bqHorizontalLine
bgLine
belistBox
bqOval
bqPicture
bqRadioButton
bqRectangle
bqRoundRectangle
bqTextBox
bqTextLabel
bqVerticalLine
JoinsOptions — BqDataModelJoinsOptions
bgDataModelJoinsOptionAllTopics
bgDataModelJoinsOptionAutoJoin
bgDataModelJoinsOptionDefJoin
bgDataModelJoinsOptionMinTopics
bgDataModelJoinsOptionRefTopics
Example: The following example shows you how to use the type property to determine
which properties apply to a specific object. In this example, checking the Type

property of the Section objects allows the script to process every query in a
document.

var SecCount = ActiveDocunent. Secti ons. Count
for (j =1; j <= SecCount ; j++)

if (ActiveDocunent. Sections[j].Type == bqQuery)
Acti veDocunent. Sections[j].Process()

11-194 Properties

UnionController (Property)

Applies To:

Description:

Action:

Constants

Example:

AppendQueriesSection

Returns or sets the value of the Append Query union operator. The union
operator governors how rows are retrieved when the Append Query Option
feature is used. This property uses the BqUnionController constant group,
which consists of the bqUnion and bqUnionAll constants value.Use the
bqUnion constant value when you want to programmatically retrieve all
distinct rows selected by either query without duplicates. Use the bqUnionAll
constant value when you want to programmatically retrieve all rows selected
by either query, including duplicate rows.

Read-write

The BqUnionController constant consists of the following values:
bqUnion
bqUnionAll
This is the UnionController Constant Definition:
t ypedef enum BgUni onControl | er
bgUni on = 1,

bqUni onAl | ,
} BgUnionController;

The following example shows you how to append a query using the Union
operator.

Act i veDocunent . Secti ons[" Query"]. AppendQueri es. Add()
Act i veDocurent . Sections[" Query"]. AppendQueri es[1]. Uni onControl | er =bqUni on

UnionController (Property) 11-195

UniqueRows (Property)

Applies To: QuerySection

Description: Returns or sets the value of a query sections unique row property. Setting this
property to true will cause the query to return only unique rows of data.

Action: Read-write, Boolean

Example: The following example sets each query in a document to return unique rows.

var SecCount = ActiveDocunent. Secti ons. Count
for (j =1; j <= SecCount ; j++)

if (ActiveDocunent. Sections[j].Type == bqQuery)
Acti veDocunment. Sections[j].Uni queRows = true

11-196 Properties

URL (Property)

Applies To: PluginDocument (Insight & Quickview Only)

Description: PluginDocument — Returns the value of the URL (Uniform Resource Locator)
associated with the document. If the document is registered with the
OnDemand Server, the URL contains the address to the server and the name of
the Broker. If the document came from a Web server or local file system, the
URL contains the fully qualified server name and directory.

Action: Read-only, String
Example: The following example illustrates the how to use the URL property to direct
users to help information stored on the same server.

i f(Application.Nanme.indexO ("BrioQuery") !'=-1)

{

Alert("This property is not valid in BrioQuery")

}
el se

{

var MYURL = ActiveDocunent. URL
Application. OpenURL(MYURL + "\/hel pi nfo. htm, _new")

URL (Property) 11-197

Username (Property)

Applies To: Connection

Description: Returns or sets the value of the username property. The username property of
the connection objects refers to the username used by the OCE (Open Catalog
Extension).

Action: Read-write, String

Example: The following example shows you how to create a connection from scratch

and how to set its various properties.

var nyCon = Application. Creat eConnection()
myCon. Api = bgApi SQLNet

myCon. Dat abase = bgDat abaseOracl e71

myCon. Host Name =" Pl ut oORACLE"

myCon. TimeLinit = 20 //mnutes

myCon. Username = "Brio

myCon. SaveAs("d: \\ OCEs\ \ Pl ut oORACLE. oce")

11-198 Properties

ValueSource (Property)

Applies To: Limit

Description: Returns the value of a limit object’s ValueSource property. This property
returns an enumerated value, which specifies where the limit values originated.

Action: Read-only

Constants: The BqLimitValueSource constant consists of the following values:
bgLimitSourceDatabase
bqLimitSourceFile
Example: The following example shows you how to use the ValueSource property to
determine the location of the limits values.
Act i veDocurent . Sections["Query"].Limts[1].LoadFronFile("d:\\LimtData.txt")

if (ActiveDocunent. Sections["Query"].Limts[1].ValueSource != bqgLim tSourceFile)
Alert ("An error has occurred, Error!")

ValueSource (Property) 11-199

VariableLimit (Property)

Applies To: Limit

Description: Returns or sets the value of a limit objects VariableLimit Property. This
property enables or disables a limit as a variable limit. If the VariableLimit
property is equal to true then a limit is considered a variable limit and will
prompt the user for a limit value when they process a query.

Action: Read-write, Boolean

Example: The following example checks to see if any query limits are set as variable limits
and reverts them into normal limits.
for (j=1; j <= ActiveDocunent. Sections["Query"].Limts.Count; j++)

if (ActiveDocunent. Sections["Query"].Limts[j].VariableLinmt == true)
Act i veDocurent . Sections["Query"].Limts[j].VariableLimt = false

11-200 Properties

Version (Property)

Applies To: Application

Description: Returns the value of the Product Name Variable application version number.

Action: Read-only, String

Example: The following example shows you how to display your current version
number.

Al ert (Application. Version)

Version (Property) 11-201

VerticalAlignment (Property)

Applies To:

Description:

Action:

Constants:

Example:

var MyL

MyLabel . Font . Si ze

Shape object

Returns or sets the vertical alignment of the text in a shape objectThis property
corresponds to the features on the Alignment Properties dialog box.

Read-write

The BgVertical Alignment constant group consists of the following values:
bqAlignBottom
bgAlignMiddle
bgAlignTop

The following example changes a text label to 8 points, bold Italic and
vertically aligned at the top.

abel = ActiveDocunent. Sections["El S"]. Shapes[" Text Label "]

=8

MyLabel . Font. Styl e = bgFont Styl eBol dltalic
MyLabel . Verti cal Al i gnnent =bgAl i gnTop

11-202

Properties

View (Property)

Applies To: Topic

Description: Returns or sets the value of a topic objects view property. This property
controls the display characteristics of topics in a Data Model.

Action: Read-Write

Constants: The BqTopicView constant consists of the following values:
bgDetail View
bglconView
bqgStructureView
bqTopicViewNone
Example: The following example resets all the Topics in a Data Model to the structure
view.
var Topi cCount = ActiveDocunent. Sections[" Query"]. Dat aModel . Topi cs. Count

for (j =1 ; j <= TopicCount ; j++)
Act i veDocunent . Sections[" Query"]. Dat aMbdel . Topics[j].View = bqStructureVi ew

View (Property) 11-203

Visible (Property)

Applies To: Application, ChartSection, Column, ControlsCheckBox,
ControlsCommandButton, ControlsDropDown, ControlsListBox,
ControlsRadioButton, ControlsTextBox , PivotLabelValue, PivotSection,
QuerySection, Request, Section, Shape,Toolbar, Topicltem

Description: Returns or sets the value of the visible property. The visible property controls
the display of its base object. Setting visible equal to false will hide the object or
setting visible equal to true will show the object.

Action: Read-write, Boolean

Example: The following example unhides all the sections in a document.

var SecCount = ActiveDocunent. Secti ons. Count
for (J =1 ; j <= SecCount ; j++)
if (ActiveDocunent. Sections[j].Visible == fal se)
ActiveDocunment. Sections[j].Visible = true

11-204 Properties

Width (Property)

Applies To: Line

Description: Returns or sets the value of the Lines Width property. This property effects the
size of the border of shape and control objects.

Action: Read-write, Integer
Example: The following example changes all the rectangles to have a border width of five
pixels.

var ShapeCount = ActiveDocunent. Sections["El S"]. Shapes. Count
var ShapesCol = ActiveDocunent. Sections["ElIS"]. Shapes
for (j =1 ; j <= ShapeCount ; j++)
if (ShapesCol [j].Type == bgShapeTypeRect angl e)
ShapesCol [j].Line.Wdth =5

Width (Property) 11-205

WindowState (Property)

Applies To: Application (Product Name Variable Only)

Description: Returns or sets the value of the applications WindowState property. This
property effects the display of the main application window. Using the
enumerated type BqWindowState the window can be minimized, maximized
or restored back to a default state.

Action: Read-write

Constants: The BqWindowState constant consists of the following values:
bqWindowStateMaximized
bqWindowStateMinimized

bqWindowStateNormal

Example: The following example checks if Product Name Variable is maximized, and
changes its state based on the result.

i f(Application. WndowState != bgW ndowSt at eMaxi mi zed)
Appl i cation. WndowSt ate = bgW ndowSt at eMaxi m zed
el se
Appl i cation. WndowSt at e = bgW ndowSt at eNor mal

11-206 Properties

JavaScript Examples

This chapter provides sample JavaScript scripts for these Brio Intelligence
tasks:

Displaying and Entering Values in a Text Box
Retrieving and Setting the Properties of an Object
Enabling and Disabling Controls

Controlling the Visibility of Graphics and Controls
Creating an OCE (connection file)

Displaying a Connection Login Box

Downloading Data Models

Displaying a Table Catalog

Adding Topics to a Data Model Section

Setting up Topic Object Variables

Adding Joins

Adding Items to the Request Line

Adding a Computed Column to a Query Request Line
Creating and Setting Variable Limits

Using the ODS User Name as a Limit

Using a Brio Intelligence 6.6 Limit Dialog Box and Storing Selected
Value in Text Box

Turning off the Page Headers for the First Page in the Report
Including Limit Values in the URL Submitted to the ODS
Turning off the Prompt To Save Dialog Box

Processing Queries Using “Prompt For Database Logon”

Processing Queries Using “Don’t Prompt For Database Logon”

12-1

Displaying and Entering Values in a Text Box

A Brio Intelligence text box provides users a way to display output to and
gather input from the application. You can write values to a text box or read
values from a text box. There are three events associated with a text box—
OnEnter, OnChange, and OnExit.

Uses for a text box in Run Mode include:
= Entering values

» Displaying values

» Displaying read-only information

= Validating data

= Calculating data

Example 1, Example , and Example show you how to attach JavaScript scripts
to the various text box events.

Example 1 /* OnEnter Event"enables CommandButton */
var sect_name="EI S ;
var ctrl _name=" CommandButtonl’;
Act i veDocunent . Sec-
tions[sect_nane]. Shapes[ctrl _nane]. Enabl ed = true;

/* OnChange Event- validates changes*/

var sect_name="EI S ;

var ctrl _nane=' Text Box1’;

if (ActiveDocunent. Sec-

tions[sect_nane]. Shapes[ctrl _nanme]. Text=="Hell 0")

Alert(‘Hello is an Invalid Entry’);

}

/* OnExit Event- increnments variable counter */
var sect_name="EI S ;

var ctrl _nane=' Text Box1’;

if (ActiveDocunent. Sec-

tions[sect_nane]. Shapes[ctrl_nane]. Text=="2")

{

X=X+1;

}

12-2 JavaScript Examples

Retrieving and Setting the Properties of an Object

Brio Intelligence objects have associated properties. The properties represent

attributes of an object. Some examples of properties include name, visible,

enabled, and text. Many of the properties can be set using the Properties dialog

box in the EIS section. Example , Example , and Example show you how to use

JavaScript to get and set properties for controls.

/* Get the value of the ListBox MiltiSel ect property*/
var sect_name="EI S ;

var ctrl _nane='Li st Box1’;

Text Box1. Text =

Act i veDocurnent . Secti ons[sect _nane] . Shapes[ctrl _nane]. Ml ti Se-
| ect;

/* Set the value of the CheckBox Checked property */
var sect_nanme="EI S ;

var ctrl _nane=' CheckBox1';

Act i veDocurnent . Sec-

tions[sect_nane]. Shapes[ctrl _nane]. Checked = true;

/* Get the value of the Radi oButton G oup property */
var sect_name="EI S ;

var ctrl _nane=' CheckBox1' ;

Text Box1. Text =

Act i veDocunent . Sec-

tions[sect_nane]. Shapes[ctrl _nane]. G oup;

Retrieving and Setting the Properties of an Object

12-3

Enabling and Disabling Controls

EIS graphics and control objects have an enabled property that determines
whether the object is enabled or disabled in EIS Run mode. When an object is
enabled, users can access the control and trigger events that can perform
actions. When an object is disabled, the object appears dimmed and does not
recognize events when a user attempts to access the control. The enabled
property is available from the Object page of the Properties dialog box for
graphics and control objects. Example and Example show how to
programmatically enable or disable a control.

/* Enabl es controls */

var sect_name="EI S ;

var ctrl _nane=' Text Box1';

Act i veDocunent . Sec-

tions[sect_nane]. Shapes[ctrl _nane]. Enabl ed

true,;

/* Disables controls */

var sect_nanme="EI S ;

var ctrl _name=" Text Box1’;

Act i veDocunent . Sec-

tions[sect_nane]. Shapes[ctrl _nane]. Enabl ed

f al se;

12-4

JavaScript Examples

Controlling the Visibility of Graphics and Controls

EIS graphics and control objects have a visible property that determines

whether the object is displayed in EIS Run mode. When an object is visible,
users can access the control and trigger events that can perform actions. When

an object is invisible, the object does not appear. The visible property is

available from the Object page of the Properties dialog box for graphics and

control objects. Example and Example show you how to programmatically

make a control visible or invisible.

/* Makes control Visible */
var sect_nanme="EI S ;
var ctrl _nane=' Text Box1';

Acti veDocunent . Secti ons[sect _nane] . Shapes[ctrl _nane]. Visi -

ble = true;

/* Makes control Invisible */
var sect_nanme="EI S ;
var ctrl _nane=' Text Box1’;

Acti veDocunent . Secti ons[sect _nane] . Shapes[ctrl _nane]. Visi -

ble = fal se;

Controlling the Visibility of Graphics and Controls

12-5

Creating an OCE (connection file)

Example shows the script to use to create an OCE (connection file).

/1l try to create sanple.oce from scratch.

/1l create SQLNet-Oracl e8 oce - save as sanpl e. oce
MyConnection = ActiveDocunent. Secti ons[" Query"]. Dat a-
Mbdel . Connecti on

MyConnecti on. Open("c: \\ OCEs\\ Sanpl e. oce")

MyConnecti on. Usernanme = "brio"

MyConnecti on. Set Passwor d(" bri o")

MyConnect i on. Connect ()

MyConnecti on. SaveAs("c:\\tenp\\sanpl e. oce")

Act i veDocurent . Secti ons[" Dat aMbdel "] . Dat aMbdel . Connec-
tion.Open("c:\\tenp\\astro8. oce")

/'l need to connect ?

Acti veDocurrent . Sect i ons[" Dat aMbdel "] . Dat aMbdel . Connecti on. User -
Name = "brio"

Acti veDocunent . Sect i ons[" Dat aMbdel "] . Dat aMbdel . Gonnect i on. Set Pass-
wor d("brio")

Act i veDocunent . Secti ons[" Dat aMbdel "] . Dat aMbdel . Connect i on. Con-
nect ()

Displaying a Connection Login Box

Example shows the script to use to display a connection login box.

Execut eBScri pt ("set | ogon root, 'OCENAME , 'd:\\program
files\\brio\\oces\\Astro SQLNet
Oracl e8. oce'; connect |ogon root")

12-6

JavaScript Examples

Downloading Data Models

Example shows the script to use to download a data model, standard query, or
standard query with report from the repository.

/1 downl oad a data nodel, standard query or standard query
with reports //froma local repository
/] (docurment nane to gain the download), (type of docu-

ment), (repository //owner) (group with access), (name of
docunent)

Execut eBScri pt ("downl oad doc root, 'SQR, 'ts'

, "PUBLI C ,
' Sal es")

Displaying a Table Catalog

Example shows the script to use to programmatically show a listing of the
available tables on your database.

/1 display table catal og

Act i veDocurent . Secti ons[" Dat aMbdel "] . Dat aMbdel . Cat a-
| 0og. Refresh()

Adding Topics to a Data Model Section

Example shows the script to use to add topics to a data model section.

/1 add topics to DatalMbdel section

Catltem = Acti veDocunent. Secti ons[" Dat avbdel "] . Dat a-
Mbdel . Cat al og. Cat al ogl t ens[" PCW_| TEMB"]

Act i veDocurrent . Secti ons[" Dat aMbdel "] . Dat aMbdel . Topi cs. Add(Cat -
Item

Adding Topics to a Data Model Section ~ 12-7

Setting up Topic Object Variables

Example shows the script to use to set up topic object variables.

/] setting up topic objects variables...

PCWtens = ActiveDocunent. Secti ons["Dat aMbdel "] . Dat a-
Model . Topi cs[" PCW I TEMB"]

PCWsal es = ActiveDocunent. Secti ons[" Dat aMbdel "] . Dat a-
Model . Topi cs[" PCW SALES"]

PCWCust oners = ActiveDocunent. Secti ons[" Dat aMbdel "]. Dat a-
Model . Topi cs[" PCW CUSTOVERS"]

PCWPer i ods = ActiveDocunent. Secti ons[" Dat aMbdel "] . Dat a-
Mbdel . Topi cs[" PCW PERI ODS"]

Adding Joins
Example shows the script to use to add a join.

/1 add join between PCW PERI ODS (Day) and PCW SALES
(Order _Dat e)
PCWpPer i ods_Day = PCWperi ods. Topicltens["Day"]
PCWGal es_OrderDate = PCWsal es. Topi cltens[" Order _Date"]
Day_OrderDate_Join = ActiveDocunent. Sections["Dat a-
Model "] . Dat a-
Model . Joi ns. Add(PCWper i ods_Day, PCWsal es_Or der Dat e,
bgJoi nSi npl eEqual)

12-8 JavaScript Examples

Adding Items to the Request Line

Example shows the script to use to add items to the request line.

/1 add itens to the request line

Act i veDocurnent . Sec-

tions["Query"].Requests. Add(" PCW CUSTOVERS", "Store")
Act i veDocurnent . Sec-

tions["Query"].Requests. Add("PCW SALES", "Store_ld")
Act i veDocunent . Sec-

tions["Query"].Requests. Add(" PCW SALES", "O der_Date")
Act i veDocurnent . Sec-

tions["Query"].Requests. Add(" PCW SALES", "Delivery_Date")
Act i veDocurnent . Sec-

tions["Query"].Requests. Add(" PCW SALES", "Units")

Act i veDocurnent . Sec-

tions["Query"].Requests. Add(" PCW SALES", "Anmpunt")

Act i veDocunent . Sec-

tions["Query"].Requests. Add(" PCW CUSTOMERS", "City")
Act i veDocurnent . Sec-

tions["Query"].Requests. Add(" PCW CUSTOVERS", "State")
Act i veDocunent . Sec-

tions["Query"].Requests. Add(" PCW PERI ODS", "Year")

Adding a Computed Column to a Query Request Line

Example shows the script to use to add a computed column to a query request
line.

/1 add conmputed columm to Query request line -

Amount / Uni ts

Act i veDocument . Secti ons[" Query"]. Request s. AddConput edl t em
("Conpltent, "Amount/ Uni ts", 3)

Adding a Computed Column to a Query Request Line 12-9

Creating and Setting Variable Limits

Example shows the script to use to create and set variable limits.

/'l create and set variable limt - Store_ld

mylimt = ActiveDocunment. Sections["Query"].Linmts.Create-
Limt("PCWSALES. Store_Id")

mylimt. Operator = bqgLi m t OperatorLessThanOr Equal

myl i mt. CustonVal ues. Add(10)

mylimt. Sel ect edVval ues. Add(10)

Act i veDocurnent . Sections["Query"].Limts. Add(nylimt)
mylimt.VariableLimt = true

Using the ODS User Name as a Limit

The script in Example shows how to specify the ODS user name as a limit.

Act i veDocument . Sections["Query"].Limts[1]. Sel ectedVal -
ues. RenoveAl | ()

Acti veDocunent . Sections[" Query"]. Li mts[1]. Sel ect edval ues. Add(Act i veDocu-
ment . ODSUser nane)

Using a Brio Intelligence 6.6 Limit Dialog Box and
Storing Selected Value in Text Box

The script in Example shows how to use a Brio Intelligence 6.6 Limit dialog
box and store the selected value in a text box.

ExecuteBScript("nmodify limt root.' Pcw Custonmers'.'Store
Type'.' Store Type'")

var limt = ActiveDocunent. Sections["Query"].Lim
its["Store Type"]

var Text Box = ActiveSection. Shapes[" Text Box1"]

if (!limt.Ignore)

{

Text Box. Text = limt. Sel ect edVal ues[1]

}

el se

{
Text Box. Text

}

12-10 JavaScript Examples

Turning off the Page Headers for the First Page in the Report

The script in Example shows how to turn off page headers for the first page in
the report.

if (PageNms=1)
t

el se
{"Query Processed: "+ Format(new Date(), "d-mmyyyy")}

Including Limit Values in the URL Submitted to the ODS

The script in Example shows how to include limit values in the URL
submitted to the OnDemand Server.

Start Up Script includes:

with (Application)
{passedStore_l d=Session. URL["Store_1d"]};

URL includes:

http://tni ckni sh/ ods-i sapi/ ods. ods?
Met hod=get Docunent &Docnane=Java. bqy-
Java&Store_| d=2&JScri pt =

enabl e

EIS button includes:

Act i veDocunent . Secti ons[" Query"].Li mts[1].CustonVal -
ues. RenoveAl | ()

Act i veDocunent . Secti ons[" Query"].Li mts[1].CustonVal -
ues. Add(passedSt ore_Id)

Act i veDocument . Sections["Query"].Limts[1]. Sel ectedVal -
ues. Add(passedSt ore_Id)

Turning off the Prompt To Save Dialog Box

The script in Example shows how to shut down the Brio Intelligence
application on an OnShutdown event.

Application. Quit(false)

Turning off the Prompt To Save Dialog Box 12-11

Processing Queries Using “Don’t Prompt For Database Logon”

The script in Example shows you how to process multiple queries against
different databases in the ODS using the Don’t Prompt For Database Logon
option.

In the ODS, your document is registered with a particular OCE. You also
specify whether to prompt the user for a database logon.

When you use the Don’t Prompt For Database Logon option, you use the
connection information stored in the OCEs registered with your ODS.

To use this script, insert Query sections, go to each Query section and connect
each one to a different database. Create a query from that database. You can
add or subtract Query sections as appropriate. This script works with any
number of Query sections.

Register this document to the ODS with the Don’t Prompt For Database Logon
option.

Console. Witeln("Start")
Consol e. Witel n("Stepla")
for (i = 1; i <=ActiveDocunent. Sections. Count ; i++)

{
if (ActiveDocunent. Sections[i].Type == bqQuery)

{

Console. Witeln("Step 1b, " + ActiveDocunent. Sec-
tions[i].Nane + " is a query section")

try

{

Act i veDocurent . Sections[i]. Process()

catch(e)

{

Console. Witeln("Step 1c, " + ActiveDocunent. Sec-
tions[i].Name + " failed, produced this error: "+
String(e))

}

Consol e. Witeln("Stepld, Processed " + ActiveDocu-
ment . Secti ons[i]. Name)

}

el se

{ , .

Console. Witeln("Step le, " + ActiveDocunent. Sec-
tions[i].Nane + " is not a query section")

}

Consol e. Witel n("Step2")

Act i veDocurent . Sections["Results"]. Activate()
Consol e. Witel n("Step3")

Consol e. Witel n("End")

12-12

JavaScript Examples

Processing Queries Using “Prompt For Database Logon”

The scripts in Example and Example shows you how to process multiple
queries against different databases in the ODS using the Prompt For Database
Logon option.

In the ODS, your document is registered with a particular OCE. You also
specify whether to prompt the user for a database logon.

When you use the Prompt For Database Logon option, the user must specify
the user name and password for that database. The user can either enter the
information into text boxes within an EIS section, or the information can be
placed directly into the script. The latter option must be used if the logons take
place in a startup document script before the user has a chance to input the
user name and password.

To use this script, insert query sections, go to each Query section and connect
each one to a different database. Create a query from that database. You can
add or subtract Query sections as appropriate. For queries against different
databases with different logon information, you must know in advance for
which database you are supplying the username and password. You must make
sure the right OCE is associated with that Query section when you register the
document to the ODS.

Processing Queries Using “Prompt For Database Logon” 12-13

This script shows you how to connect and process with embedded user IDs and
passwords.

Console. Witeln("Start multi query pronpt for db ODS
| ogon")

/] Connect to and Process first Query section

Consol e. Witel n("Stepl")

MyCon = ActiveDocunent. Sections[" Query"]. Dat aModel . Con-
nection

Consol e. Witel n("Step2")

MyCon. User nanme = "queryluserid"

Al ert ("Usernanme set")

Consol e. Witel n("Step3")

My Con. Set Passwor d(" quer ylpasswd")

Al ert ("Password set")

Consol e. Witel n("Step4a")

try

{

Act i veDocunent . Sections[" Query"]. Process()

Consol e. Witel n("Step4b, processed section Query")

catch(e)

Consol e. Witel n("Step4c, Query section process failed,
produced this error: "+ String(e))

}

/1 Connect to and Process second Query section

Consol e. Witel n("Step5")

MyCon2 = ActiveDocunent. Secti ons["Query2"]. Dat aMbdel . Con-
nection

Consol e. Witel n("Step6")

MyCon2. User name = "query2userid"
Al ert ("Usernanme set")

Consol e. Witel n("Step7")

MyCon2. Set Passwor d(" query2passwd")
Al ert ("Password set")

Consol e. Witel n("Step8a")

try

{

Act i veDocument . Sections[" Query2"]. Process()
Consol e. Witel n("Step8b, processed section Query")

catch(e)

Consol e. Witel n("Step8c, Qery2 process failed, produced
this error: "+ String(e))

}

Consol e. Witel n("Step9")
Consol e. Witeln("End nulti query pronpt for db ODS
| ogon")

12-14

JavaScript Examples

This script shows you how to connect and process with user-supplied user IDs
and passwords. You must include username text and password text.

Console. Witeln("Start multi query pronpt for db ODS
| ogon")

/] Connect to and Process first Query section
Consol e. Witel n("Stepl")

MyCon = ActiveDocunent. Sections[" Query"]. Dat aMbdel . Con-
nection

Consol e. Witel n("Step2")

MyCon. User name = User naneText . Text

Consol e. Witel n("Step3")

My Con. Set Passwor d(Passwor dText . Text)

Consol e. Witel n("Step4")

try

{

Act i veDocurent . Secti ons[" Query"]. Process()
Consol e. Witel n("Step4b, processed section Query")

catch(e)

Console. Witeln("Step4c, " + ActiveDocunent. Sec-
tions[i].Name + " failed, produced this error: "+
String(e))

}

/] Connect to and Process second Query section
Consol e. Witel n("Step5")

MyCon = ActiveDocunent. Sections[" Query"]. Dat aModel . Con-
nection

Consol e. Witel n("Step6")

MyCon. User name = User naneText 2. Text

Consol e. Witel n("Step7")

My Con. Set Passwor d(Passwor dText 2. Text)

Consol e. Witel n("Step8a")

try

{

Act i veDocument . Secti ons[" Query2"]. Process()
Consol e. Witel n("Step8b, processed section Query")

catch(e)

Console. Witeln("Step8c, " + ActiveDocunent. Sec-
tions[i].Name + " failed, produced this error: "+
String(e))

}

Act i veDocurent . Secti ons["Resul ts"]. Activate()
Consol e. Witel n("Step9")

Consol e. Witeln("End nulti query pronpt for db ODS
| ogon")

El S Properties

Processing Queries Using “Prompt For Database Logon”

12-15

12-16 JavaScript Examples

Object Model Map

This appendix provides a detailed map of how objects relate to one another
within the Product Name Variable object model. The object model map is
divided according to these levels and/or sections of the object tree:

Object Model Hierarchy
Application Level

Active Document Level

Query Section

EIS Section

Chart Section

Results, Report, and Pivot Sections

Table and OLAPQuery Sections

13-1

Object Model Hierarchy

The object model map is an expanded view of selected objects in the object
model hierarchy, as seen in the EIS Script Editor. It starts at the highest level—
the Application level—and drills down through the object hierarchy. The top
levels of the object model heirarchy include:

= Application Level

» Active Document Level

= Sections
Application Level ——————f=1- & application ii
[#-_] Methods

[#-_] Properties

- Documents

= @ ActiveD ocument
[#-_] Methods

[#-_] Properties

=@ Sections

[#-_] Methods
[#-_] Properties

- @ SalesQuery
1 Methods
__1 Properties
@ DataMaodel
1 Requests

Active Document Level

Sections

Expanded Query Secti

) AgaregateLimits
2 Sortltems

1 AppendQueries
H- @ SalesResults

H- @l EIS

H- @ BooksTable

H- @ BooksChart

frn B A e B

Kl

13-2 Object Model Map

Application Level

Appl i cation
Docunent s DocNarne
Secti ons
Active Docunent
Last Saved
Active Sectign
St andar d
Formatting
Tool bars
Secti ons
Navi gati on
Recent Files It em Nunber
Consol e
URL
Sessi on Form
Cooki es

Application Level 13-3

Active Document Level

Application

Active Docunen
(Doc Narre)

it

Secti ons
— El'S
Report
Query
— Resul ts
Tabl e
Chart
— Pi vot
Dat aMbdel
QLAPQuery
Last Saved

13-4

Object Model Map

Query Section

Application

Sections

Query Secti on|

Connecti on

Met aDat a
Connecti on

Resul ts

Cat al ogl t ens |—| Tabl eNane |
\
w Joi nNunber | | Topi cl tem\karre|

— Dat a Model

Limts Topi cl tent

Local Result§ Topi cl ten?

— Request s

Avai | abl eVal ug

— Limts

Cust onVal ues l——' Li m t Val ue

— Sortltens

Sel ect edVal ueg

—— AppendQuery

Query (base)
Query (append

Request Num

g
vl bl vl

Cust onVal ues |——| Li m t Val ue

Sel ect edVal ueq

Query Section

13-5

EIS Section

Application

Active Docunent

Sections

EI'S

Shapes

—‘ﬂ,—' Sel ect edLi st |—|

Fill |—| Font

]

Font |

ComandBut t on

Text Box

Li st Box

Text Label Font |—|

Fill |—| Li ne

Hori zont al Li ne

-

Li ne Li ne

Vertical Li ng

Picture
Fill

Li ne

N

Rectangl e

EnbeddedSecti o

I

13-6

Object Model Map

Chart Section

Application

XCat egori es(

Acti ve Docunen

it

Facts(O)

ZCat egori es(C

XLabel s

Sections
\
Zlabel s
Chart 1

Bar Char t

Pi eChart

Li neChart

Label Axi s

Val ueAxi s

il Ak
A

XCat egori es(O

ZCat egori es(Q

Label Val ues

Bar Li neChart

AreaChart

XAXi s

YAXi s

Left Axi s

Ri ght Axi s

Legend

|

Itens

—

Item

Chart Section

13-7

Results, Report, and Pivot Sections

Application

Active Docunent

Sections

—' Col ums |—| Col um |
Resul ts | Linits |—| Limit

—' Sortltemns |—| Sortltem |
Reports

TopLabel s
Pi vot Label

Pivots — Si deLabel s

4|

Fact s

|

Pi vot Fact |

Dat aLabel s

Cor ner Label s

Avai | abl eVal ug

Cust onVal ues |—

4|

Li mi t Val ue

Sel ect edVal ueg

13-8 Object Model Map

Table and OLAPQuery Sections

Appl i cation

Acti ve Docunent

Section

Tabl e

Col ums

Limts

Sortltens

Connecti on

CLAP Query

TopLabel s

SortltenNane

Si deLabel s

TopLabel Num

Measur es

Si deLabel Num

Slicers

TopLabel Nare

Sl i cer Nunber

Table and OLAPQuery Sections

13-9

13-10 Object Model Map

PART 1V

General JavaScript Reference

JavaScript Operators

This chapter provides detailed information on JavaScript operators and
operator precedence. It contains:

= Arithmetic Operators
= Assignment Operators
= Bitwise Operators

» Comparison Operators
» Logical Operators

= String Operators

= Special Operators

14-1

Arithmetic Operators

Arithmetic operators, described in Table 14-1, take numerical values (either

literals or variables) as their operands and return a single numerical value.

Table 14-1

Arithmetic Operators

Operator

Description

+

++

(Addition) Adds 2 numbers.

(Increment) Adds one to a variable representing a number (returning either the
new or old value of the variable). The increment operator is used as follows:

var ++ or ++var

The increment operator increments (adds one to) its operand and returns a value.
If it is used postfix, with operator after operand (for example, x++), then it returns
the value before incrementing. If it is used prefix with operator before operand (for
example, ++x), then it returns the value after incrementing.

For example, if x is three, then the statement y = x++ sets y to 3 and increments x
to 4. If xis 3, then the statement y = ++x increments x to 4 and sets y to 4.

(Decrement) Subtracts one from a variable representing a number (returning either
the new or old value of the variable). The decrement operator is used as follows:

var-- or --var

The decrement operator decrements (subtracts one from) its operand and returns
a value. If it is used postfix (for example, x--), then it returns the value before dec-
rementing. If it is used prefix (for example, --x), then it returns the value after dec-
rementing.

For example, if x is three, then the statement y = x-- sets y to 3 and decrements x
to 2. If xis 3, then the statement y = --x decrements x to 2 and sets y to 2.

(Unary negation, subtraction) As a unary operator, negates the value of its argu-
ment. As a binary operator, subtracts two numbers.

The unary negation operator precedes its operand and negates it. For example, y
= - X negates the value of x and assigns that to y; that is, if x were 3,y would
get the value -3and x would retain the value 3.

14-2

JavaScript Operators

Table 14-1 Arithmetic Operators (Continued)

Operator Description

* (Multiplication) Multiplies two numbers.
/ (Division) Divides two numbers.
% (Modulus) Computes the integer remainder of dividing two numbers.The modulus

operator is used as follows:
varl % var?2

The modulus operator returns the first operand modulo the second operand, that
is, var 1 modulo var 2, in the preceding statement, where var 1 and var 2 are
variables. The modulo function is the integer remainder of dividing var 1 by

var 2.

For example, 12 % 5 returns 2.

Assignment Operators

Assignment operators assign a value to a left operand based on the value of a
right operand. The basic assignment operators are described in Table 14-2.The
other assignment operators, described in Table 14-3, are shorthand for
standard operations.

Table 14-2 Assignment Operators

Operator Description

= Assigns the value of the second operand to the first operand.
+= Adds two numbers and assigns the result to the first.

-= Subtracts two numbers and assigns the result to the first.

*= Multiplies two numbers and assigns the result to the first.

/= Divides two numbers and assigns the result to the first.

%= Computes the modulus of two numbers and assigns the result to the first.
&= Performs a bitwise AND and assigns the result to the first operand.

A= Performs a bitwise XOR and assigns the result to the first operand.

Assignment Operators ~ 14-3

Table 14-2

Assignment Operators (Continued)

Operator

Description

Performs a bitwise OR and assigns the result to the first operand.

>>= Performs a sign-propagating right shift and assigns the result to the first operand.
>>>= Performs a zero-fill right shift and assigns the result to the first operand.
Table 14-3 Shorthand Assignment Operators

Shorthand

Operator Meaning

X+=y X=Xx+y

X-=y X=X-Yy

X*=y Xx=x*y

x/=y X=x/y

X %=y X=x%y

X <<=y X=Xx<<y

X>>=y X=X>>y

X>>>=y X=X>>>y

Xx&=y x=x&y

XA=y X=x"y

X|=y x=x|y

14-4

JavaScript Operators

Bitwise Operators

Bitwise operators, described in Table 14-4, treat their operands as a set of bits
(zeros and ones), rather than as decimal, hexadecimal, or octal numbers. For
example, the decimal number nine has a binary representation of 1001. Bitwise
operators perform their operations on such binary representations, but they
return standard JavaScript numerical values.

Table 14-4 Bitwise Operators

Operator Description

& (Bitwise AND) Returns a one in each bit position if bits of both operands are ones.
The Bitwise AND operator is used as follows:

aé&hb
Returns a one in each bit position if bits of both operands are ones.

A (Bitwise XOR) Returns a one in a bit position if bits of one, but not if both oper-
ands are one. The bitwise XOR operator is used as follows:

a™b
Returns a one in a bit position if bits of one, but not both operands are one.

(Bitwise OR) Returns a one in a bit if bits of either operand is one. The Bitwise OR
operator is used as follows:

al b
Returns a one in a bit if bits of either operand is one.

~ (Bitwise NQT) Flips the bits of its operand. The Bitwise NOT operator is used as fol-
lows:

~ a
Flips the bits of its operand.

<< (Left shift) Shifts its first operand in binary representation the number of bits to the
left specified in the second operand, shifting in zeros from the right. The Left shift
operator is used as follows:

a<<b

Shifts a in binary representation b bits to left, shifting in zeros from the right.

Bitwise Operators 14-5

Table 14-4 Bitwise Operators (Continued)

Operator Description

>> (Sign-propagating right shift) Shifts the first operand in binary representation the
number of bits to the right specified in the second operand, discarding bits shifted
off. The Sign-propagating right shift operator is used as follows:

a>b
Shifts a in binary representation b bits to right, discarding bits shifted off.

>>> (Zero-fill right shift) Shifts the first operand in binary representation the number of
bits to the right specified in the second operand, discarding bits shifted off, and
shifting in zeros from the left. The zero-fill right shift operator is used as follows:

a>>nb

Shifts a in binary representation b bits to the right, discarding bits shifted off,
and shifting in zeros from the left.

Bitwise Logical Operators
Conceptually, the bitwise logical operators work as follows:

1. The operands are converted to thirty-two-bit integers and expressed by a
series of bits (zeros and ones).

2. Each bit in the first operand is paired with the corresponding bit in the
second operand: first bit to first bit, second bit to second bit, and so on.

3. The operator is applied to each pair of bits, and the result is constructed
bitwise.

For example, the binary representation of nine is 1001, and the binary
representation of fifteen is 1111. So, when the bitwise operators are applied to
these values, the results are as follows:

15 & 9 yields 9 (1111 & 1001 = 1001)

15 | 9 yields 15 (1111 | 1001 = 1111)
15 A~ 9 yields 6 (1111 A 1001 = 0110)

14-6

JavaScript Operators

Bitwise Shift Operators

The bitwise shift operators, described in Table 14-5, take two operands: the
first is a quantity to be shifted, and the second specifies the number of bit
positions by which the first operand is to be shifted. The operator used
controls the direction of the shift operation

Shift operators convert their operands to thirty-two-bit integers and return a
result of the same type as the left operator.

Table 14-5 Bitwise Shift Operators

Operator Description

<< (Left Shift) This operator shifts the first operand the specified number of bits to the
left. Excess bits shifted off to the left are discarded. Zero bits are shifted
in from the right.

For example, 9<<2 yields thirty-six, because 1001 shifted two bits to
the left becomes 100100, which is thirty-six.

>> (Sign-Propagating This operator shifts the first operand the specified number of bits to the
Right Shift) right. Excess bits shifted off to the right are discarded. Copies of the left-
most bit are shifted in from the left.

For example, 9>>2 yields two, because 1001 shifted two bits to the
right becomes 10, which is two. Likewise, - 9>>2 yields -3, because
the sign is preserved.

>>> (Zero-Fill Right This operator shifts the first operand the specified number of bits to the
Shift) right. Excess bits shifted off to the right are discarded. Zero bits are
shifted in from the left.

For example, 19>>>2 yields four, because 10011 shifted two bits to
the right becomes 100, which is four. For non-negative numbers, zero-
fill right shift and sign-propagating right shift yield the same result.

Bitwise Operators 14-7

Comparison Operators

A comparison operator compares its operands and returns a logical value
based on whether the comparison is true or not. The operands can be
numerical or string values. When used on string values, the comparisons are
based on the standard lexicographical ordering.

Table 14-6 describes the comparison operators. In the examples in Table 14-6,
assume var 1 has been assigned the value 3 and var 2 has been assigned the
value 4.

Table 14-6 Comparison Operators

Operator Description

== (Equal) Returns true if the operands are equal. For example:
3 ==varl

I= (Not equal) Returns true if the operands are not equal. For example:

varl !'= 4
> (Greater than) Returns true if left operand is greater than right operand. For exam-
ple:

var2 > varl

>= (Greater than or equal) Returns true if left operand is greater than or equal to right
operand. For example:

var2 >= varl
varl >= 3

< (Less than) Returns true if left operand is less than right operand. For example:
varl < var2

<= (Less than or equal) Returns true if left operand is less than or equal to right oper-
and. For example:

varl <= var?2
var2 <= 5

14-8 JavaScript Operators

Logical Operators

Example

Logical operators, described in Table 14-7, take Boolean (logical) values as

operands and return a Boolean value.

Table 14-7

Logical Operators

Operator Description

&&

(Logical AND) Returns true if both logical operands are true. Otherwise, returns
false. The Logical AND operator is used as follows:

exprl && expr2

Returns expr 1 if it converts to false. Otherwise, returns expr 2.

(Logical OR) Returns true if either logical expression is true. If both are false,
returns false. The Logical OR operator is used as follows:

exprl || expr2

Returns expr 1 if it converts to true. Otherwise, returns expr 2.

(Logical negation) If its single operand is true, returns false; otherwise, returns

true.

Consider the following script:
"Cat";
" Dog’;
fal se;

vl
v2
v3

Console. Wite("t &&
Console. Wite("f &&
Console. Wite("t &&
Console. Wite("f &&

Console. Wite("t ||
Console. Wite("f ||
Console. Wite("t ||
Console. Wite("f ||

(I
— —h —~+ —+

— —h —+ —~+

Console. Wite("!t returns " +
Console. Wite("!f returns " +

returns
returns
returns
returns

returns
returns
returns
returns

(vl
(v3
(vl
(v3

(vl
(v3
(vl
(v3

('v1));
('v3));

+ + + +

++ + +

EERR

v2));
v1));
v3));

v2));
vl));
v3));
(3 ==

4)));

4)));

Logical Operators

14-9

This script displays the following:

&& t returns Dog
& & t returns false
& returns fal se
& returns fal se
returns Cat
returns Cat
returns Cat
returns false
t returns false

f returns true

T T R
—h —h —+ —~+ —h —h

t
f
t
f
t]]
foll
t]]
£l
'tr
!

Short-Circuit Evaluation

As logical expressions are evaluated left to right, they are tested for possible
“short-circuit” evaluation using these rules:

false & anything is short-circuit evaluated to fal se.
true || anything is short-circuit evaluated to true.

The rules of logic guarantee that these evaluations are always correct. Note that
the anyt hi ng part of the above expressions is not evaluated, so any side
effects of doing so do not take effect.

String Operators

Use the the concatenation operator (+) to concatenate two string values
together and areturn another string that is the union of the two operand
+ "string" returns the string" my string".

strings. For example, " nny

The shorthand assignment operator += can also be used to concatenate
strings. For example, if the variable mystring has the value “alpha,” then the
expression nystring += "bet" evaluates to “alphabet” and assigns this
value to mystring.

Table 14-8 describes the string operators.

Table 14-8 String Operators

Operator Description

+ (String addition) Concatenates two strings.

+= Concatenates two strings and assigns the result to the first operand.

14-10 JavaScript Operators

Special Operators

Syntax

Parameters

Description

This section explains the syntax, parameters, and descriptions for the special
operators used in JavaScript, which are listed in Table 14-9.

Table 14-9 Special Operators

Operator Description

?: Lets you perform a simple “if...then...else.”

Evaluates two expressions and returns the result of the second expression.

delete Lets you delete an object property or an element at a specified index in an array.

new Lets you create an instance of a user-defined object type or of one of the built-in
object types.

this Keyword that you can use to refer to the current object.

typeof Returns a string indicating the type of the unevaluated operand.

void Specifies an expression to be evaluated without returning a value.

?: (Conditional operator)

The condi ti onal operator is the only JavaScript operator that takes three
operands. This operator is frequently used as a shortcut for the i f statement.

condition ? exprl : expr2

Condi ti on — An expression that evaluates to either true or false.

expr 1, expr 2 — Expressions with values of any type.

If condition is true, the operator returns the value of expr1; otherwise, it
returns the value of expr 2. For example, to display a different message based
on the value of the isMember variable, you could use this statement:

Console. Wite ("The fee is " + (isMenber ? "$2.00"
"$10.00"))

Special Operators 14-11

Syntax
Parameters

Description

Syntax

Parameters

Description

, (comma operator)

The comma operator evaluates both of its operands and returns the value of the
second operand.

exprl, expr2
expr 1, expr 2 — Any expressions.

You can use the comma operator when you want to include multiple
expressions in a location that requires a single expression. The most common
usage of this operator is to supply multiple parameters in a f or loop.

For example, if a is a 2-dimensional array with 10 elements on a side, the
following code uses the comma operator to increment two variables at once.
The code prints the values of the diagonal elements in the array:

for (var i=0, j=10; i <= 10; i++, j--)
Console. Wite("a["+i +","+j+"']=" + a[i,j])

delete

The del et e operator deletes an object’s property or an element at a specified
index in an array.

del et e obj ect Nane. property
del et e obj ect Nane[i ndex]
del ete property

obj ect Nane — The name of an object.
pr operty — An existing property.

i ndex — An integer representing the location of an element in an array.

The third form is legal only within a wi t h statement.

If the deletion succeeds, the del et e operator sets the property or element to
undefined. del et e always returns undefined.

14-12 JavaScript Operators

Syntax

Arguments

Description

new
The newoperator lets you create an instance of a user-defined object type or of
one of the built-in object types that has a constructor function.

obj ect Nane = new obj ect Type (paranl [, paran?]
...[,param\])

obj ect Nane — Name of the new object instance.
obj ect Type — Must be a function that defines an object type.

parani. . . par anN - Property values for the object. These properties are
parameters defined for the obj ecType function.

Creating a user-defined object type requires two steps:
1. Define the object type by writing a function.

2. Create an instance of the object with new.

To define an object type, create a function for the object type that specifies its
name, properties, and methods. An object can have a property that is itself
another object. See the examples that follow.

You can always add a property to a previously defined object. For example, the
statement car 1. col or = "bl ack" addsa property col or tocar 1, and
assigns it a value of black. However, this does not affect any other objects. To
add the new property to all objects of the same type, you must add the
property to the definition of the car object type.

You can add a property to a previously defined object type by using the
Functi on. pr ot ot ype property. This defines a property that is shared by all
objects created with that function, rather than by just one instance of the
object type. The following code adds a col or property to all objects of type
car, and then assigns a value to the col or property of the object carl.

Car . pr ot ot ype. col or=nul |
carl.col or="bl ack"
bi rt hday. descri pti on="The day you were born"

Special Operators 14-13

Examples Example 1: object type and object instance. Suppose you want to create an object
type for cars. You want this type of object to be called car, and you want it to
have properties for make, model, and year. To do this, you would write the
following function:

function car (make, nodel, year) {
t hi s. make = nake
t hi s. nodel = nodel
this.year = year

}

Now you can create an object called mycar as follows:

mycar = new car("Eagle", "Talon TSi ", 1993)
This statement creates nmycar and assigns it the specified values for its

properties. Then the value of nycar . make is the string “ Eagl e, ”
nycar. year isthe integer 1993, and so on.

You can create any number of car objects by calls to new For example,

kenscar = new car ("N ssan", "300zZX', 1992)

Example 2: object property that is itself another object. Suppose you define an
object called person as follows:

functi on person(nane, age, sex) {
t hi s. name = nane
t hi s. age age
t his. sex sex

}

And then instantiate two new per son objects as follows:

rand = new person("Rand McNal ly", 33, "M)
ken = new person("Ken Jones", 39, "M)

Then you can rewrite the definition of car to include an owner property that
takes a person object, as follows:

function car(make, nodel, year, owner) {
this. mmke = nake;
this. model = nodel;
this.year = year;
t his. owner = owner;

}

14-14 JavaScript Operators

Syntax

Examples

To instantiate the new objects, you then use the following:

carl
car2

new car ("Eagl e", "Talon TSi", 1993, rand);
new car ("N ssan", "300zX", 1992, ken)

Instead of passing a literal string or integer value when creating the new
objects, the above statements pass the objects r and and ken as the parameters
for the owners. To find out the name of the owner of car 2, you can access the
following property:

car 2. owner . nane

this
A keyword that you can use to refer to the current object. In general, in a
method t hi s refers to the calling object.

t hi s[. propertyNane]

Suppose a function called val i dat e validates an object's value property,
given the object and the high and low values:

function validate(obj, lowal, hival) {
if ((obj.value < lowal) || (obj.value > hival))
Alert("Invalid Value!")

typeof

The typeof operator is used in either of the following ways:

= typeof operand

= typeof (operand)

The t ypeof operator returns a string indicating the type of the unevaluated

operand. operand is the string, variable, keyword, or object for which the type
is to be returned. The parentheses are optional.

Suppose you define the following variables:

var nmyFun = new Function("5+2")
var shape="round"

var size=1

var today=new Date()

Special Operators 14-15

The t ypeof operator returns these results:

typeof myFun i s object
t ypeof shape is string
t ypeof size is number
typeof today is object
t ypeof dont Exi st is undefined

For the keywords t r ue and nul | , the t ypeof operator returns these results:

typeof true is bool ean
typeof null is object

For a number or string, the t ypeof operator returns these results:

typeof 62 is number
typeof 'Hello world is string

For property values, the t ypeof operator returns the type of value the
property contains:
t ypeof docunent.lastMdified is string

t ypeof w ndow. |l ength is nunber
typeof Math.LN2 is nunber

For methods and functions, the t ypeof operator returns results as follows:

typeof blur is function

typeof eval is function

typeof parselnt is function

t ypeof shape.split is function

For predefined objects, the t ypeof operator returns results as follows:

typeof Date is function
typeof Function is function
typeof Math is function
typeof Option is function
typeof String is function

void

The void operator is used in either of the following ways:
= void (expression)

= Vvoi d expression

The void operator specifies an expression to be evaluated without returning a
value. expr essi on is a JavaScript expression to evaluate. The parentheses
surrounding the expression are optional, but it is good style to use them.

14-16 JavaScript Operators

Statements

This chapter describes all JavaScript statements. JavaScript statements consist
of keywords used with the appropriate syntax. A single statement may span
multiple lines. Multiple statements may occur on a single line if a semicolon
separates each statement.

Syntax conventions: All keywords in syntax statements are in bold. Words in
italics represent user-defined names or statements. Any portions enclosed in
square brackets, [|, are optional. {statements} indicates a block of statements,
which can consist of a single statement or multiple statements delimited by a
curly braces { }.

15-1

Table 15-1 summarizes the JavaScript statements. Detailed descriptions of each
statement follow the table.

Table 15-1 JavaScript Statements

Statement Description

break Statement that terminates the current while or for loop and transfers program
control to the statement following the terminated loop.

comment Notations by the author to explain what a script does. The interpreter ignores
comments.
continue Statement that terminates execution of the block of statements in a while or

for loop, and continues execution of the loop with the next iteration.
delete Deletes an object's property or an element of an array.

do...while Executes its statements until the test condition evaluates to false. Statement
is executed at least once.

for Statement that creates a loop that consists of three optional expressions,
enclosed in parentheses and separated by semicolons, followed by a block of
statement executed in the loop.

for...in Statement that iterates a specified variable over all the properties of an
object. For each distinct property, JavaScript executes the specified state-
ments.

function Statement that declares a JavaScript functionnamewith the specified parame-

ters. Acceptable parameters include strings, numbers, and objects.

if...else Statement that executes a set of statement if a specified condition is true. If
the condition is false, another set of statementscan be executed.

labeled Provides an identifier that can be used with break or continue to indicate
where the program should continue execution.

return Statement that specifies the value to be returned by a function.

switch Allows a program to evaluate an expression and attempt to match the expres-
sion's value to a case label.

var Statement that declares a variable, optionally initializing it to a value.

while Statement that creates a loop that evaluates an expression, and if it is true,
executes a block of statements

with Statement that establishes the default object for a set of statements

15-2 Statements

break

Function

Syntax
Argument

Description

Examples

Terminates the current whi | e or f or loop and transfers program control to
the statement following the terminated loop.

br eak
br eak | abel

| abel
Identifier associated with the label of the statement.

The br eak statement can now include an optional label that allows the
program to break out of a labeled statement. This type of break must be in a
statement identified by the label used by break.

The statements in a labeled statement can be of any type.

The following function has a br eak statement that terminates the whi | e loop
when e is 3, and then returns the value 3 * x.

function testBreak(x) {

var i =0
while (i < 6) {
if (i ==3)
br eak
| ++
}

return i *x

}

In the following example, a statement labeled checki andj contains a
statement labeled checkj . If br eak is encountered, the program breaks out
of the checkj statement and continues with the remainder of the

checki andj statement. If br eak had a label of checki andj, the program
would break out of the checki andj statement and continue at the statement
following checki and;j .

break 15-3

checki andj

if (4==i) {
print("You' ve entered " + i);
checkj : .
it (2==5)) {
print("You' ve entered " + j);
break checkj;
Console. Wite("The sumis " + (i+j));
}
Console.Wite(i + "-" +j + "=" + (i-j));
}
See also | abel ed, switch

15-4 Statements

comment

Function

Syntax

Description

Examples

Comments are notes by the author explaining what the script does. The
interpreter ignores comments.

/1 comrent text
/* multiple line coment text */

JavaScript supports Java-style comments:
Comments on a single line are preceded by a double-slash (//).

Comments that span multiple lines are preceded by a /* and followed by a */.
/1 This is a single-line comment.

/* This is a multiple-line cooment. It can be of any |length, and
you can put whatever you want here. */

comment 15-5

continue

Function

Syntax
Argument

Description

Examples

Terminates execution of the block of statements in a whi | e or f or loop, and
continues execution of the loop with the next iteration.

conti nue
conti nue | abel

Label
Identifier associated with the label of the statement.

In contrast to the br eak statement, cont i nue does not terminate the
execution of the loop entirely: instead in a whi | e loop, it jumps back to the
condi tion;inaf or loop, it jumps to the updat e expression.

The cont i nue statement can now include an optional label that allows the
program to terminate execution of a labeled statement and continue to the
specified labeled statement. This type of continue must be in a looping
statement identified by the label used by cont i nue.

The following example shows a while loop that has a continue statement that
executes when the value of i is 3. Thus, n takes on the values 1, 3, 7, and 12.

i 0
n 0
whil e

(i <5) {

| ++

if (i == 3)
conti nue

n +=i

}

In the following example, a statement labeled checki andj contains a
statement labeled checkj . If cont i nue is encountered, the program
continues at the top of the checkj statement. Each time conti nue is
encountered, checkj reiterates until its condition returns false. When false is
returned, the remainder of the checki andj statement is completed.

checki andj reiterates until its condition returns false. When false is
returned, the program continues at the statement following checki andj .

15-6 Statements

Ifcont i nue had alabel of checki andj , the program would continue at the

top of the checki andj statement.

checki andj :
while (i<4) {
i+=1;
checkj :
while (j>4) {
print(j);

j-=1
if ((j %®)==0)

conti nue checkj ;
print(j);

Console. Wite("i
Console. Wite("]j

+
)

continue

15-7

delete

Function

Syntax

Arguments

Description

Deletes an object's property or an element at a specified index in an array.

del et e obj ect Nane. property
del et e obj ect Nane[i ndex]
del ete property

bj ect Name
An object from which to delete the specified property or value.

Property
The property to delete.

I ndex
An integer index into an array.

If the del et e operator succeeds, it sets the property of element to
undef i ned; the operator always returns undef i ned.

You can only use the del et e operator to deleteobject properties and array
entries. You cannot use this operator to deleteobjects or variables.
Consequently, you can only use the third form within a wi t h statement, to
delete a property from the object.

15-8 Statements

do...while

Function

Syntax

Arguments

Example

Executes its statements until the test condition evaluates to false. Statement is
executed at least once.

do
st at ement
while (condition);

St at ement
Block of statements that is executed at least once and is re-executed each time
the condition evaluates to true.

Condi tion

Evaluated after each pass through the loop. If condi t i on evaluates to true,
the statements in the preceding block are re-executed. When condi ti on
evaluates to false, control passes to the statement following do whi | e.

In the following example, the do loop iterates at least once and reiterates until
iis no longer less than 5.

i =0

do {

i+=1;

Consol e. Wite(i)

3mhi|e(i<5)

do...while 15-9

for

Function

Syntax

Arguments

Examples

Creates a loop that consists of three optional expressions, enclosed in
parentheses and separated by semicolons, followed by a block of statements
executed in the loop.

for ([initial-expression;] [condition;] [increment-
expression]) {
statements

}

Initial expression

Statement or variable declaration. Typically used to initialize a counter
variable. This expression may optionally declare new variables with the var
keyword.

Condi tion

Evaluated on each pass through the loop. If this condition evaluates to true,
the statements in statements are performed. This conditional test is optional. If
omitted, the condition always evaluates to true.

I ncrement expression
Generally used to update or increment the counter variable.

St atement s
Block of statements that are executed as long as condition evaluates to true.

This can be a single statement or multiple statements. Although not required,
it is good practice to indent these statements from the beginning of the f or
statement.

The following f or statement starts by declaring the variable i and initializing
it to 0. It checks that i is less than nine, performs the two succeeding
statements, and increments i by 1 after each pass through the loop.

for (var i =0; i <9; i++) {
n +=i
nmyfunc(n)

15-10

Statements

for...in

Function

Syntax

Arguments

Examples

Iterates a specified variable over all the properties of an object. For each
distinct property, JavaScript executes the specified statements.

for (variable in object) {
st at ement s}

Vari abl e
Variable to inerate over every property.

bj ect
Object for which the properties are iterated.

St atement s
Specifies the statements to execute for each property.

The following function takes as its argument an object and the object's name.
It then iterates over all the object's properties and returns a string that lists the

property names and their values.

function dunp_props(obj, objNane) {
var result =""
for (var i in obj) {

result += objName + "." + i + " =" + obj[i]

}

return result

for...in

15-11

function

Function

Syntax

Arguments

Description

Examples

Declares a JavaScript function with the specified parameters. Acceptable
parameters include strings, numbers, and objects.

function nane([paraml [, paran] [..., param) {
st at ement s}

nane
The function name.

par am
The name of an argument to be passed to the function. A function can have up
to 255 arguments.

To return a value, the function must have a r et ur n statement that specifies
the value to return. You cannot nest a function statement in another statement
or in itself.

All parameters are passed to functions, by value. In other words, the value is
passed to the function, but if the function changes the value of the parameter,
this change is not reflected globally or in the calling function.

In addition to defining functions as described here, you can also define
Funct i on objects.

/1 This function returns the total dollar amunt of sales, when
//given the nunber of units sold of products a, b, and c.
function cal c_sales(units_a, units_b, units_c) {

return units_a*79 + units_b*129 + units_c*699
}

15-12 Statements

if...el

Function

Syntax

Arguments

Examples

se

[] Note

Executes a set of statements if a specified condition is true. If the condition is
false, another set of statements can be executed.

Theif "el se statements must be in lowercase. If you type an uppercase “I" or “e", you will
get the “missing syntax error. A t hen statement is implied for values enclosed in the curly
braces { }. If you type the word t hen in a statement, an error message will be returned.

if (condition) {
st at ement s1}
el se {
st at ement s2}

condi tion

Can be any JavaScript expression that evaluates to true or false. Parentheses are
required around the condition. If condition evaluates to true, the statements in
statements] are executed.

statements 1, statenents 2
Can be any JavaScript statements, including further nested if statements.
Multiple statements must be enclosed in braces.

i f (cipher_char == fromchar) {
result = result + to_char
X++}

el se {

result = result + clear_char

}

if..else 15-13

labeled

Function

Syntax

Arguments

Example

See also

Provides an identifier that can be used with br eak or cont i nue to indicate
where the program should continue execution.

In a labeled statement, br eak or cont i nue must be followed with a label,
and the label must be the identifier of the labeled statement containing br eak
orconti nue.

| abel
st at enent

st at ement
Block of statements. break can be used with any labeled statement, and

continue can be used with looping labeled statements.

For an example of a labeled statement using br eak, see br eak. For an
example of a labeled statement using cont i nue, see conti nue.

br eak, continue

15-14 Statements

return

Function Specifies the value to be returned by a function.

Syntax return expression

Examples The following function returns the square of its argument, X, where X is a
number.

function square(x) {
return x * x
}

return 15-15

switch

Function

Syntax

Arguments

Description

Allows a program to evaluate an expression and attempt to match the
expression's value to a case label.

switch (expression){
case | abel
st at enent ;
br eak;
case | abel
st at enent ;
br eak;

default : statenent;

expressi on
Value matched against label.

I abel
Identifier used to match against expression

st at enent
Any statement.

If a match is found, the program executes the associated statement.

The program first looks for a label matching the value of expression and then
executes the associated statement. If no matching label is found, the program
looks for the optional default statement, and if found, executes the associated
statement. If no default statement is found, the program continues execution
at the statement following the end of swi t ch. The optional br eak statement
associated with each case label ensures that the program breaks out of switch
once the matched statement is executed and continues execution at the
statement following switch. If br eak is omitted, the program continues
execution at the next statement in the SWi t ch statement.

15-16

Statements

Example In the following example, if expr essi on evaluates to "Bananas," the program
matches the value with case "Bananas" and executes the associated statement.
When br eak is encountered, the program breaks out of swi t ch and executes
the statement following swi t ch. If br eak were omitted, the statement for
case "Cherries" would also be executed.

switch (i) {

case "Oranges" :
print("Oranges are $0.59 a pound.");
br eak;

case "Appl es" :
Consol e. Wite("Apples are $0.32 a pound.");
br eak;

case "Bananas"
Consol e. Wite("Bananas are $0.48 a pound.");
br eak;

case "Cherries" :
Consol e. Wite("Cherries are $3.00 a pound.");
br eak;

def aul t
Console.Wite("Sorry, we are out of " + i + ".");

Console. Wite("ls there anything el se you' d like?");

switch 15-17

var

Function
Syntax

Arguments

Description

Examples

Declares a variable, optionally initializing it to a value.

var varnanme [= value] [..., varnane [= value]]

var nane

Variable name. It can be any legal identifier.

val ue

Initial value of the variable. Can be any legal expression.

The scope of a variable is the current function or, for variables declared outside

a function, the current application.

Using var outside a function is optional; you can declare a variable by simply
assigning it a value. However, it is good style to use var, and it is necessary in
functions if a global variable of the same name exists.

var numhits = 0, cust_no = 0

15-18 Statements

while

Function

Syntax

Arguments

Examples

Creates a loop that evaluates an expression, and if it is true, executes a block of
statements. The loop then repeats, as long as the specified condition is true.

while (condition) {
statements

}

condi tion

Evaluated before each pass through the loop. If this condition evaluates to
true, the statements in the succeeding block are performed. When condition
evaluates to false, execution continues with the statement following
statements.

statenents

Block of statements that are executed as long as the condition evaluates to true.
Although not required, it is good practice to indent these statements from the
beginning of the statement.

The following whi | e loop iterates as long as n is less than three.

Each iteration, the loop increments n and adds it to x. Therefore, x and n take
on the following values:

= After the first passsn=1andx =1
= After the second pass:n=2and x =3
= After the third passsn=3and x=6

» After completing the third pass, the conditionn < 3 is no longer true, so
the loop terminates.

while 15-19

with

Function

Syntax

Arguments

Examples

Establishes the default object for a set of statements. Within the set of
statements, any property references that do not specify an object are assumed
to be for the default object.

with (object){statenents}

obj ect
Specifies the default object to use for the statements. The parentheses around
object are required.

statenents
Any block of statements.

The following wi t h statement specifies that the Mat h object is the default
object. The statements following the Wi t h statement refer to the Pl property
and the cos and si n methods, without specifying an object. JavaScript
assumes the Mat h object for these references.

var a, Xx, y

var r=10
with (Math) {

a=P *r *r
X =r * cos(Pl)
y =r * sin(Pl/2)

15-20 Statements

Core Objects

This chapter provides detailed descriptions of the JavaScript core objects,
which are summarized in Table 16-1.

Table 16-1 JavaScript Core Objects

Object Description

Array Represents an array.

Boolean Represents a Boolean value.

Date Represents a date.

Function Specifies a string of JavaScript code to be compiled as a function.

Math Provides basic math constants and functions; for example, its Pl property
contains the value of pi.

Number Represents primitive numeric values.

Object Contains the base functionality shared by all JavaScript objects.

String Represents a JavaScript string.

Regular Expression

Represents a regular expression; also contains static properties that are
shared among all regular expression objects.

16-1

Array

Function

Created by

Parameters

Description

An array allows you to store a list of common elements in a variable as shown
in the following example:

var nodels = new Array("Ford", "Mazda", "Honda");

You can easily access the elements of an array by using the index number
assigned to each element. Elements are stored in sequential order beginning
with index number 0, proceeding with index number 1, and so on. Since the
index numbering begins with 0, the array's item count will always be one
higher than the highest value of the array. The element's index number is
enclosed in square brackets and constitutes its location in the array. The Array
is a core object.

To set the first element of the array in the example shown above, you would
type:

nmodel s[0] ;

When you execute the JavaScript, the variable will contain the "Ford" string.

The Array object constructor:

new Array(arraylLength);
new Array(el ement0, elenentl, ..., elementN);

arraylLengt h
(Optional) The initial length of the array. You can access this value using the

| engt h property.

el ement

(Optional) A list of values for the array's elements. When this form is specified,
the array is initialized with the specified values as its elements, and the array's
length property is set to the number of arguments.

An array's length increases if you assign a value to an element higher than the
current length of the array. The following code creates an array of length 0,
then assigns a value to element 99. This changes the length of the array to 100.

colors = new Array()
col ors[99] = "m dni ght bl ue"

16-2

Core Objects

You can construct a dense array of two or more elements starting with index 0
if you define initial values for all elements. A dense array is one in which each
element has a value. The following code creates a dense array with three
elements:

myArray = new Array("Hello", nyVar, 3.14159)

The result of a match between a regular expression and a string can create an
array. This array has properties and elements that provide information about
the match. An array is the return value of RegExp. exec, String. match,
and Stri ng. repl ace.

To help explain these properties and elements, look at the following example
and then refer to the table below:

//Match one d followed by one or nore b's foll owed by one d
/I Remenber matched b's and the follow ng d

/11 gnore case

nyRe=/ d(b+) (d)/i;

myArray = nyRe.exec("cdbBdbsbz");

Table 16-2 lists the properties and elements returned from this match.

Table 16-2 Properties and Elements
Property/Element Description Example
Input A read-only property that reflects the CdbBdbsbz

original string against which the regular
expression was matched.

Index A read-only property that is the zero- 1
based index of the match in the string.

[0] A read-only element that specifies the DbBd
last matched characters.

[1], ...[n] Read-only elements that specify the [1]=bB
parenthesized substring matches, if [2]=d

included in the regular expression. The
number of possible parenthesized sub-
strings is unlimited.

Array 16-3

Examples The following example creates an array, ms gAr r ay, with a length of 0, then
assigns values to nMsgArray[0] and msgArray[99] , changing the length of
the array to 100.

msgArray = new Array()
msgArray [0] = "Hello"
msgArray [99] = "worl d"
/1 The follow ng statement is true,
/| because defined msgArray [99] el enment.
if (msgArray.length == 100)
Consol e. Wite("The length is 100.")

The following code creates a two-dimensional array and displays the results.

a = new Array(4)

for (i=0; i < 4; i++) {a[i]l] = new Array(4)
for (j=0; j < 4; j++)

%a[i][j] = T[T AT

for (i=0; i < 4; i++)
{str = "\r\nRow "+i+":"
for (j=0; j < 4; j++)
{str +=ali][j]}

Consol e. Wite(str)

}

This example displays the following results:

Mul ti di nensional array test
Row 0:[0,0][0,1][0,2][0,3]
Row 1:[1,0][1,1][1,2][1,3]
Row 2:[2,0][2,1]1[2,2][2, 3]
Row 3:[3,0][3,1][3,2][3,3]

16-4 Core Objects

Property of

Description

Property of

Description

Array Properties

Table 16-3 displays a summary of the array properties. Detailed descriptions of
each property follow the table.

Table 16-3 Array Properties

index For an array created by a regular expression match, the zero-based index of
the match in the string.

input For an array created by a regular expression match, reflects the original string
against which the regular expression was matched.

length Reflects the number of elements in an array.

prototype Allows the addition of properties to an Array object.
index

Array

For an array created by a regular expression match, the zero-based index of the
match in the string. The i ndex property is static.

input
Array

For an array created by a regular expression mathc, reflects the original string
against which the regular expression was matched. The i nput property is
static.

Array 16-5

length

Property of Array

Description An integer that specifies the number of elements in an array. You can set the
length property to truncate an array at any time. You cannot extend an array;
for example, if you set length to 3 when it is currently 2, the array will still
contain only 2 elements. The | engt h property is static.

Examples In the following example, the get Choi ce function uses the | engt h property
to iterate over every element in the nusi cType array. mnusi cType isa
select element on the nmusi cFor mform.
function get Choice() {

for (var i =0; i < docunent. nusi cForm nusi cType. |l ength; i++)
{
if (docunent. nusi cForm rusi cType. options[i].sel ected
== true) {
return
docunent . musi cForm nusi cType. options[i].text
}
}
}
The following example shortens the array st at esUS to a length of 50 if the
current length is greater than 50.
if (statesUS.length > 50) {
st at esUS. | engt h=50
alert("The U.S. has only 50 states. New length is " +
statesUS. | engt h)
}
prototype

Property of Array

Description Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class.

16-6 Core Objects

Array Methods

Table 16-4 displays a a summary of the array methods. Detailed descriptions of
each method follow the table.

Table 16-4 Array Methods

concat Joins two arrays and returns a new array.

join Joins all elements of an array into a string.

pop Removes the last element from an array and returns that element.
push Adds one or more elements to the end of an array and returns that last

element added.

reverse Transposes the elements of an array: the first array element becomes the last
and the last becomes the first.

shift Removes the first element from an array and returns that element.

slice Extracts a section of an array and returns a new array.

splice Adds and/or removes elements from an array.

sort Sorts the elements of an array.

toString Returns a string representing the specified object.

unshift Adds one or more elements to the front of an array and returns the new length

of the array.

Array 16-7

Applies to

Syntax

Parameters

Description

concat

Joins two arrays and returns a new array.
Array
concat (arrayNanme2)

ArrayNane2
Name of the array to concatenate to this array.

concat does not alter the original arrays, but returns a one level deep copy that
contains copies of the same elements combined from the original arrays.
Elements of the original arrays are copied into the new array as follows:

Object references (and not the actual object) — concat copies object
references into the new array. Both the original and new array refer to the same
object. If a referenced object changes, the changes are visible to both the new
and original arrays.

Strings and numbers (not St ri ng and Nunber objects) — concat copies
strings and numbers into the new array. Changes to the string or number in
one array do not affect the other arrays.

If a new element is added to either array, the other array is not affected.

16-8

Core Objects

Applies to
Syntax

Parameters

Description

Examples

See also

join

Joins all elements of an array into a string.
Array
j oi n(separ at or)

separ at or

Specifies a string to separate each element of the array. The separator is
converted to a string if necessary. If omitted, the array elements are separated
with a comma.

The string conversion of all array elements are joined into one string.

The following example creates an array with three elements, then joins the
array three times: using the default separator, then a comma and a space, and
then a plus.

a = new Array("Wnd","Rain","Fire")

Consol e. Wite(a.join())

Console. Wite(a.join(", "))
Consol e. Wite(a.join(" + "))

This code produces the following output:
Wnd,Rain, Fire

Wnd, Rain, Fire
Wnd + Rain + Fire

Array: reverse

Array 16-9

Applies to
Syntax
Parameters

Example

See also

pop
Removes the last element from an array and returns that element. This method
changes the length of the array.

Array

pop()

None

The following code displays the nmyFi sh array before and after removing its
last element. It also displays the removed element:

myFish = ["angel", "clown", "mandarin", "surgeon"];
Consol e. Wite("\r\nnyFi sh before: " + nyFish);
popped = nyFish. pop();

Console. Wite("\r\nnyFish after: " + nyFish);

Consol e. Wite("\r\npopped this element: " + popped);

This example displays the following:
myFi sh before: ["angel", "clown", "nmandarin", "surgeon"]

myFi sh after: ["angel", "clown", "mandarin"]
popped this el ement: surgeon

Array: push, Array: shift, Array: unshift

16-10 Core Objects

Applies to
Syntax

Parameters

Description

Example

See also

push
Adds one or more elements to the end of an array and returns that last element
added. This method changes the length of the array.

Array
push(eltl, ..., eltN

eltl,...eltN
The elements to add to the end of the array.

The behavior of the push method is analogous to the push function in Perl 4.
Note that this behavior is different in Perl 5.

The following code displays the nyFi sh array before and after adding
elements to its end. It also displays the last element added:

myFish = ["angel ", "clown"];

Consol e. Wite("nyFish before: " + nyFish);

pushed = nyFi sh. push("drunf, "lion");

Consol e. Wite("nyFish after: " + nyFish);

Consol e. Wite("pushed this elenent last: " + pushed);

This example displays the following:

nmyFi sh before: ["angel", "clown"]
myFi sh after: ["angel", "clown", "drum, "lion"]
pushed this element last: lion

Array: pop, Array: shift, Array: unshift

Array 16-11

reverse

Transposes the elements of an array: the first array element becomes the last
and the last becomes the first.

Applies to Array

Syntax reverse()

Parameters None

Description The reverse method transposes the elements of the calling array object.
Examples The following example creates an array ny Ar r ay, containing three elements,

then reverses the array.

myArray = new Array("one", "two", "three")
myArray. reverse()

The output is as follows
myArray[0] is "three"

myArray[1] is "two"
myArray[2] is "one"

See also Array: join, Array: sort

16-12 Core Objects

shift
Removes the first element from an array and returns that element. This
method changes the length of the array.

Applies to Array

Syntax shift()

Parameters None

Example The following code displays the nyFi sh array before and after removing its

first element. It also displays the removed element:

myFish = ["angel", "clown", "mandarin", "surgeon"];
Consol e. Wite("nyFish before: " + nyFish);

shifted = nyFish.shift();

Consol e. Wite("nyFish after: " + nyFish);

Console. Wite("Renoved this elenent: " + shifted);

This example displays the following:
myFi sh before: ["angel", "clown", "nmandarin", "surgeon"]

myFish after: ["clown", "mandarin", "surgeon"]
Renoved this elenment: angel

See also Array: pop, Array: push, Array: unshift

Array 16-13

Applies to

Syntax

Parameters

Description

slice

Extracts a section of an array and returns a new array.
Array
sl ice(begin, end)

Begi n
Zero-based index at which to begin extraction.

End

(Optional) Zero-based index at which to end extraction. sl i ce extracts up to
but not including end. slice(1,4) extractsthe second element through
the fourth element (elements indexed 1, 2, and 3). As a negative index, end
indicates an offset from the end of the sequence. sl i ce(2, - 1) extracts the
third element through the second to last element in the sequence. If end is
omitted, Sl i ce extracts to the end of the sequence.

sl i ce does not alter the original array, but returns a new "one level deep"
copy that contains copies of the elements sliced from the original array.
Elements of the original array are copied into the new array as follows:

Object references (and not the actual object) -- sl i ce copies object
references into the new array. Both the original and new array refer to the same
object. If a referenced object changes, the changes are visible to both the new
and original arrays.

Strings and numbers (not St ri ng and Nurber objects)-- sl i ce copies
strings and numbers into the new array. Changes to the string or number in
one array does not affect the other array.

If a new element is added to either array, the other array is not affected.

16-14

Core Objects

Example In the following example, Sl i ce creates a new array, newCar, from nyCar.
Both include a reference to the object myHonda. When the color of nyHonda
is changed to pur pl e, both arrays reflect the change.

/1Using slice, create newCar from nyCar.

myHonda = {col or:"red", wheel s: 4, engi ne: {cyl i nders: 4, size: 2. 2}}
myCar = [myHonda, 2, "cherry condition", "purchased 1997"]
newCar = myCar.slice(0, 2)

/IWite the values of nyCar, newCar, and the col or of myHonda
/1 referenced fromboth arrays.

Console. Wite("nyCar = " + nyCar)

Consol e. Wite("newCar = " + newCar)

Console. Wite("nmyCar[0].color =" + nyCar[O0].color)
Consol e. Wite("newCar[0].color =" + newCar[0].col or)
/| Change the col or of myHonda.

myHonda. col or = "purple"

Consol e. Wite("The new color of my Honda is " + nyHonda. col or)
/IWite the color of nyHonda referenced fromboth arrays.
Consol e. Wite("nmyCar[0].color =" + nyCar[O0].color)

Consol e. Wite("newCar[0].color =" + newCar[0].col or)

This script writes:

myCar = [{color:"red", wheels:4, engine:{cylinders:4,
size:2.2}}, 2
"cherry condition", "purchased 1997"]
newCar = [{color:"red", wheels:4, engine:{cylinders:4,
size:2.2}}, 2]
myCar[0].color = red newCar[0].color = red
The new color of ny Honda is purple
myCar[0] .col or = purple
newCar [0] . col or = purple

Array 16-15

splice
Changes the content of an array, adding new elements while removing old

elements.

Applies to Array

Syntax splice(index, howvany, newEltl, ..., newkEltN

Parameters i ndex
Index at which to start changing the array.
howvany
An integer indicating the number of old array elements to remove. If howMany
is 0, no elements are removed. In this case, you should specify at least one new
element.
newkl t 1... newEl t N
(Optional) The elements to add to the array. If you don't specify any elements,
splice simply removes elements from the array.

Description If you specify a different number of elements to insert than the number you're
removing, the array will have a different length at the end of the call. If
howiMany is 1, this method returns the single element that it removes. If
howiMany is more than 1, the method returns an array containing the removed
elements.

Examples The following script illustrates the use of the spl i ce:
myFish = ["angel", "clown", "mandarin", "surgeon"];
Consol e. Wite("nyFish: " + nyFish);
renoved = nyFish.splice(2, 0, "drum');
Console. Wite("After adding 1: " + nyFish);
Console. Wite("renoved is: " + renpved);
renoved = nyFish.splice(3, 1)
Console. Wite("After removing 1: " + nyFish);
Console. Wite("renoved is: " + renpved);
renoved = nyFish.splice(2, 1, "trunpet")
Console. Wite("After replacing 1: " + nyFish);
Console. Wite("renoved is: " + renpved);
renoved = nyFish.splice(0, 2, "parrot", "anenone", "blue")
Console. Wite("After replacing 2: " + nyFish);
Console. Wite("renoved is: " + renpved);

16-16 Core Objects

This script displays:

myFi sh: ["angel", "clown", "mandarin", "surgeon"]
After adding 1: ["angel", "clown", "drunl, "nandarin",
"surgeon"]

removed is: undefi ned

After renpving 1: ["angel", "clown", "drunf, "surgeon"]
renoved is: mandarin

After replacing 1: ["angel", "clown", "trunpet", "surgeon"]
renoved is: drum

After replacing 2: ["parrot", "anenobne", "blue", "trunpet",
"surgeon"]

renoved is: ["angel", "clown"]

Array

16-17

Applies to

Syntax

Parameters

Description

sort
Sorts the elements of an array.

Array
sort (conpar eFuncti on)

conpar eFuncti on

Specifies a function that defines the sort order. If omitted, the array is sorted
lexicographically (in dictionary order) according to the string conversion of
each element.

If conpar eFunct i on is not supplied, elements are sorted by converting
them to strings and comparing strings in lexicographic ("dictionary" or
"telephone book," not numerical) order. For example, "80" comes before "9" in
lexicographic order, but in a numeric sort 9 comes before 80.

If compar eFunct i on issupplied, the array elements are sorted according to
the return value of the compare function. If a and b are two elements being
compared, then:

» IfconpareFunction(a, b) islessthan 0, sortb to alower index than a.

= IfconpareFunction(a, b) returnsO,leave a and b unchanged with
respect to each other, but sorted with respect to all different elements.

= Ifconpar eFunction(a, b) isgreater than 0, sort b to a higher index
than a.

So, the compare function has the following form:

function conpare(a, b) {
if (ais less than b by some ordering criterion)
return -1
if (ais greater than b by the ordering criterion)
return 1
/1 a nmust be equal to b
return O

}

To compare numbers instead of strings, the compare function can simply
subtract b from a:

functi on conpareNunbers(a, b) {
return a - b
}

16-18

Core Objects

Examples

JavaScript uses a stable sort: the index partial order of a and b does not change
ifaand b are equal. If a's index was less than b's before sorting, it will be after
sorting, no matter how a and b move due to sorting.

a = new Array();

a[0] "Ant";
a[5] "Zebra";

function witeArray(x) {
for (i =0; i <x.length; i++) {
Consol e. Wite(x[i]);
if (i <x.length-1) Console Wite(", ");

}
}
writeArray(a);
a.sort();

Console.Wite();
writeArray(a);

ant, undefined, undefined, undefined, undefined, zebra
ant, zebra, undefined, undefined, undefined, undefined

The following example creates four arrays and displays the original array, then
the sorted arrays. The numeric arrays are sorted without, then with, a compare
function.

stringArray = new Array("Bl ue", "Hunpback", "Bel uga")
nunericStringArray = new Array("80","9","700")
nunmber Array = new Array(40, 1,5, 200)
m xedNuneri cArray = new Array("80","9","700", 40, 1, 5, 200)
function conpareNunbers(a, b) {

return a - b
}

Console. Wite("stringArray:" + stringArray.join())
Console. Wite("Sorted:" + stringArray.sort())

Consol e. Wite("numberArray:" + nunberArray.join())
Console. Wite("Sorted without a conpare function:" +
nunber Array. sort())

Console. Wite("Sorted with conpareNunbers:" +
nunber Array. sort (conpar eNunbers))

Consol e. Wite("numericStringArray:" +

numeri cStringArray.join())

Console. Wite("Sorted without a conpare function:" +
numeri cStringArray.sort())

Console. Wite("Sorted with conpareNunbers:" +
nunericStringArray. sort (conpareNunbers))

Consol e. Wite("m xedNuneri cArray:" + m xedNuneri cArray.join())
Consol e. Wite("Sorted without a conpare function:" +

m xedNuneri cArray.sort())

Console. Wite("Sorted with conpareNunbers: " +

m xedNuneri cArray. sort (conpar eNunbers))

Array 16-19

See also

This example produces the following output. As the output shows, when a
compare function is used, numbers sort correctly whether they are numbers or
numeric strings.

stringArray: Bl ue, Huinpback, Bel uga
Sorted: Beluga, Bl ue, Hunpback

nunber Array: 40, 1,5, 200
Sorted without a conpare function: 1,200,40,5
Sorted with conmpareNunbers: 1,5, 40,200

nunericStringArray: 80,9, 700
Sorted without a conpare function: 700, 80,9
Sorted with conpareNunbers: 9,80, 700

m xedNuneri cArray: 80,9, 700, 40, 1, 5, 200

Sorted without a conpare function: 1,200,40,5, 700, 80,9
Sorted with conmpareNunbers: 1,5,9, 40, 80, 200, 700

Array: join, Array: reverse

16-20

Core Objects

Applies to
Syntax
Parameters

Description

toString

Returns a string representing the specified object.
Array
toString()

None

Every object hasa t oSt ri ng method that is automatically called when it is to
be represented as a text value or when an object is referred to in a string
concatenation.

You can use t 0St ri ng within your own code to convert an object into a
string, and you can create your own function to be called in place of the default
t oSt ri ng method.

For Array objects, the built-int 0St ri ng method joins the array and
returns one string containing each array element separated by commas. For
example, the following code creates an array and uses t 0St r i ng to convert
the array to a string while writing output.

var nont hNanes = new Array("Jan", "Feb","Mar", " Apr")

Consol e. Wite("nonthNanes.toString() is " +
nmont hNames. t oString())

The output is as follows:

mont hNanes.toString() is Jan, Feb, Mar, Apr

For information on defining your ownt oSt ri ng method, see the Cbj ect :
toStri ng method.

Array 16-21

Applies to
Syntax

Parameters

Example

See also

unshift

Adds one or more elements to the beginning of an array and returns the new
length of the array.

Array
arrayName. unshift(eltl,..., eltN

eltl...eltN
The elements to add to the front of the araray.

The following code displays the nyFi sh array before and after adding
elements to it.

myFish = ["angel", "clown"];
Consol e. Wite("nyFish before: " + nyFish);
unshifted = nyFi sh.unshift("drunf, "lion");

Consol e. Wite("nyFish after: " + nyFish);
Consol e. Wite("New |l ength: " + unshifted);

This example displays the following:
myFi sh before: ["angel", "clown"]

myFish after: ["drunf, "lion", "angel", "clown"]
New | ength: 4

Array: pop, Array: push, Array: shift

16-22 Core Objects

Boolean

Created by

Parameters

Description

Examples

The Boolean object is an object wrapper for a boolean value. The Boolean
object is a core object.

The Bool ean constructor:

new Bool ean(val ue)

val ue

The initial value of the Boolean object. The value is converted to a boolean
value, if necessary. If value is omitted or is 0, null, false, or the empty string
(""), the object has an initial value of false. All other values, including the string
"false", create an object with an initial value of true.

Use a Bool ean object when you need to convert a non-boolean value to a
boolean value. You can use the Bool ean object any place JavaScript expects a
primitive boolean value. JavaScript returns the primitive value of the Bool ean
object by automatically invoking the val ueCf method.

The following examples create Bool ean objects with an initial value of false:

bNoPar am = new Bool ean()

bZero = new Bool ean(0)

bNul | = new Bool ean(nulI)
bEnptyStri ng = new Bool ean("")
bf al se = new Bool ean(fal se)

The following examples create Bool ean objects with an initial value of true:

btrue = new Bool ean(true)
btrueString = new Bool ean("true")
bf al seString = new Bool ean("f al se")
bSuLin = new Bool ean("Su Lin")

Boolean 16-23

Boolean Properties

Table 16-5 displays the boolean property. A detailed description of the
property follows the table.

Table 16-5 Boolean Property

Prototype Defines a property that is shared by all Boolean objects.
prototype
Property of Bool ean
Description Represents the prototype for this class. You can use the prototype to add

preoprties or methods toa Il instances of a class.

16-24 Core Objects

Applies to:
Syntax
Parameters

Description

Boolean Methods

Table 16-6 displays the boolean method. A detailed description of the method
follows the table.

Table 16-6 Boolean Method

toString Returns a string representing the specified object.

toString

Returns a string representing the specified object.
Bool ean

toString()

None

Every object has a t oSt ri ng method that is automatically called when it is to
be represented as a text value or when an object is referred to in a string
concatenation.

You can use toString within your own code to convert an object into a
string, and you can create your own function to be called in place of the default
t oSt ri ng method.

For Boolean objects and values, the built-in toString method returns "true” or
"false" depending on the value of the boolean object. In the following code,
flag.toString returns "true".

flag = new Bool ean(true)
Console. Wite("flag.toString() is " + flag.toString())

For information on defining your own t 0St r i ng method, see the Cbj ect :
t oSt ri ng method.

Boolean 16-25

Date

Created by

Parameters

Description

Examples

Lets you work with dates and times. Date is a core object.

The Date constructor:

new Dat e()

new Dat e("nonth day, year hours:m nutes: seconds")
new Date(yr_num nmo_num day_num

new Date(yr_num mo_num day_num hr_num m n_num
sec_nun

nmont h, day, year, hours, m nutes, seconds
String values representing part of a date.

yr_num no_num day_num hr_num m n_num sec_num
Integer values representing part of a date. As an integer value, the month is
represented by 0 to 11 with 0=January and 11=December.

If you supply no arguments, the constructor creates a Dat e obj ect for
today's date and time. If you supply some arguments, but not others, the
missing arguments are set to 0. If you supply any arguments, you must supply
at least the year, month, and day. You can omit the hours, minutes, and
seconds.

The way JavaScript handles dates is very similar to the way Java handles dates:
both languages have many of the same date methods, and both store dates
internally as the number of milliseconds since January 1, 1970 00:00:00. Dates
prior to 1970 are not allowed.

The following examples show several ways to assign dates:

today = new Date()

birthday = new Dat e("Decenber 17, 1995 03: 24:00")
bi rt hday new Dat e(95, 11, 17)

bi rt hday new Dat e(95, 11, 17, 3, 24, 0)

16-26 Core Objects

Date Properties

Table 16-7 displays the date property. A detailed description of the property
follows the tabe.

Table 16-7 Date Property

Prototype Allows the addition of properties to a Dat e object.
prototype
Property of Dat e
Description Represents the prototype for this class. You can use the prototype to add

properties or methods to all instances of a class.

Date Methods

Table 16-8 displays a summary of the date methods. Detailed descriptions of
each method follow the table.

Table 16-8 Date Methods

getDate Returns the day of the month for the specified date.

getDay Returns the day of the week for the specified date.

getHours Returns the hour in the specified date.

getMinutes Returns the minutes in the specified date.

getMonth Returns the month in the specified date.

getSeconds Returns the seconds in the specified date.

getTime Returns the numeric value corresponding to the time for the specified date.
GetTimezone- Returns the time-zone offset in minutes for the current locale.

Offset

GetFullYear Returns the year in the specified date.

Date 16-27

Table 16-8 Date Methods (Continued)

parse Returns the number of milliseconds in a date string since January 1, 1970,
00:00:00, local time.

setDate Sets the day of the month for a specified date.
setHours Set the hours for a specified date.
setMinutes Sets the minutes for a specified date.
setMonth Sets the month for a specified date.
setSeconds Sets the seconds for a specified date.
getDate
Returns the day of the month for the specified date.
Applies to: Dat e
Syntax get Dat e()
Parameters None
Description The value returned by get Dat e is an integer between 1 and 31.
Examples The second statement below assigns the value 25 to the variable day, based on

the value of the Dat e object Xmas95.

Xmas95 = new Dat e(" Decenber 25, 1995 23:15:00")
day = Xmas95. get Dat e()

See also Dat e: setDate

16-28 Core Objects

getDay
Returns the day of the week for the specified date.

Applies to Dat e

Syntax get Day()

Parameters None

Description The value returned by get Day is an integer corresponding to the day of the

week: 0 for Sunday, 1 for Monday, 2 for Tuesday, and so on.

Examples The second statement below assigns the value 1 to weekday, based on the
value of the Dat e object Xmas95. Decenber 25, 1995, is a
Monday.

Xmas95 = new Dat e(" Decenber 25, 1995 23:15:00")
weekday = Xmas95. get Day()

getHours
Returns the hour for the specified date.

Applies to Dat e

Syntax get Hours()

Parameters None

Description The value returned by getHours is an integer between 0 and 23.

Examples The second statement below assigns the value 23 to the variable hours, based

on the value of the Dat e object Xmas95.

Xmas95 = new Dat e(" Decenber 25, 1995 23:15:00")
hours = Xmas95. get Hour s()

See also Dat e: set Hours

Date 16-29

getMinutes

Returns the minutes in the specified date.

Applies to Dat e

Syntax get M nut es()

Parameters None

Description The value returned by get M nut es is an integer between 0 and 59.
Examples The second statement below assigns the value 15 to the variable m nut es,

based on the value of the Dat e object Xmas95.

Xmas95 = new Dat e(" Decenber 25, 1995 23:15:00")
m nutes = Xmas95. get M nut es()

See also Date: setM nutes
getMonth
Returns the month in the specified date.
Applies to Dat e
Syntax get Mont h()
Parameters None
Description The value returned by get Mont h is an integer between 0 and 11. 0

corresponds to January 1 to February, and so on.

Examples The second statement below assigns the value 11 to the variable nont h, based
on the value of the Dat e object Xnas95.

Xmas95 = new Dat e(" Decenber 25, 1995 23:15:00")
month = Xmas95. get Mont h()

See also Dat e: set Month

16-30 Core Objects

getSeconds
Returns the seconds in the current time.

Applies to Dat e

Syntax get Seconds()

Parameters None

Description The value returned by get Seconds is an integer between 0 and 59.
Examples The second statement below assigns the value 30 to the variable secs, based

on the value of the Dat e object Xmas95.

Xmas95 = new Dat e(" Decenber 25, 1995 23:15:30")
secs = Xnas95. get Seconds()

See also Dat e: set Seconds

getTime

Returns the numeric value corresponding to the time for the specified date.

Applies to Dat e

Syntax get Ti me()

Parameters None

Description The value returned by the get Ti me method is the number of milliseconds

since 1 January 1970 00:00:00. You can use this method to help assign a date
and time to another Dat e object.

Examples The following example assigns the date value of t heBi gDay to
sameAsBi gbhay:
t heBi gDay = new Date("July 1, 1999")

sanmeAsBi gDay = new Date()
sanmeAsBi gDay. set Ti ne(t heBi gDay. get Ti ne())

See also Date: setTinme

Date 16-31

Applies to
Syntax
Parameters

Description

Examples

Applies to
Syntax
Parameters

Description

Examples

getTimezoneOffset
Returns the time-zone offset in minutes for the current locale.

Dat e
get Ti mezoneOf f set ()
None

The time-zone offset is the difference between local time and Greenwich Mean
Time (GMT). Daylight savings time prevents this value from being a constant.

x = new Date()
current Ti meZoneOf f set | nHours = x. get Ti mrezoneO fset () /60

getFullYear
Returns the year in the specified date.

Dat e

get Ful | Year ()

None

The value returned by get Ful | Year is the four-digit year. For example, if
the year is 1856, the value returned is 1856. If the year is 2026, the value

returned is 2026.

The second statement assigns the value 1995 to the variable year.

Xmas
year

= new Dat e(" Decenber 25, 1995 23:15:00")
= Xmas. get Ful | Year ()

The second statement assigns the value 2000 to the variable year.

Xmas
year

new Dat e(" Decenber 25, 2000 23: 15:00")
Xmas. get Ful | Year ()

16-32 Core Objects

See also

Applies to:
Syntax

Parameters

Description

Examples

The second statement assigns the value 95 to the variable year, representing
the year 1995.

Xmas. set Year (95)
year = Xnas. get Ful | Year ()

Dat e: set Year

parse
Returns the number of milliseconds in a date string since January 1, 1970,
00:00:00, local time. The par se method is static, read only.

Dat e
Dat e. par se(dat eString)

dateString
A string representing a date.

The par se method takes a date string (such as " Dec 25, 1995") and
returns the number of milliseconds since January 1, 1970, 00:00:00 (local
time). This function is useful for setting date values based on string values, for
example in conjunction with the set Ti me method and the Dat e object.

Given a string representing a time, par se returns the time value. It accepts the
IETF standard date syntax: " Mon, 25 Dec 1995 13:30:00 GM. " It
understands the continental US time-zone abbreviations, but for general use,
use a time-zone offset, for example, "Mon, 25 Dec 1995 13: 30: 00
GMIT+0430" (4 hours, 30 minutes west of the Greenwich meridian). If you do
not specify a time zone, the local time zone is assumed. GMT and UTC are
considered equivalent.

Because par se is a static method of Dat e, you always use it as

Dat e. par se(), rather than as a method of a Dat e obj ect you created.

If | PQdat e is an existing Dat € object, then you can set it to August 9, 1995 as
follows:

| PQdat e. set Ti me(Dat e. parse("Aug 9, 1995"))

Date 16-33

setDate
Sets the day of the month for a specified date.

Applies to: Dat e
Syntax set Dat e(dayVal ue)
Parameters dat Val ue

An integer from 1 to 31, representing the day of the month.

Examples The second statement below changes the day for t heBi gDay to July 24 from
its original value.

t heBi gDay = new Date("July 27, 1962 23:30: 00"
t heBi gDay. set Dat e(24)

See also Dat e: getDate

setHours
Sets the hours for a specified date.

Applies to: Dat e
Syntax set Hour s(hour sVal ue)
Parameters hour sVal ue

An integer between 0 and 23, representing the hour.

Examples t heBi gDay. set Hour s(7)

16-34 Core Objects

Applies to:
Syntax

Parameters

Examples

See also

Applies to:
Syntax

Parameters

Examples

See also

setMinutes
Sets the minutes for a specified date.

Dat e
set M nut es(m nut esVal ue)

m nt uesVal ue
An integer between 0 and 59, representing the minutes.

t heBi gDay. set M nut es(45)

Date: getM nutes

setMonth
Sets the month for a specified date.

Dat e

set Mont h(nont hVval ue)

nmont hVval ue

An integer between 0 and 11, representing the months January through

December.

t heBi gDay. set Mont h(6)

Date: gethMnth

Date

16-35

setSeconds
Sets the seconds for a specified date.

Applies to: Dat e
Syntax set Seconds(secondsVal ue)
Parameters secondsVal ue

An integer between 0 and 59.

Examples t heBi gDay. set Seconds(30)
See also Dat e: get Seconds
setTime

Sets the value of a Dat e object.

Applies to: Dat e

Syntax set Ti me(ti meval ue)

Parameters ti meval ue
An integer representing the number of milliseconds since 1 January 1970
00:00:00.

Description Use the set Ti me method to help assign a date and time to another Date
object.

Examples t heBi gDay = new Date("July 1, 1999")

sanmeAsBi gDay = new Date()
sanmeAsBi gDay. set Ti ne(t heBi gDay. get Ti ne())

16-36 Core Objects

Applies to
Syntax

Parameters

Description

Examples

See also

setYear

Sets the year for a specified date.

Dat e
set Year (year Val ue)

year Val ue
An integer.

If year Val ue is a number between 0 and 99 (inclusive), then the year for

dat eCbj ect Nane is set to 1900 + year Val ue. Otherwise, the year for
dat eCbj ect Nane is set to year Val ue.

Note that there are two ways to set years in the 20th century.

s The year is set to 1996.
t heBi gDay. set Year (96)

s The year is set to 1996.
t heBi gDay. set Year (1996)

s The year is set to 2000.
t heBi gDay. set Year (2000)

Dat e: get Ful | Year

Date

16-37

Applies to:
Syntax
Parameters

Description

Examples

See also

toGMTString

Converts a date to a string, using the Internet GMT conventions.
Dat e
toGMTSt ri ng()

None

The exact format of the value returned by t 0GMI'St r i ng varies according to
the platform.

In the following example, t oday is a Dat e object:
t oday. toGMTString()
In this example, the t OGMITSt r i ng method converts the date to GMT (UTC)

using the operating system's time-zone offset and returns a string value that is
similar to the following form. The exact format depends on the platform.

Mon, 18 Dec 1995 17:28:35 GMI

Dat e: tolLocaleString

16-38 Core Objects

Applies to:
Syntax
Parameters

Description

Examples

See also

toLocaleString

Converts a date to a string, using the current locale's conventions.
Dat e
toLocal eString()

None

If you pass a date using t oLocal eSt ri ng, be aware that different platforms
assemble the string in different ways. Using methods such as get Hour s,
get M nut es, and get Seconds gives more portable results.

In the following example, t oday is a Dat e object:
today = new Date(95, 11, 18, 17,28, 35) // nmonths are represented by

0to 11
t oday. toLocal eStri ng()

In this example, t oLocal eSt ri ng returns a string value that is similar to the
following form. The exact format depends on the platform.

12/ 18/ 95 17:28:35

Date: toGMIString

Date 16-39

UTC
Returns the number of milliseconds in a Dat e object since January 1, 1970,
00:00:00, Universal Coordinated Time (GMT). UTC is static, read only.

Applies to Dat e
Syntax Date. UTC(year, nmonth, day, hrs, nin, sec)
Parameters year
A year after 1900.
nont h
A month between 0 and 11.
date
A day of the month between 1 and 31.
hrs
(Optional) A number of hours between 0 and 23.
mn
(Optional) A number of minutes between 9 and 59.
secC
(Optional) A number of seconds between 0 and 59.
Description UTC takes comma-delimited date parameters and returns the number of
milliseconds since January 1, 1970, 00:00:00, Universal Coordinated Time
(GMT).
Because UTC is a static method of Dat e, you always use it as Dat e. UTC(),
rather than as a method of a Dat e object you created.
Examples The following statement creates a Dat e object using GMT instead of local
time:
gnt Date = new Date(Date. UTC(96, 11, 1, 0, 0, 0))
16-40 Core Objects

Function

Created by

Parameters

Description

Examples

Specifies a string of JavaScript code to be compiled as a function. Function is a
core object.

The Funct i on constructor:

new Function (argl, arg2, ... argN, functionBody)

argl, arg2,...argn
(Optional) Names to be used by the function as formal argument names. Each
must be a string that corresponds to a valid JavaScript identifier; for example

n_n

x" or "theForm".

functi onBody
A string containing the JavaScript statements comprising the function
definition.

Funct i on objects are evaluated each time they are used. This is less efficient
than declaring a function and calling it within your code, because declared
functions are compiled.

In addition to defining functions as described here, you can also use the
functi on statement, as described in the JavaScript Guide.

= Specifying a variable value with a Function object

The following code assigns a function to the variable
act i veSect i on. nane. This function sets the current document's section
name.

var changeName = new Function("activeSection. name='sal es'")

To call the Functi on obj ect , you can specify the variable name as if it
were a function. The following code executes the function specified by the
changeNan® variable:

var newNane="sal es"

if (newName=="sal es") {newNane()}
function changeNanme() {

acti veSection. name=' sal es'

Function 16-41

Assigning a function to a variable is similar to declaring a function, but they
have differences:

When you assign a function to a variable usingvar changeNanme = new
Function("..."), changeNane is a variable for which the current
value is a reference to the function created with new Functi on().

When you create a function using f uncti on changeNane() {...},
changeNan® is not a variable, it is the name of a function

Specifying arguments in a Function object

The following code specifies a Funct i on object that takes two arguments.
var mul t Fun = new Function("x", "y", "return x * y")

The string arguments " X" and "y" are formal argument names that are

used in the function body, "return x * y".

The following code shows a way to call the function nul t Fun:

var theAnswer = multFun(7,6)
Console. Wite("15*2 = " + nul t Fun(15, 2))

Function Properties

Table 16-9 displays a summary of the function properties. Detailed
descriptions of each property follow the table.

Table 16-9 Function Properties

Arguments An array corresponding to the arguments passed to a function.
Avrity Indicates the number of arguments expected by the function.
Caller Specifies which function called the current function.

Prototype Allows the addition of properties to a Funct i on object.

16-42

Core Objects

Property of

Description

arguments
An array corresponding to the arguments passed to a function.

Functi on

You can call a function with more arguments than it is formally declared to
accept by using the ar gunment s array. This technique is useful if a function
can be passed a variable number of arguments. You can use

argunents. I engt h to determine the number of arguments passed to the
function, and then treat each argument by using the ar gunent s array.

The ar gunent s array is available only within a function declaration.
Attempting to access the ar gunent s array outside a function declaration
results in an error.

The t hi s keyword does not refer to the currently executing function, so you
must refer to functions and Functi on objects by name, even within the
function body.

In JavaScript 1.2, ar gunent s includes these additional properties:

= formal arguments — Each formal argument of a function is a property of the
ar gunment s array.

» local variables — Each local variable of a function is a property of the
ar gunment s array.

= call er — A property whose value is the ar gunent s array of the outer
function. If there is no outer function, the value is undefined.

= cal |l ee — A property whose value is the function reference.

For example, the following script demonstrates several of the ar gunent s
properties:

function b(z) {
Consol e. Wite(argunents. z)
Consol e. Wite (arguments. caller.x)
return 99
}
function a(x, y) {
return b(534)

Console.Wite (a(2,3))
Thi s displ ays:

534

2

Function 16-43

99
534 is the actual parameter to b, so it is the value of ar gunent s. z. 2isa's

actual x parameter, so (viewed within b) it is the value of
arguments. cal | er. x. 99is what a(2, 3) returns.

Examples This example defines a function that creates test lists. The only formal
argument for the function is a string that changes the appearance of the list. To
create a bullet list (also called an "unordered list"), use " U' . To create a
numbered list (also called an "ordered list"), use " O'. The function is defined
as follows:
function list(type) {

Consol e. Wite(type)
for (var i=1; i<list.argunents.length; i++) {
Consol e. Wite(list.argunments[i])
Consol e. Wite(type)
}
}
You can pass any number of arguments to this function, and it displays each
argument as an item in the type of list indicated. For example, the following
call to the function:
list("U, "One", "Two", "Three")
results in this output:
One
Two
Thr ee
arity
Indicates the number of arguments expected by the function.

Description ar ity is external to the function, and indicates how many arguments the
function expects. By contrast, ar gunent s. | engt h provides the number of
arguments actually passed to the function.

Example The following example demonstrates the use of ari ty and
argument s. | engt h.
functi on addNunber s(x,y){

Consol e. Wite("length = " + arguments. | ength)
Z =X +y
Console. Wite("arity = " + addNunbers.arity)
addNunbers(3, 4, 5)
16-44 Core Objects

Property of

Description

Examples

See also

This script writes:

arity = 2
length = 3

caller

Returns the name of the function that invoked the currently executing
function.

Functi on

The cal | er property is available only within the body of a function. If used
outside a function declaration, the cal | er property is null.

If the currently executing function was invoked by the top level of a JavaScript
program, the value of cal | er is null.

The t hi s keyword does not refer to the currently executing function, so you
must refer to functions and Funct i on objects by name, even within the
function body.

The cal | er property is a reference to the calling function, so if you use itin a
string context, you get the result of calling f uncti onNane. t oSt ri ng. That
is, the decompiled canonical source form of the function.

You can also call the calling function, if you know what arguments it might
want. Thus, a called function can call its caller without knowing the name of
the particular caller, provided it knows that all of its callers have the same form
and fit, and that they will not call the called function again unconditionally
(which would result in infinite recursion).

The following code checks the value of a function's cal | er property.

function nyFunc() {
if (nmyFunc.caller == null) {
al ert("The function was called fromthe top!")
} else alert("This function's caller was " +
myFunc. cal | er)

}

Functi on: argunents

Function 16-45

prototype
A value from which instances of a particular class are created. Every object that
can be created by calling a constructor function has an associated pr ot ot ype

property.

Property of bj ect

Description You can add new properties or methods to an existing class by adding them to
the prototype associated with the constructor function for that class. The
syntax for adding a new property or method is:
fun. prototype. nane = val ue
where
fun The name of the constructor function object you want to change.
name The name of the property or method to be created.
val ue The value initially assigned to the new property or method.

If you add a new property to the prototype for an object, then all objects
created with that object's constructor function will have that new property,
even if the objects existed before you created the new property. For example,
assume you have the following statements:

var arrayl = new Array();

var array2 = new Array(3);

Array. prototype. description=null;

arrayl. descripti on="Contains sonme stuff"
array2.description="Contains other stuff"

After you set a property for the prototype, all subsequent objects created with
Ar r ay will have the property:

anot her Array=new Array()

anotherArray. description="Currently enpty"

Example The following example creates a method, st r _r ep, and uses the statement
String. prototype.rep = str_rep toaddthe methodtoall String
objects. All objects created with new String() then have that method, even
objects already created. The example then creates an alternate method and
adds that to one of the St r i ng objects using the statements1l.rep =
fake_rep. The str_r ep method of the remaining St ri ng objects is not
altered.

16-46 Core Objects

var s1 = new String("a")
var s2 = new String("b")
var s3 = new String("c")

/] Create a repeat-string-N-tines nethod for all

function str_rep(n) {

var s ="", t = this.toString()
while (--n >=0) s +=t
return s

}

String. prototype.rep = str_rep

/1 Display the results

Console. Wite("sl.rep(3) is " + sl.rep(3)) //
Console. Wite("s2.rep(5) is " + s2.rep(5)) //
Console. Wite("s3.rep(2) is " + s3.rep(2)) //

"aaa"
" bbbbb"
"eg"

String objects

/1l Create an alternate nethod and assign it to only one String

variabl e
function fake_rep(n) {

return "repeat " + this + n + " times."
}

sl.rep = fake_rep

Console. Wite("sl.rep(l) is " + sl.rep(l)) //
times."

Console. Wite("s2.rep(4) is " + s2.rep(4)) //
Console. Wite("s3.rep(6) is " + s3.rep(6)) //

This example produces the following output:
sl.rep(3) is aaa

s2.rep(5) is bbbbb

s3.rep(2) is cc

sl.rep(1l) is repeat al tines.
s2.rep(4) is bbbb

s3.rep(6) is ccccce

"repeat a 1

"bbbb"
"ccceec”

The function in this example also works on St r i ng objects not created with

the String constructor. The following code returns "zzz".

"z" . rep(3)

Function

16-47

Applies to

Syntax

Parameters

Description

Function Methods

Table 16-10 displays the function method. A detailed description of the
method follows the table.

Table 16-10 Function Method

toString Returns a string representing the specified object.

toString

Returns a string representing the specified object.
Functi on

toString()

None

Every object hasa t oSt ri ng method that is automatically called when it is
to be represented as a text value or when an object is referred to in a string
concatenation.

You can use t 0St ri ng within your own code to convert an object into a
string, and you can create your own function to be called in place of the default
t oSt ri ng method.

For Funct i on objects, the built-in t oSt ri ng method decompiles the
function back into the JavaScript source that defines the function This string

includes the f unct i on keyword, the argument list, curly braces, and function
body.

16-48

Core Objects

For example, assume you have the following code that defines the Dog object
type and creates t heDog, an object of t ype Dog:

functi on Dog(nane, breed, col or, sex) {
t hi s. name=nane
this. breed=breed
this. col or=col or
this. sex=sex

}
t heDog = new Dog(" Gabby", "Lab", "chocol ate","girl")

Any time Dog is used in a string context, JavaScript automatically calls the
toString function, which returns the following string:

functi on Dog(nane, breed, color, sex) { this.name = nane;
this.breed = breed; this.color = color; this.sex = sex; }

For information on defining your own t 0St r i ng method, see the Cbj ect :
t oSt ri ng method.

Function 16-49

Math

Created by

Description

A built-in object that has properties and methods for mathematical constants
and functions. For example, the Mat h object's Pl property has the value of pi.
Math is a core object.

The Mat h object is a top-level, predefined JavaScript object. You can
automatically access it without using a constructor or calling a method.

All properties and methods of Mat h are static. You refer to the constant PI as
Mat h. Pl and you call the sine function as Mat h. si n(x) , where X is the
method's argument. Constants are defined with the full precision of real
numbers in JavaScript.

It is often convenient to use the wi t h statement when a section of code uses
several Mat h constants and methods, so you don't have to type "Math"
repeatedly. For example:
with (Math) {

a =Pl * rr

y r*sin(theta)

X r*cos(theta)

16-50

Core Objects

Math Properties

Table 16-11 displays a summary of the math properties. Detailed descriptions
of each property follow the table.

Table 16-11 Math Properties

E Euler's constant and the base of natural logarithms, approximately 2.718.

LN10 Natural logarithm of 10, approximately 2.302.

LN2 Natural logarithm of 2, approximately 0.693.

LOG10E Base 10 logarithm of E (approximately 0.434).

LOG2E Base 2 logarithm of E (approximately 1.442).

Pl Ratio of the circumference of a circle to its diameter, approximately 3.14159.

SORT1_2 Square root of I; equivalently, 1 over the square root of 2, approximately
0.707.

SORT2 Square root of 2, approximately 1.414.

E

Euler's constant and the base of natural logarithms, approximately 2.718. Mat h
is static, read-only.

Property of Mat h

Examples The following function returns Euler's constant:

function getEuler() {
return Math. E
}

Description Because E is a static property of Mat h, you always use it as Mat h. E, rather
than as a property of a Mat h object you created.

Math 16-51

Property of

Example

Description

Property of

Examples

Description

Property of

Example

Description

LN10
The natural logarithm of 10, approximately 2.302. LN1O is static, read-only.

Mat h

The following function returns the natural log of 10:

function get Nat Logl0() {
return Math. LN1O
}

Because LNL1O is a static property of Mat h, you always use itas Mat h. LN10,
rather than as a property of a Mat h object you created.

LN2
The natural logarithm of 2, approximately 0.693. LN2 is static, read-only.

Mat h

The following function returns the natural log of 2:

function getNat Log2() {
return Math. LN2
}

Because LN2 is a static property of Mat h, you always use it as Mat h. LN2,
rather than as a property of a Mat h object you created.

LOG10E
The base 10 logarithm of E (approximately 0.434). LOGLOE s static, read-
only.

Mat h

The following function returns the base 10 logarithm of E:

function getlLoglOe() {
return Mat h. LOGLOE
}

Because LOGLOE is a static property of Mat h, you always use it as
Mat h. LOGLOE, rather than as a property of a Mat h object you created.

16-52 Core Objects

Property of

Examples

Description

Property of

Examples

Description

Property of

Example

LOG2E
The base 2 logarithm of E (approximately 1.442). LORE is static, read-only.

Mat h

The following function returns the base 2 logarithm of E:

function getlLog2e() {
return Mat h. LOG2E
}

Because LOR2E is a static property of Mat h, you always use it as
Mat h. LOG2E, rather than as a property of a Mat h object you created.

Pl

The ratio of the circumference of a circle to its diameter, approximately
3.14159. Pl is static, read-only.

Mat h

The following function returns the value of pi:

function getPi () {
return Math. Pl
}

Because Pl is a static property of Mat h, you always use it as Mat h. Pl , rather
than as a property of a Mat h object you created.

SQRT1_2
The square root of [; equivalently, 1 over the square root of 2, approximately
0.707. SQRT1_2 is static, read-only.

Mat h

The following function returns 1 over the square root of 2:

function getRoot1 2() {
return Math. SQRT1_2
}

Math 16-53

Description Because SQRT1_2 is a static property of Mat h, you always use it as
Mat h. SQRT1_2, rather than as a property of a Mat h object you created.

SQRT2

The square root of 2, approximately 1.414. SQRT2 is static, read-only.
Property of Mat h
Example The following function returns the square root of 2:

function getRoot2() {
return Mat h. SQRT2
}

Description Because SQRT2 is a static property of Mat h, you always use it as Mat h. SQRT2,
rather than as a property of a Mat h object you created.

16-54 Core Objects

Math Methods

Table 16-12 displays a summary of the math methods. Detailed descriptions of
each method follow the table.

Table 16-12 Math Methods

abs Returns the absolute value of a number.

acos Returns the arccosine (in radians) of a number.

asin Returns the arcsine (in radians) of a number.

atan Returns the arctangent (in radians) of a number.

atan2 Returns the arctangent of the quotient of its arguments.

ceil Returns the smallest integer greater than or equal to a number.

cos Returns the cosine of a number.

exp Returns Enumber, where number is the argument, and E is Euler's constant, the
base of the natural logarithms.

floor Returns the largest integer less than or equal to a number.

log Returns the natural logarithm (base E) of a number.

max Returns the greater of two numbers.

min Returns the lesser of two numbers.

pow Returns base to the exponent power, that is, baseexponent,

random Returns a pseudo-random number between 0 and 1.

round Returns the value of a number rounded to the nearest integer.

sin Returns the sine of a number.

sqrt Returns the square root of a number.

tan Returns the tangent of a number.

Math

16-55

abs
Returns the absolute value of a number.

Applies to Mat h
Syntax abs(x)
Parameters X
A number.
Example The following function returns the absolute value of the variable x:

function get Abs(x) {
return Mat h. abs(x)
}

Description abs is a static method of Mat h. As a result, you always use it as Mat h. abs(),
rather than as a method of a Mat h object you create.

acos

Returns the arccosine (in radians) of a number.

Applies to Mat h
Syntax acos(x)
Parameters X
A number.
Description The acos method returns a numeric value between 0 and pi radians. If the

value of nunber is outside this range, it returns 0.
acos is a static method of Mat h. As a result, you always use it as
Mat h. acos(), rather than as a method of a Mat h object you create.

Example The following function returns the arccosine of the variable x:

function get Acos(x) {
return Mat h. acos(x)
}

16-56 Core Objects

See also

Applies to
Syntax

Parameters

Description

Examples

See also

If you pass -1 to get Acos, it returns 3.141592653589793; if you pass 2, it

returns 0 because 2 is out of range.

Mat h: asi n,
Mat h: t an

asin

Mat h: at an,

Mat h: at an2, Mat h: cos,

Returns the arcsine (in radians) of a number.

Mat h
asi n(x)

X
A number.

Mat h: sin,

The asi n method returns a numeric value between -pi/2 and pi/2 radians. If
the value of nunmber is outside this range, it returns 0.

asi n is a static method of Mat h. As a result, you always use it as
Mat h. asi n(), rather than as a method of a Mat h object you create.

The following function returns the arcsine of the variable x:

function getAsin(x) {

return Math. asi n(x)

}

If you pass get Asi n the value 1, it returns 1.570796326794897 (pi/2); if you
pass it the value 2, it returns 0 because 2 is out of range.

Mat h: acos,
Mat h: t an

Mat h: at an,

Mat h: at an2, Mat h: cos,

Mat h: sin,

Math

16-57

atan
Returns the arctangent (in radians) of a number.

Applies to Mat h
Syntax at an(x)
Parameters X
A number.
Description The at an method returns a numeric value between -pi/2 and pi/2 radians.

at an is a static method of Mat h. As a result, you always use it as
Mat h. at an(), rather than as a method of a Mat h object you create.

Example The following function returns the arctangent of the variable x:
function get Atan(x) {
return Math. atan(x)
}

If you pass get At an the value 1, it returns 0.7853981633974483; if you pass it
the value .5, it returns 0.4636476090008061.

See also Mat h. acos, Math. asin, Math.atan2, Mth. cos, Math.sin,
Mat h. t an

16-58 Core Objects

Applies to
Syntax

Parameters

Description

Example

See also

atan2
Returns the arctangent of the quotient of its arguments.

Mat h
atan2(y, x)

y, X
A number.

The at an2 method returns a numeric value between -pi and pi representing
the angle theta of an (X, y) point. This is the counterclockwise angle, measured
in radians, between the positive X axis, and the point (X, y). Note that the
arguments to this function pass the y-coordinate first and the x-coordinate
second.

at an2 is passed separate X and y arguments, and at an is passed the ratio of
those two arguments.

at an2 is a static method of Mat h. As a result, you always use it as
Mat h. at an2() , rather than as a method of a Mat h object you create.

The following function returns the angle of the polar coordinate:

function get Atan2(x,y) {
return Math. atan2(x,y)
}

If you pass get At an2 the values (90,15), it returns 1.4056476493802699; if
you pass it the values (15,90), it returns 0.16514867741462683.

Mat h. acos, Math. asin, Mth.atan, ©Math.cos, Mth. sin,
Mat h. t an

Math 16-59

ceil

Returns the smallest integer greater than or equal to a number.

Applies to Mat h
Syntax ceil (x)
Parameters X
A number.
Description cei | is a static method of Mat h. As a result, you always use it as

Mat h. cei | (), rather than as a method ofa Mat h object you create.
Example The following function returns the ceil value of the variable x:

function getCeil (x) {
return Math. ceil (x)
}

If you pass 45.95 to get Cei | , it returns 46; if you pass -45.95, it returns -45.

See also Mat h: fl oor

16-60 Core Objects

Applies to
Syntax

Parameters

Description

Examples

See also

cos
Returns the cosine of a number.

Mat h
cos(x)

X
A number.

The cos method returns a numeric value between -1 and 1, which represents
the cosine of the angle.

COS is a static method of Mat h. As a result, you always use it as Mat h. cos(),
rather than as a method of a Mat h object you create.

The following function returns the cosine of the variable x:

function get Cos(x) {
return Mat h. cos(x)
}

If X equals Mat h. Pl / 2, get Cos returns 6.123031769111886e-017; if X equals
Mat h. PI , get Cos returns -1.

Mat h: acos, Math. asin, ©Math.atan, WNMath.atan2, Mth. sin,
Mat h. t an

Math 16-61

Applies to
Syntax

Parameters

Description

Examples

See also

exp
Returns Ex, where X is the argument, and E is Euler's constant, the base of the
natural logarithms.

Mat h

exp(x)

X
A number.

exp is a static method of Mat h. As a result, you always use it as Mat h. exp(),
rather than as a method of a Mat h object you create.

The following function returns the exponential value of the variable x:

function get Exp(x) {
return Mat h. exp(x)
}

If you pass get Exp the value 1, it returns 2.718281828459045.

Mat h: E, Mat h: 1 og, Math:pow

16-62 Core Objects

Applies to
Syntax

Parameters

Description

Examples

See also

floor

Returns the largest integer less than or equal to a number.
Mat h
fl oor(x)

X
A number.

f1 oor isa static method of Mat h. As a result, you always use it as
Mat h. f| oor (), rather than as a method of a Mat h object you create.

The following function returns the floor value of the variable x:

function getFl oor(x) {
return Math. fl oor (x)
}

If you pass 45.95 to get Fl oor, it returns 45; if you pass -45.95, it returns -46.

Mat h: cei |

Math

16-63

Applies to
Syntax

Parameters

Description

Examples

See also

log

Returns the natural logarithm (base E) of a number.
Mat h

l'og(x)

X
A number.

If the value of nunber is outside the suggested range, the return value is always
-1.797693134862316e+308.

| og is a static method of Mat h. As a result, you always use it as Mat h. | og(),
rather than as a method of a Mat h object you create.

The following function returns the natural log of the variable x:

function getLog(x) {
return Math. | og(x)
}

If you pass get Log the value 10, it returns 2.302585092994046; if you pass it
the value 0, it returns -1.797693134862316e+308 because 0 is out of range.

Mat h. exp, Mat h. pow

16-64 Core Objects

Applies to
Syntax

Parameters

Description

Examples

See also

max
Returns the larger of two numbers.

Mat h
max(X, y)

X,y
Numbers.

max is a static method of Mat h. As a result, you always use it as Mat h. max(),

rather than as a method of a Mat h object you create.

The following function evaluates the variables x and y:

function get Max(x,y) {
return Math. max(x,y)
}

If you pass get Max the values 10 and 20, it returns 20; if you pass it the values

-10 and -20, it returns -10.

Mat h. m n

Math

16-65

min

Returns the smaller of two numbers.

Applies to Mat h
Syntax m n(x,y)
Parameters X,y
Numbers.
Description m n is a static method of Mat h. As a result,you always use it as

Mat h. mi n(), rather than as a method of a Mat h object you create.
Examples The following function evaluates the variables X and y:

function getMn(x,y) {
return Math. mn(x,y)
}

If you pass get M n the values 10 and 20, it returns 10; if you pass it the values
-10 and -20, it returns -20.

See also Mat h. max

16-66 Core Objects

Applies to
Syntax

Parameters

Description

Examples

See also

pow

Returns base to the exponent power, that is, baseexponent,

Mat h

pow(X, y)

base

The base number.

exponent

The exponent to which to raise base.

powis a static method of Mat h. As a result, you always use it as Mat h. pow(),

rather than as a method of a Mat h object you create.

function rai sePower (x,Yy)

{

return Mat h. pow(X,y)

}

Ifxis 7 and yis 2, r ai sePower returns 49 (7 to the power of 2).

Mat h. exp,

Mat h. | og

Math

16-67

random

Returns a pseudo-random number between 0 and 1. The random number
generator is seeded from the current time, as in Java.

Applies to Mat h

Syntax randont)

Parameters None

Description r andomis a static method of Mat h. As a result, you always use it as

Mat h. randon(), rather than as a method of a Mat h object you create.

Examples //Returns a random nunmber between 0 and 1
functi on get Randon() {
return Math. random()
}

round
Returns the value of a number rounded to the nearest integer.

Applies to Mat h
Syntax round(x)
Parameters X
A number.
Description If the fractional portion of number is .5 or greater, the argument is rounded to

the next highest integer. If the fractional portion of number is less than .5, the
argument is rounded to the next lowest integer.

round is a static method of Mat h. As a result, you always use it as

Mat h. round() , rather than as a method of a Mat h object you create.

Examples /I Di spl ays the val ue 20
Consol e. Wite("The rounded value is " + Math.round(20.49))

/1 Di splays the value 21
Consol e. Wite("The rounded value is " + Math.round(20.5))

/1 Di spl ays the val ue -20

16-68 Core Objects

Applies to
Syntax

Parameters

Description

Examples

See also

Consol e. Wite("The rounded value is " + Math.round(-20.5))
/1 Di splays the value -21

Consol e. Wite("The rounded value is " + Math.round(-20.51))
sin

Returns the sine of a number.
Mat h
si n(x)

X
A number.

The si n method returns a numeric value between -1 and 1, which represents
the sine of the argument.
Si n is a static method of Mat h. As a result, you always use it as Mat h. si n(),

rather than as a method of a Mat h object you create.

The following function returns the sine of the variable x:

function getSine(x) {
return Math. sin(x)
}

If you pass get Si ne the value Mat h. Pl / 2, it returns 1.

Mat h: acos, Math: asin, Math:atan, Mth:atan2, Math: cos,
Mat h: t an

Math 16-69

sqrt

Returns the square root of a number.

Applies to Mat h
Syntax sqrt(x)
Parameters X
A number.
Description If the value of nunber is outside the required range, sqrt returns 0.

sqrt isa static method of Mat h. As a result, you always use it as
Mat h. sqrt (), rather than as a method of a Mat h object you create.

Examples The following function returns the square root of the variable x:
function get Root (x) {
return Math. sqrt(x)
}

If you pass get Root the value 9, it returns 3; if you pass it the value 2, it
returns 1.414213562373095.

16-70 Core Objects

Applies to
Syntax

Parameters

Description

Examples

tan

Returns the tangent of a number.
Mat h
tan(x)

X
A number.

Thet an method returns a numeric value that represents the tangent of the
angle.
t an is a static method of Mat h. As a result, you always use it as Mat h. t an(),

rather than as a method of a Mat h object you create.

The following function returns the tangent of the variable x:

function get Tan(x) {
return Math. tan(x)
}

If you pass Mat h. Pl / 4 to get Tan, it returns 0.9999999999999999.

Math 16-71

Number

Lets you work with numeric values. The Nunber object is an object wrapper
for primitive numeric values and a core object.

Created by The Nunber constructor.
Syntax new Nunber (val ue);
Parameters val ue

The numeric value of the object being created.

Description The primary uses for the Nunber object are:

= To access its constant properties, which represent the largest and smallest
representable numbers, positive and negative infinity, and the Not-a-
Number value

= To create numeric objects that you can add properties to. Most likely, you
will rarely need to create a Nurrber object.

The properties of Nunber are properties of the class itself, not of individual
Nunber objects.

Nunber (x) now produces NaNrather than an error if X is a string that does
not contain a well-formed numeric literal. For example:

x=Nunber ("three");
Consol e. Wite(x);
prints NaN

Examples The following example uses the Nurber object's properties to assign values to
several numeric variables:

bi ggest Num = Nunber . MAX_VALUE

smal | est Num = Nunmber. M N_VALUE

i nfiniteNum = Nunber. PGOSI TI VE_I NFI NI TY
negl nfiniteNum = Nurmber. NEGATI VE_I NFI NI TY
not ANum = Nunber . NaN

16-72 Core Objects

The following example creates a Nunber object, myNum then adds a

descri pti on propertyto all Nunber objects. Then a value is assigned to the
nmyNum object's descri pt i on property.

myNum = new Nunber (65)

Number . prot ot ype. descri pti on=nul |
myNum descri ption="w nd speed"

Number Properties

Table 16-13 displays a summary of the number properties. Detailed
descriptions of each property follow the table.

Table 16-13 Number Properties

MAX VALUE The largest representable number.
MIN VALUE The smallest representable number.
NaN Special "not a number" value.

NEGATIVE_INFINITY Special infinite value; returned on overflow.
POSITIVE INFINITY Special negative infinite value; returned on overflow.

Prototype Allows the addition of properties to a Number object.

Number 16-73

MAX_VALUE

The maximum numeric value representable in JavaScript.

Property of Nunber

Description The MAX_VALUE property has a value of approximately 1.79E+308. Values
larger than MAX_VALUE are represented as | nfi ni ty.

MAX_VALUE is a static, read-only property of Nunber. As a result, you always
use it as Nunber . MAX_VALUE, rather than as a property of a Nurber object
you create.

Example The following code multiplies two numeric values. If the result is less than or
equal to MAX_VALUE, the funcl function is called; otherwise, the f unc2
function is called.
if (nunl * nunR <= Nunber.MAX_VALUE)

funcl()
el se
func2()
MIN_VALUE
The smallest positive numeric value that can be represented in JavaScript.

Property of Nunber

Description The M N_VALUE property is the number closest to 0, not the most negative
number, that JavaScript can represent.

M N_VALUE has a value of approximately 2.22E-308. Values smaller than

M N_VALUE ("underflow values") are converted to 0.

M N_VALUE is a static, read-only property of Nunber . As a result, you always
use it as Nunber . M N_VALUE, rather than as a property of a Nuber object
you create.

Example The following code divides two numeric values. If the result is greater than or
equal to M N_VALUE, the f unc1 function is called; otherwise, the f unc2
function is called.
if (nunl / nun2 >= Nunber.M N_VALUE)

funcl()
el se
func2()
16-74 Core Objects

Property of

Description

Example

Property of:

Description

Examples

NaN

A special value representing Not-A-Number. This value is represented as the
unquoted literal NaN NaN s a read-only property.

Number

JavaScript prints the value Nunber . NaNas NaN.

NaN is always unequal to any other number, including NaN itself; you cannot
check for the not-a-number value by comparing to Nunber . NaN. Use the
i sNaN function instead.

You might use the NaN property to indicate an error condition for a function

that should return a valid number.

In the following example, if mont h has a value greater than 12, it is assigned
NaN and a message is displayed indicating valid values.

var month = 13
if (month <1 || nmonth > 12) {
mont h = Nurber. NaN

alert("Mnth nust be between 1 and 12.")

NEGATIVE_INFINITY

A special numeric value representing negative infinity. This value is displayed
as-Infinity.

Number

This value behaves mathematically like infinity; for example, anything
multiplied by infinity is infinity, and anything divided by infinity is 0.

NEGATI VE_I NFI NI TY is a static, read-only property of Nunber . As a result,
you always use it as Nunber . NEGATI VE_| NFI NI TY, rather than as a property
of a Nunber object you create.

In the following example, the variable smal | Nunber is assigned a value that is
smaller than the minimum value. When the i f statement executes,
smal | Nunber has the value - | nfi ni ty, so the f uncl function is called.

var smal | Nunber = -Nunber. MAX_VALUE* 10
if (small Nunber == Nunber.NEGATI VE_I NFI NI TY)

Number 16-75

Property of

Description

Example

Description

Property of

funcl()
el se
func2()

POSITIVE_INFINITY
A special numeric value representing infinity. This value is displayed as
Infinity.

Number

This value behaves mathematically like infinity; for example, anything
multiplied by infinity is infinity, and anything divided by infinity is 0.

JavaScript does not have a literal for Infinity.

POSI TI VE_I NFI NI TY is a static, read-only property of Nunber. As a result,
you always use it as Nunber . POSI TI VE_|I NFI NI TY, rather than as a property
of a Nunmber object you create.

In the following example, the variable bi gNunber is assigned a value that is
larger than the maximum value. When the i f statement executes, bi gNunrber
has the value | nfi ni ty, so the f uncl function is called.
var bi gNunmber = Nunber. MAX_VALUE * 10
i f (bi gNunmber == Nunber. PGSI Tl VE_I NFI NI TY)

funcl()

el se
func2()

Prototype

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For information on
prototypes, see Funct i on. pr ot ot ype.

Number

16-76

Core Objects

Applies to

Syntax

Parameters

Description

Number Methods

Table 16-14 displays the number method. A detailed description of this
method follows the table.

Table 16-14 Number Method

tostring Returns a string representing the specified object.
toString

Returns a string representing the specified object.
Nurmber

toString()

toString(radix)l |

radi x
(Optional) An integer between 2 and 16 specifying the base to use for
representing numeric values.

Every object has a t oSt ri ng method that is automatically called when it is to
be represented as a text value or when an object is referred to in a string
concatenation.

You can use t 0St ri ng within your own code to convert an object into a
string, and you can create your own function to be called in place of the default
t oSt ri ng method.

You can uset 0St ri ng on numeric values, but not on numeric heliterals:

/] The next two lines are valid

var howvany=10

("howMany.toString() is " + howMvany.toString())
// The next |ine causes an error

("45.toString() is " + 45.toString())

For information on defining your own t oSt ri ng method, see the
Obj ect. toString method.

Number 16-77

Object

Cbj ect is the primitive JavaScript object type. All JavaScript objects are
descended from Qbj ect . That is, all JavaScript objects have the methods
defined for Qhj ect .

Created by The Chj ect constructor
Syntax new Object();
Parameters None
Object Properties
Table 16-15 displays a summary of the object properties. Detailed descriptions
of each property follow the table.
Table 16-15 Object Properties
Constructor Specifies the function that creates an object's prototype.
Prototype Allows the addition of properties to all objects.
16-78 Core Objects

constructor

Specifies the function that creates an object's prototype. Note that the value of
this property is a reference to the function itself, not a string containing the
function's name.

Property of: bj ect
Description All objects inherit a const r uct or property from their pr ot ot ype:
0 = new hject // or o = {}
0.constructor == Object
a = new Array /Il or a =1]]
a.constructor == Array
n = new Nunber (3)
n.constructor == Nunber
Example The following example creates a prototype, Tr ee, and an object of that type,

t heTr ee. The example then displays the const r uct or property for the
objectt heTr ee.

function Tree(nane) {
t hi s. name=nane
}

theTree = new Tree("Redwood")

Consol e. Wite("theTree. constructor is" +
t heTree. constructor)

This example displays the following output:

t heTree. constructor is function Tree(nane) { this.nane = nane; }

Prototype

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For more information, see
“prototype” on page 16-46.

Property of bj ect

Object 16-79

Property of
Syntax

Parameters

Description

Object Methods

Table 16-16 displays a summary of the object methods. Detailed descriptions
of each method follow the table.

Table 16-16 Object Methods

eval Evaluates a string of JavaScript code in the context of the specified
object.

toString Returns a string representing the specified object.

uwatch Removes a watchpoint from a property of the object.

valueOf Returns the primitive value of the specified object.

watch Adds a watchpoint to a property of the object.

eval

Evaluates a string of JavaScript code in the context of this object.
bj ect
eval (string)

string

Any string representing a JavaScript expression, statement, or sequence of
statements. The expression can include variables and properties of existing
objects.

The argument of the eval method is a string. If the string represents an
expression, eval evaluates the expression. If the argument represents one or
more JavaScript statements, eval performs the statements. Do not call eval
to evaluate an arithmetic expression; JavaScript evaluates arithmetic
expressions automatically.

If you construct an arithmetic expression as a string, you can use eval to
evaluate it at a later time. For example, suppose you have a variable x. You can
postpone evaluation of an expression involving x by assigning the string value
of the expression, say "3 * x + 2", to avariable, and then calling eval ata
later point in your script.

eval is also a global function, not associated with any object.

16-80 Core Objects

Examples

The following example creates br eed as a property of the object myDog, and
also as a variable. The first w i t e statement uses eval (' breed') without
specifying an object; the string “br eed” is evaluated without regard to any
object, and the wri t e method displays Shepher d, which is the value of the
breed variable.

The second writ e statement uses nyDog. eval (' breed') which specifies
the object nyDog; the string “br eed " is evaluated with regard to the myDog
object, and the wr i t @ method displays "Lab", which is the value of the

br eed property of the myDog object.

function Dog(nane, breed, col or) {
t hi s. name=nane
this. breed=breed
this. col or=col or

}

myDog = new Dog(" Gabby")

myDog. br eed="Lab"

var breed=' Shepherd'

Consol e. Wite(eval (' breed'))
Consol e. Wite(mnmyDog. eval (' breed'))

The following example uses eval within a function that defines an object
type, st one. The statementf 1 i nt = new st one("x=42") creates the
object f | i nt with the properties X, Yy, z, and z2. The wr i t e statements
display the values of these properties as 42, 43, 44, and 45, respectively.
function stone(str) {

this.eval ("this."+str)

this.eval ("this.y=43")

this.z=44

this["z2"] = 45
}

flint = new stone("x=42")

Console. Wite(flint.x is " + flint.x)
Console. Wite(flint.y is " + flint.y)
Console. Wite(flint.z is " + flint.z)

Console. Wite(flint.z2 is " + flint.z2)

Object 16-81

Applies to

Syntax

Parameters

Description

toString

Returns a string representing the specified object.
bj ect

toString()
toString(radix)

radi x
(Optional) An integer between 2 and 16 specifying the base to use for
representing numeric values.

Every object hasa t oSt ri ng method that is automatically called when it is
to be represented as a text value or when an object is referred to in a string
concatenation. For example, the following examples require t heDog to be
represented as a string:

Consol e. Wit e(theDog)
Console. Wite("The dog is " + theDog)

You can use t 0St ri ng within your own code to convert an object into a
string, and you can create your own function to be called in place of the default
t oSt ri ng method.

= Built-in toString methods

Every object type has a built-in t 0St r i ng method, which JavaScript calls
whenever it needs to convert an object to a string. If an object has no string
value and no user-defined t 0St ri ng method, t 0St r i ng returns

[obj ect type], wheret ype is the object type or the name of the
constructor function that created the object.

Some built-in classes have special definitions for their toString methods.
See the descriptions of this method for these objects:

= User-defined toString methods

You can create a function to be called in place of the defaultt oSt ri ng
method. Thet oSt ri ng method takes no arguments and should return a
string. Thet oSt ri ng method you create can be any value you want, but it
will be most useful if it carries information about the object.

The following code defines the Dog object type and creates t heDog, an
object of type Dog:

function Dog(nane, breed, col or, sex) {
t hi s. name=nane

16-82

Core Objects

Examples

t hi s. breed=breed
t hi s. col or =col or
t hi s. sex=sex

}
t heDog = new Dog(" Gabby", "Lab", "chocol ate","girl")

The following code creates dogToSt ri ng, the function that will be used
in place of the defaultt oSt r i ng method. This function generates a string
containing each property, of the form property = val ue; .

function dogToString() {

var ret = "Dog " + this.name + " is ["
for (var prop in this)
ret += " " + prop + " is " + this[prop] + ";"

return ret + "]"

}

The following code assigns the user-defined function to the object's

t oSt ri ng method:

Dog. prototype.toString = dogToString

With the preceding code in place, any time t heDog is used in a string
context, JavaScript automatically calls the dogToSt ri ng function, which
returns the following string:

Dog Gabby is [name is Gabby; breed is Lab; color is

chocol ate; sex is girl; toString is function dogToString() {
var ret = "Cbject " + this.name + " is ["; for (var prop in
this) { ret += " " + prop + " is " + this[prop] + ";"; }
return ret +"1"; } ;1]

An object's t 0St ri ng method is usually invoked by JavaScript, but you
can invoke it yourself as follows:

al ert (theDog.toString())

The following example prints the string equivalents of the numbers 0 through
9 in decimal and binary.

for (x = 0; x < 10; x++) {
("Decimal: ", x.toString(10), " Binary: ",
Console.wite
X.toString(2))
}

The preceding example produces the following output:

Decimal: O Binary: O
Decimal: 1 Binary: 1
Decimal: 2 Binary: 10
Decimal: 3 Binary: 11

Object 16-83

See also

Applies to
Syntax

Parameters

Example

Applies to
Syntax
Parameters

Description

Decimal: 4 Binary: 100
Decimal: 5 Binary: 101
Decimal: 6 Binary: 110
Decimal: 7 Binary: 111
Decimal: 8 Binary: 1000
Decimal: 9 Binary: 1001

bj ect . val ued™

unwatch
Removes a watchpoint set with the wat ch method.

bj ect
unwat ch(pr op)

prop
The name of a property of the object.

See: (bj ect: watch

valueOf

Returns the primitive value of the specified object.
bj ect
val ueOf ()

None

Every object hasa val ue method that is automatically called when it is to
be represented as a primitive value. If an object has no primitive value,
val ueXr returns the object itself.

You can use val ueX within your own code to convert an object into a
primitive value, and you can create your own function to be called in place of
the default val uef method.

Every object type has a built-in val uedf method, which JavaScript calls
whenever it needs to convert an object to a primitive value.

16-84 Core Objects

L] Tip

You rarely need to invoke the val ueOf method yourself. JavaScript
automatically invokes it when encountering an object where a primitive value
is expected.

Table 16-17 shows object types for which the val ueOf method is most
useful. Most other objects have no primitive value.

Table 16-17 Object Types for the val ueCf Method

Object Type Value Returned by val ueCr

Number Primitive numeric value associated with the object.

Boolean Primitive boolean value associated with the object.

String String associated with the object.

Function Function reference associated with the object. Forexample, t ypeof

f unObj returns obj ect, butt ypeof funObj.val ued ()
returns f unct i on.

You can create a function to be called in place of the default val ueCf method.
Your function must take no arguments.

Suppose you have an object type myNunber Type and you want to create a
val ueX method for it. The following code assigns a user-defined function to
the object's val ue method:

myNunber Type. prot ot ype. val ueOf = new Functi on(functi onText)

With the preceding code in place, any time an object of type my Nunber Ty pe
is used in a context where it is to be represented as a primitive value, JavaScript
automatically calls the function defined in the preceding code.

An object's val ue¥ method is usually invoked by JavaScript, but you can
invoke it yourself as follows:

myNunber . val ued ()

Objects in string contexts convert via the t 0St ri ng method, which is
different from St r i ng objects converting to string primitives using val ueCf .
All string objects have a string conversion, if only [obj ect t ype] . But many
objects do not convert to number, boolean, or function.

Object 16-85

Applies to
Syntax

Parameters

Description

Example

watch

Watches for a property to be assigned a value and runs a function when that
occurs.

bj ect
wat ch(prop, handl er)

prop
The name of a property of the object.

handl er
A function to call.

Watches for assignment to a property named pr op in this object, calling
handl er (prop, ol dval, newal) wheneverprop issetand storing
the return value in that property. A watchpoint can filter (or nullify) the value
assignment, by returning a modified newal (or ol dval).

If you delete a property for which a watchpoint has been set, that watchpoint
does not disappear. If you later recreate the property, the watchpoint is still in
effect.

To remove a watchpoint, use the unwat ch method.

o= {p:1}
o.watch("p",
function (id,oldval,newal) {
Console.Wite("o." +id + " changed from"
+ oldval + " to " + newal)
return newal

o.unwatch('p')

o.p =5

This script displays the following:
0.p changed from1l to 2

0.p changed from2 to 3
0.p changed from3 to 4

16-86 Core Objects

String

An object representing a series of characters in a string. String is a core object.

Created by The String constructor:

new String(string);

Parameters string
Any string.
Description The Stri ng object is a built-in JavaScript object. You an treat any JavaScript

stringasa String object.

A string can be represented as a literal enclosed by single or double quotation
marks; for example, "Brio" or 'Brio’.

Examples = String Variable

The following statement creates a string variable:

var | ast_nanme = "Schaefer"

= String Object Properties
The following statements evaluate to 8, " SCHAEFER, " and "schaefer":

| ast _name. | ength
| ast _nane. t oUpper Case()
| ast _nane. t oLower Case()

» Accessing individual characters in a string

You can think of a string as an array of characters. In this way, you can
access the individual characters in the string by indexing that array. For
example, the following code:

var myString = "Hello"
Console.Wite ("The first character in the string is " +
nmyString[0])

displays "The first character in the string is H"

String 16-87

String Properties

Table 16-18 displays a summary of the string properties. Detailed descriptions
of each property follow the table.

Table 16-18 String Properties

length Reflects the length of the string.
prototype Allows the addition of properties to a St ri ng object.
length
The length of the string. The | engt h property is read-only.
Property of String
Description For a null string, length is 0.
Example The following example displays 8 in an Alert dialog box:
var x="Net scape"
Alert("The string length is " + x.length)
prototype
Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For information on
prototypes, see Funct i on. pr ot ot ype.
Property of String
16-88 Core Objects

String Methods

Table 16-19 displays a summary of the string methods. Detailed descriptions of
each method follow the table.

Table 16-19 String Methods

anchor Creates an HTML anchor that is used as a hypertext target.

big Causes a string to be displayed in a big font as if it were in a Bl Gtag.
blink Causes a string to blink as if it were in a BLI NK tag.

bold Causes a string to be displayed as if it were in a B tag.

charat Returns the character at the specified index.

charCodeat Returns a number indicating the ISO-Latin-1 codeset value of the charac-

ter at the given index.

concat Combines the text of two strings and returns a new string.

fixed Causes a string to be displayed in fixed-pitch font as if it were ina TT
tag.

fontcolor Causes a string to be displayed in the specified color as if it were in a

 tag.

fontsize Causes a string to be displayed in the specified font size as if it were in a
 tag.

fromCharCode Returns a string from the specified sequence of numbers that are 1SO-
Latin-1 codeset values.

indexOf Returns the index within the calling St r i ng object of the first occur-
rence of the specified value.

italics Causes a string to be italic, as if it were in an | tag.

lastindexOf Returns the index within the calling St r i ng object of the last occur-
rence of the specified value.

link Creates an HTML hypertext link that requests another URL.
match Used to match a regular expression against a string.
replace Used to find a match between a regular expression and a string, and to

replace the matched substring with a new substring.

String 16-89

Table 16-19 String Methods (Continued)

search Executes the search for a match between a regular expression and a
specified string.

slice Extracts a section of a string and returns a new string.

small Causes a string to be displayed in a small font, as if it were in a SMALL
tag.

split Splitsa St ri ng object into an array of strings by separating the string
into substrings.

strike Causes a string to be displayed as struck-out text, as if it were in a
STRI KE tag.

sub Causes a string to be displayed as a subscript, as if it were in a SUB tag.

substr Returns the characters in a string beginning at the specified location

through the specified number of characters.

substring Returns the characters in a string between two indexes into the string.

sup Causes a string to be displayed as a superscript, as if it were in a SUP
tag.

ToLowerCase Returns the calling string value converted to lowercase.

ToUpperCase Returns the calling string value converted to uppercase.

16-90 Core Objects

Applies to
Syntax

Parameters

Description

Examples

See also

anchor
Creates an HTML anchor that is used as a hypertext target.

String
anchor (nameAttri bute)

naneAttri bute
A string.

Use the anchor method with Consol e. Wi t e to programmatically create
and display an anchor in a document. Create the anchor with the anchor
method, and then call wr i t e to display the anchor in a document.

In the syntax, the t ext string represents the literal text that you want the user
to see. The naneAt t ri but e string represents the NAMVE attribute of the A tag.

Anchors created with the anchor method become elements in the
docunent . anchors arr ay.

The following example opens the msgW ndowwindow and creates an anchor
for the table of contents:

var nyString="Tabl e of Contents"
Wite(nmyString.anchor("contents_anchor"))

The previous example produces the same output as the following HTML:

Tabl e of Contents

String:link

String 16-91

Applies to
Syntax
Parameters

Description

Example

See also

big

Causes a string to be displayed in a big font as if it were in a Bl Gtag.
String

bi g()

None

Use the bi g method with the Wi t e method to format and display a string in
a document.

The following example uses st r i ng methods to change the size of a string:
var worl dString="Hell o, world"

Consol e. Wite(worl dString.small ())
Consol e. Wite(worl dString. big())

Consol e. Wite(worl dString.fontsize(7))
The previous example produces the same output as the following HTML:
<SMALL>Hel | o, worl d</ SMALL>

<Bl GHel | o, worl d</BI &G

<FONTSI ZE=7>Hel | o, wor | d</ FONTSI ZE>

String.fontsize, String.snmall

16-92 Core Objects

Applies to
Syntax
Parameters

Description

Example

See also

blink

Causes a string to blink as if it were in a BLI NK tag.
String
bli nk()

None

Use the bl i nk method with the Wi t e method to format and display a string

in a document.

The following example uses st r i ng methods to change the formatting of a

string:

var worl dString="Hell o, world"

Consol e. Wite(worl dString. blink())

Consol e. Wite("<P>" + worl dString.bold())
Console. Wite("<P>" + worldString.italics())

Consol e. Wite("<P>" + worldString.strike())

The previous example produces the same output as the following HTML:

<BLI NK>Hel | o, wor | d</ BLI NK>
<P>Hel | o, worl d</ B>
<P><|>Hell o, world</I>

<P><STRI KE>Hel | o, wor | d</ STRI KE>

String.bold, String.italics, String.strike

String

16-93

Applies to
Syntax
Parameters

Description

Example

See also

bold

Causes a string to be displayed as bold as if it were in a B tag.
String
bol d()

None

Use the bol d method with the Wit e methods to format and display a string
in a document.

The following example uses st r i ng methods to change the formatting of a
string:

var worl dString="Hello, world"

Consol e. Wite(worl dString. blink())

Consol e. Wite("<P>" + worl dString.bold())
Console. Wite("<P>" + worldString.italics())
Console. Wite("<P>" + worldString.strike())

The previous example produces the same output as the following HTML:

<BLI NK>Hel | o, wor | d</ BLI NK>
<P>Hel | o, worl d</ B>
<P><|>Hell o, world</I>

<P><STRI KE>Hel | o, wor | d</ STRI KE>

String:blink, String:italics, String.strike

16-94 Core Objects

Applies to
Syntax

Parameters

Description

Example

See also

charAt

Returns the specified character from the string.
String
char At (i ndex)

i ndex
An integer between 0 and 1 less than the length of the string.

Characters in a string are indexed from left to right. The index of the first
character is 0, and the index of the last character in a string called
stringNane is stringName.length - 1.Ifthei ndex you supply is
out of range, JavaScript returns an empty string.

The following example displays characters at different locations in the string
"Brave new worl d":

var anyString="Brave new worl d"

Consol e. Wite("The character at index 0 is " +
anyString. char At (0))
Consol e. Wite("The character at index 1 is " +
anyString. char At (1))
Consol e. Wite("The character at index 2 is " +
anyString. char At (2))
Consol e. Wite("The character at index 3 is " +
anyString. char At (3))
Consol e. Wite("The character at index 4 is " +
anyString. char At (4))

These lines display the following:

The character at index 0 is
The character at index 1 is
The character at index 2 is
The character at index 3 is
The character at index 4 is

o< ®-w

String:indexO, String.lastlndexO, String.split

String 16-95

Applies to
Syntax

Parameters

Description

Example

Applies to
Syntax

Parameters

Description

Example

charCodeAt

Returns a number indicating the ISO-Latin-1 codeset value of the character at
the given index.

String
char CodeAt (i ndex)

i ndex
(Optional) An integer between 0 and 1 less than the length of the string. The
default value is 0.

The ISO-Latin-1 codeset ranges from 0 to 255. The first 0 to 127 are a direct
match of the ASCII character set.

The following example returns 65, the ISO-Latin-1 codeset value for A.

" ABC'. char CodeAt (0)

concat

Combines the text of two strings and returns a new string.
String
concat (string2)

stringl
The first string.

string 2
The second string.

concat combines the text from two strings and returns a new string. Changes
to the text in one string do not affect the other string.

The following example combines two strings into a new string.

str1="The norning is upon us.
str2="The sun is bright."
str3=strl.concat (str2)
Console. Wite(strl)

Consol e. Wite(str2)

Consol e. Wite(str3)

16-96 Core Objects

Applies to
Syntax
Parameters

Description

Example

This writes:
The norning is upon us.

The sun is bright.
The nmorning is upon us. The sun is bright.

fixed
Causes a string to be displayed in fixed-pitch font as if it were in a TT tag.

String
fixed()
None

Use the f i xed method with the Wi t e method to format and display a string
in a document.

The following example uses the f i xed method to change the formatting of a
string:

var worl dString="Hello, world"
(worl dString. fixed())

The previous example produces the same output as the following HTML:

<TT>Hell o, world</TT>

String 16-97

Applies to
Syntax

Parameters

Description

Examples

fontcolor

Causes a string to be displayed in the specified color as if it were in a tag.

String
fontcol or(col or)

col or

A string expressing the color as a hexadecimal RGB triplet or as a string literal.
String literals for color names are listed in Appendix B, "Color Values," in the
JavaScript Guide.

Use the f ont col or method with the Wi t e method to format and display a
string in a document.

If you express col or as a hexadecimal RGB triplet, you must use the format
rr ggbb. For example, the hexadecimal RGB values for salmon are r ed=FA,
gr een=80, and bl ue=72, so the RGB triplet for sal non is " FA8072" .

The f ont col or method overrides a value set in the f gCol or property.

The following example uses the f ont col or method to change the color of a
string:

var worl dString="Hello, world"

Consol e. Wite(worl dString. fontcol or ("maroon") +
" is maroon in this line")

Consol e. Wite("<P>" + worldString.fontcolor("sal non") +
" is salmon in this line")

Consol e. Wite("<P>" + worldString.fontcolor("red") +
"isredin this line")

Consol e. Wite("<P>" + worldString.fontcol or("8000") +
" is maroon in hexadecimal in this |line")

Consol e. Wite("<P>" + worldString.fontcol or("FA8072") +
" is salmon in hexadecimal in this line")

Consol e. Wite("<P>" + worldString.fontcolor("FF00") +
" is red in hexadecimal in this Iine")

The previous example produces the same output as the following HTML:

Hel |l o, world is maroon in this line
<P>Hell o, world is salnmon in this
line

<P>Hell o, world is red in this line

16-98 Core Objects

Applies to
Syntax

Parameters

Description

Example

See also

Hel | o, wor| d</ FONT>

is maroon in hexadecimal in this line
<P>Hel | o, worl d</ FONT>
is salnon in hexadecimal in this line
<P>Hel | o, wor| d</ FONT>
is red in hexadecimal in this line

fontsize

Causes a string to be displayed in the specified font size as if it were in a tag.

String
fontsize(size)

si ze
An integer between 1 and 7, a string representing a signed integer between 1
and 7.

Use the f ont si ze method with the Wi t e method to format and display a
string in a document.

When you specify Si ze as an integer, you set the size of st r i ngNamne to one
of the 7 defined sizes. When you specify Si ze as a string such as " - 2", you
adjust the font size of st r i ngNane relative to the size set in the BASEFONT
tag.

The following example uses st r i ng methods to change the size of a string:

var worl dString="Hello, world"

Consol e. Wite(worl dString.small ())

Consol e. Wite("<P>" + worldString.big())
Consol e. Wite("<P>" + worldString.fontsize(7))

The previous example produces the same output as the following HTML:
<SMALL>Hel | o, worl d</ SMALL>

<P><Bl GHel | o, worl d</BI &G
<P><FONTSI ZE=7>Hel | o, wor | d</ FONTSI ZE>

String.big, String.snall

String 16-99

Applies to
Syntax

Parameters

Description

Examples

Applies to

Syntax

Parameters

fromCharCode

Returns a string created by using the specified sequence ISO-Latin-1 codeset
values.

String
fronChar Code(nuni, ..., nunmN)

numl. . . numN
A sequence of numbers that are ISO-Latin-1 codeset values.

This method returns a string and not a St ri ng object.

f r onChar Code is a static method of St ri ng. As a result, you always use it as
St ri ng. fronChar Code(), rather than as a method of a St r i ng object you
create.

The following example returns the string "ABC".

String. frontChar Code(65, 66, 67)

indexOf

Returns the index within the calling St r i ng object of the first occurrence of
the specified value, starting the search at f r oml ndex, or -1 if the value is not
found.

String
i ndexOf (searchVal ue, fronl ndex)
sear chVval ue

A string representing the value for which to search.

from ndex

(Optional) The location within the calling string to start the search from. It
can be any integer between 0 and 1 less than the length of the string. The
default value is 0.

16-100 Core Objects

Description

Examples

Characters in a string are indexed from left to right. The index of the first
character is 0, and the index of the last character of a string called
stringName is stringNane.length - 1.

If st ri ngNan®e contains an empty string (""), i ndexCOf returns an empty
string.

The i ndexCf net hod is case sensitive. For example, the following expression
returns -1:

"Bl ue Wal e".indexO ("blue")

The following example uses i ndexOf and | ast | ndexO to locate values in
the string "Br ave new wor | d."”

var anyString="Brave new worl d"

/] Di splays 8

Consol e. Wite("<P>The index of the first wfromthe beginning is

"+
anyString.indextf ("w'))

/1 Di spl ays 10

Consol e. Wite("<P>The index of the first wfromthe end is " +
anyString.lastlndexOf ("w'))

/] Di splays 6

Consol e. Wite("<P>The index of 'new fromthe beginning is " +
anyString.indexCOr ("new'))

/] Di splays 6

Consol e. Wite("<P>The index of 'new fromthe end is " +
anyString. |l astlndexOf ("new'))

The following example defines two string variables. The variables contain the

same string except that the second string contains uppercase letters. The first

wr i t el n method displays 19. But because the i ndexOf method is case

sensitive, the string " cheddar " is not found in nyCapSt ri ng, so the second

wri t el n method displays -1.

myString="brie, pepper jack, cheddar"

myCapString="Brie, Pepper Jack, Cheddar"

Consol e. Wite('nyString.indexO ("cheddar") is ' +
nmyString. i ndexOf ("cheddar "))

Consol e. Wite(' nmyCapString.indexOf ("cheddar") is ' +
nmyCapString. i ndexOf ("cheddar™))

The following example sets count to the number of occurrences of the letter x
in the string st r :

count = 0;

pos = str.indexOf ("x");

while (pos !'=-1) {
count ++;

String 16-101

pos = str.indexCOF ("x", pos+1);

}

See also String:charAt, String:lastlndexOf, String:split

italics
Causes a string to be italic, as if it were in an | tag.

Applies to String

Syntax italics()

Parameters None

Description Use thei t al i cs method with the Wi t e method to format and display a

string in a document.

Example The following example uses st r i ng methods to change the formatting of a
string:

var worl dString="Hell o, world"

Consol e. Wite(worl dString. blink())
Consol e. Wite(worl dString. bol d())
Consol e. Wite(worldString.italics())
Consol e. Wite(worl dString.strike())

The previous example produces the same output as the following HTML:

<BLI NK>Hel | o, wor | d</ BLI NK>
<P>Hel | o, worl d</ B>
<P><|>Hell o, world</I>

<P><STRI KE>Hel | o, wor | d</ STRI KE>

See also String:blink, String:bold, String:strike

16-102 Core Objects

Applies to
Syntax

Parameters

Description

Example

See also

lastindexOf

Returns the index within the calling St ri ng object of the last occurrence of
the specified value. The calling string is searched backward, starting at
f r onl ndex, or -1 if not found.

String
| ast I ndexOf (searchVal ue, from ndex)

searchVal ue
A string representing the value for which to search.

from ndex

(Optional) The location within the calling string to start the search from. It
can be any integer between 0 and 1 less than the length of the string. The
default value is 1 less than the length of the string.

Characters in a string are indexed from left to right. The index of the first
character is 0, and the index of the last character is st ri ngNane. | ength -
1.

The | ast | ndexOf method is case sensitive. For example, the following
expression returns -1:

"Blue Whale, Killer Whale".lastlndexO("blue")

The following example uses i ndexCf and | ast | ndexXF to locate values in
the string" Brave new worl d. "

var anyString="Brave new worl d"

/] Di splays 8

Consol e. Wite("The index of the first wfromthe beginning is "

+
anyString.indextf ("w'))

/1 Di spl ays 10

Console. Wite("The index of the first wfromthe end is " +
anyString.lastlndexOf ("w'))

/] Di splays 6

Consol e. Wite("The index of 'new fromthe beginning is " +
anyString.indexCOr ("new'))

/] Di splays 6

Consol e. Wite("The index of 'new fromthe end is "
anyString. |l astlndexO ("new'))

String:charAt, String:indexCOf, String:split

String 16-103

Applies to
Syntax

Parameters

Description

Example

See also

link
Creates an HTML hypertext link that requests another URL.

String
[ink(hrefAttribute)

href Attribute
Any string that specifies the HREF attribute of the A tag; it should be a valid
URL (relative or absolute).

Use the | i nk method to programmatically create a hypertext link, and then
call to display the link in a document.

The following example displays the word "Brio" as a hypertext link that returns
the user to Brio's Web site:
var hot Text="Bri 0"

var URL="http://ww brio. conf
Console. Wite("Click to return to " + hotText.link(URL))

The previous example produces the same output as the following HTML:

Click to return to Bri o</ A>

St ring: anchor

16-104 Core Objects

Applies to
Syntax

Parameters

Description

L] Tip

Examples

match
Used to match a regular expression against a string.

String
mat ch(regexp)

regexp
Name of the regular expression. It can be a variable name or literal.

If you want to execute a global match, or a case insensitive match, include the g
(for global) and i (for ignore case) flags in the regular expression. These can
be included separately or together. The following two examples below show
how to use these flags with mat ch.

If you execute a match simply to find true or false, use St ri ng. sear ch or the
regular expression t est method.

In the following example, mat ch is used to find 'Chapter' followed by 1 or
more numeric characters followed by a decimal point and numeric character 0
or more times. The regular expression includes the i flag so that case will be
ignored.

str = "For nore information, see Chapter 3.4.5.1";

re = /(chapter \d+(\.\d)*)/i;

found = str.match(re);
Consol e. Wite(found);

This returns the array containing Chapter 3.4.5.1, Chapter 3.4.5.1,.1

'Chapter 3.4.5.1" is the first match and the first value remembered from
(Chapter \d+(\.\d)*).

".1'is the second value remembered from (\.\d).

The following example demonstrates the use of the global and ignore case flags
with mat ch.

str = "abcDdcbha";

newArray = str.match(/d/gi);

Consol e. Wite(newArray);

The returned array contains D, d.

String 16-105

Applies to
Syntax

Parameters

Description

Examples

replace
Used to find a match between a regular expression and a string, and to replace
the matched substring with a new substring.

String
repl ace(regexp, newSubStr)

regexp

The name of the regular expression. It can be a variable name or a literal.
newSubSt r

The string to put in place of the string found with r egexp. This string can
include the RegExp properties $1, ..., $9, |ast Match,| astParen,
| ef t Cont ext, and ri ght Cont ext .

This method does not change the St ri ng object it is called on; it simply
returns a new string.

If you want to execute a global search and replace, or a case insensitive search,
include the g (for global) and i (for ignore case) flags in the regular
expression. These can be included separately or together. The following two
examples below show how to use these flags with r epl ace.

In the following example, the regular expression includes the global and ignore
case flags which permits r epl ace to replace each occurrence of 'apples' in the
string with 'oranges.'

re = /apples/gi;

str = "Apples are round, and apples are juicy.";

newstr=str.replace(re, "oranges");
Consol e. Wite(newstr)

This prints "oranges are round, and oranges are juicy."

In the following example, the regular expression is defined in r epl ace and
includes the ignore case flag.
str = "Twas the night before Xmas...";

newstr=str.replace(/xmas/i, "Christnas");
Consol e. Wite(newstr)

16-106 Core Objects

Applies to
Syntax

Parameters

Description

Example

This prints "Twas the night before Christmas..."

The following script switches the words in the string. For the replacement text,
the script uses the values of the $1 and $2 properties.

re =/ (\w)\s(\w)/;

str = "John Smith";

newstr = str.replace(re, "$2, $1");
Consol e. Wite(newstr)

This prints "Smith, John".

search

Executes the search for a match between a regular expression and this St ri ng
object.

String
search(regexp)

regexp
Name of the regular expression. It can be a variable name or a literal.

If successful, sear ch returns the index of the regular expression inside the
string. Otherwise, it returns -1.

When you want to know whether a pattern is found in a string use sear ch
(similar to the regular expressiont est et hod); for more information (but
slower execution) use mat ch (similar to the regular expression exec method).

The following example prints a message which depends on the success of the
test.

function testinput(re, str){

if (str.search(re) !=-1)
mdstring = " contains ";
el se
mdstring = " does not contain ";

Console. Wite (str + mdstring + re.source);

String 16-107

Applies to
Syntax

Parameters

Description

Example

slice

Extracts a section of a string and returns a new string.
String

slice(beginslice,endSlice)

begi nSli ce

The zero-based index at which to begin extraction.

endSli ce
(Optional) The zero-based index at which to end extraction. If omitted, slice
extracts to the end of the string.

sl i ce extracts the text from one string and returns a new string. Changes to
the text in one string do not affect the other string.

sl i ce extracts up to but notincludingendSl i ce. string. slice(1,4)
extracts the second character through the fourth character (characters indexed
1, 2,and 3).

As a negative index, endSl i ce indicates an offset from the end of the string.
string.slice(2,-1) extracts the third character through the second to
last character in the string.

The following example uses sl i ce to create a new string.
str1="The norning is upon us. "
tr2=strl.slice(3,-5)

Consol e. Wite(str2)

This writes:

The morning is upon us

16-108 Core Objects

Applies to
Syntax
Parameters

Description

Example

See also

small

Causes a string to be displayed in a small font, as if it were in a SMALL tag.

String
smal | ()
None

Use the smal | method with the Wi t e method to format and display a string
in a document.

The following example uses st r i ng methods to change the size of a string:

var worl dString="Hello, world"

Consol e. Wite(worldString.small ())

Consol e. Wite("<P>" + worldString.big())

Consol e. Wite("<P>" + worldString.fontsize(7))

The previous example produces the same output as the following HTML:
<SMALL>Hel | o, worl d</ SMALL>

<P><Bl GHel | o, worl d</BI &G
<P><FONTSI ZE=7>Hel | o, wor | d</ FONTSI ZE>

String:big, String:fontsize

String 16-109

split
Splits a St ri ng object into an array of strings by separating the string into

substrings.
Applies to String
Syntax split(separator, limt)
Parameters separ at or

(Optional) Specifies the character to use for separating the string. The
separator is treated as a string. If separator is omitted, the array returned
contains one element consisting of the entire string.

limt

(Optional) Integer specifying a limit on the number of splits to be found.

Description The spl i t method returns the new array.

When found, separ at or is removed from the string and the substrings are
returned in an array. If separ at or is omitted, the array contains one element
consisting of the entire string.

It can take a regular expression argument, as well as a fixed string, by which to
split the object string. If Separ at or is a regular expression, any included
parentheses cause submatches to be included in the returned array.

It can take a limit count so that it won't include trailing empty elements in the
resulting array.

Examples The following example defines a function that splits a string into an array of
strings using the specified separator. After splitting the string, the function
displays messages indicating the original string (before the split), the separator
used, the number of elements in the array, and the individual array elements.

function splitString (stringToSplit,separator) {
arrayOf Strings = stringToSplit.split(separator)

Consol e. Wite ('<P>The original string is: "' +
stringToSplit + '"")
Consol e. Wite ('
The separator is: "' + separator +

Consol e. Wite ("
The array has " +
arrayOofstrings.length + " elenents: ")
for (var i=0; i < arrayOdfStrings.length; i++) {
Console.Wite (arrayOfStrings[i] +" /[")
}

16-110 Core Objects

}

var tenpestString="Ch brave new world that has such people in
it."

var

mont hStri ng="Jan, Feb, Mar, Apr, May, Jun, Jul , Aug, Sep, Cct, Nov, Dec"

var space="
var comm=","

splitString(tenpestString, space)
splitString(tenpestString)
splitString(nonthString, comma)

This example produces the following output:

The original string is: "Ch brave new world that has such peopl e
init."

The separator is:

The array has 10 elements: Ch / brave / new/ world / that / has
/ such / people / in/ it. [/

The original string is: "Ch brave new world that has such peopl e
init."

The separator is: "undefined"

The array has 1 elenents: Ch brave new world that has such
people init. /

The original string is:

"Jan, Feb, Mar, Apr, May, Jun, Jul , Aug, Sep, Oct, Nov, Dec"

The separator is: ","

The array has 12 elenents: Jan / Feb / Mar / Apr / May / Jun /
Jul / Aug / Sep / Cct / Nov / Dec /

Consider the following script:
str="She sells seashel I s \ nby the\n seashore"
Console. Wite(str)

asstr.split(" ")
Consol e. Wite(a)

Using LANGUAGE="JavaScri pt 1. 2", this script produces

"She", "sells", "seashells", "by", "the", "seashore"

String 16-111

See also

In the following example, spl i t looks for 0 or more spaces followed by a
semicolon followed by 0 or more spaces and, when found, removes the spaces
from the string. nameLi st is the array returned as a result of spl i t.

names = "Harry Trunp ;Fred Barney; Hel en Rigby ; Bill Abel
;Chris Hand ";

Console. Wite (nanes , " ");

re = /\s*;\s*/;

nanelLi st = nanes.split (re);

Consol e. Wit e(naneList);

This prints two lines; the first line prints the original string, and the second line
prints the resulting array.

Harry Trunp ; Fred Barney; Helen Rigby ; Bill Abel ;Chris Hand
Harry Trunp, Fred Barney, Hel en Rigby,Bill Abel, Chris Hand

In the following example, spl i t looks for 0 or more spaces in a string and
returns the first 3 splits that it finds.

myVar =" Hello World. How are you doi ng? "

splits = myVar.split(" ", 3);

Consol e. Wite(splits)

This script displays the following:

["Hello", "World.", "How']

String.charAt, String.indexOf, String.lastlndexCOf

16-112

Core Objects

strike
Causes a string to be displayed as struck-out text, as if it were in a STRI KE tag.

Applies to String

Syntax strike()

Parameters None

Description Use the st ri ke method with the Wi t e method to format and display a

string in a document.

Examples The following example uses st r i ng methods to change the formatting of a
string:

var worl dString="Hell o, world"

Consol e. Wite(worl dString. blink())

Consol e. Wite("<P>" + worl dString.bold())
Console. Wite("<P>" + worldString.italics())
Console. Wite("<P>" + worldString.strike())

The previous example produces the same output as the following HTML:

<BLI NK>Hel | o, wor | d</ BLI NK>
<P>Hel | o, worl d</ B>
<P><|>Hell o, world</I>

<P><STRI KE>Hel | o, wor | d</ STRI KE>

See also String.blink, String.bold, String.italics

String 16-113

sub

Causes a string to be displayed as a subscript, as if it were in a SUB tag.

Applies to String

Syntax sub()

Parameters None

Description Use the sub method with the Wi t e method to format and display a string in

a document.

Example The following example uses the sub and sup methods to format a string:

var super Text ="superscript"
var subText="subscript"

Console. Wite("This is what a " + superText.sup() + " | ooks

like.")
Console. Wite("<P>This is what a " + subText.sub() + " |ooks
like.")

The previous example produces the same output as the following HTML:

This is what a ^{superscript} | ooks |i ke.
<P>This is what a _{subscri pt} | ooks |ike.

See also String:sup

16-114 Core Objects

Applies to
Syntax

Parameters

Description

Example

See also

substr

Returns the characters in a string beginning at the specified location through
the specified number of characters.

String

substr(start, |ength)

start

Location at which to begin extracting characters.
[ength

(Optional) The number of characters to extract.

st art isa character index. The index of the first character is 0, and the index
of the last character is 1 less than the length of the string. subst r begins
extracting characters at st art and collects | engt h number of characters.

If st art is positive and is the length of the string or longer, subst r returns
no characters.

If start isnegative, Substr usesitas a character index from the end of the
string. If st ar t is negative and abs(st art) is larger than the length of the
string, subst r uses 0 is the start index.

If | engt h is 0 or negative, subst r returns no characters. If| engt h is
omitted, st art extracts characters to the end of the string.
Consider the following script:

str = "abcdefghij"

Console. Wite("(1,2): ", str.substr(1,2))
Console. Wite("(-2,2): ", str.substr(-2,2))
Console. Wite("(1): ", str.substr(1))
Console. Wite("(-20, 2): ", str.substr(1,20))
Console. Wite(" (20, 2): ", str.substr(20,2))
This script displays:

(1,2): bc

(-2,2): ij

(1): bcdef ghij
(-20, 2): bcdefghij
(20, 2):

String: substring

String 16-115

Applies to

Syntax

Parameters

Description

Examples

substring
Returns a subset of a St ri ng object.

String
substring(indexA, indexB)

i ndexA
An integer between 0 and 1 less than the length of the string.

i ndexB
An integer between 0 and 1 less than the length of the string.

subst ri ng extracts characters from i ndexAup to but not including
i ndexB. In particular:

» Ifi ndexAis less than 0, i ndexAis treated as if it were 0.

= Ifi ndexBis greater than st ri ngName. | engt h, i ndexBis treated as if it
were st ri ngNane. | engt h.

= Ifi ndexAequalsi ndexB, subst ri ng returns an empty string.
= Ifi ndexBis omitted, i ndexA extracts characters to the end of the string.

» Ifi ndexAis greater than i ndexB, JavaScript returns a substring beginning
with i ndexBand ending with i ndexA - 1.

The following example uses subst ri ng to display characters from the string
"Net scape":

var anyString="Net scape"

/1 Di spl ays "Net"

Consol e. Wite(anyString. substring(0, 3))
Consol e. Wite(anyString. substring(3,0))
/| Di spl ays "cap"

Consol e. Wite(anyString. substring(4,7))
Consol e. Wite(anyString. substring(7,4))
/1 Di spl ays " Netscap"

Consol e. Wite(anyString. substring(0,7))
/1 Di spl ays " Netscape"

Consol e. Wite(anyString. substring(0,8))
Consol e. Wite(anyString. substring(0, 10))

The following example replaces a substring within a string. It will replace both
individual characters and substrings. The function call at the end of the
example changes the string " Brave New Wor | d" into " Brave New Web".

16-116 Core Objects

Applies to
Syntax
Parameters

Description

Examples

See also

function replaceString(ol dS, news, fullS) {
/! Replaces oldS with newS in the string fullS

for (var i=0; i<fullS.length; i++) {

if (fullS.substring(i,i+oldS.length) == oldS) {
fulls =

full S.substring(0,i)+newS+fullS. substring(i+oldS.length,fullS.I
engt h)

return fullS

}
replaceString("World","Web","Brave New Worl d")

sup
Causes a string to be displayed as a superscript, as if it were in a SUP tag.

String

sup()

None

Use the sup method with the Wi t e method to format and display a string in
a document.

The following example uses the sub and sup methods to format a string:

var super Text ="superscript"
var subText="subscript"

Console. Wite("This is what a " + superText.sup() + " |ooks
like.")
Console. Wite("<P>This is what a " + subText.sub() + " |ooks
like.")
The previous example produces the same output as the following HTML:

This is what a ^{superscript} | ooks |i ke.
<P>This is what a _{subscri pt} | ooks |ike.

String. sub

String ~ 16-117

Applies to
Syntax
Parameters

Description

Example

See also

Applies to
Syntax
Parameters

Description

Examples

See also

toLowerCase
Returns the calling string value converted to lowercase.

String
t oLower Case()
None

The toLower Case method returns the value of the string converted to
lowercase. t oLower Case does not affect the value of the string itself.

The following example displays the lowercase string " al phabet ":

var upper Text =" ALPHABET"
Consol e. Wite(upperText.toLower Case())

String:toUpperCase

toUpperCase

Returns the calling string value converted to uppercase.
String

t oUpper Case()

None

The t oUpper Case method returns the value of the string converted to
uppercase. t oUpper Case does not affect the value of the string itself.

The following example displays the string " ALPHABET" :

var | ower Text ="al phabet"
Consol e. Wite(l onerText.toUpperCase())

String.toLower Case

16-118 Core Objects

Regular Expression

Created by

Parameters

A regular expression object contains the pattern of a regular expression. It has
properties and methods for using that regular expression to find and replace
matches in strings.

In addition to the properties of an individual regular expression object that
you create using the RegExp constructor function, the predefined RegExp
object has static properties that are set whenever any regular expression is used.
Regular expression is a core object.

A literal text format or the RegEXp constructor function.
The literal format is used as follows:

/pattern/flags

The constructor function is used as follows:

new RegExp("pattern", "flags")

pattern
The text of the regular expression

fl ags
(Optional) If specified, flags can have one of the following 3 values:

= G - global match
= i—ignore case

= gi—both global match and ignore case

Notice that the parameters to the literal format do not use quotation marks to
indicate strings, while the parameters to the constructor function do use
quotation marks. So the following expressions create the same regular
expression:

[ab+c/i
new RegExp("ab+c", "i")

Regular Expression 16-119

Description When using the constructor function, the normal string escape rules
(preceding special characters with \ when included in a string) are necessary.
For example, the following are equivalent:
re = new RegExp("\\w+")
re = /\wt+/

Table 16-20 provides a complete list and description of the special characters

that can be used in regular expressions.

Table 16-20 Special Characters Used in Regular Expressions

Character Meaning

\ For characters that are usually treated literally, indicates that the next
character is special and not to be interpreted literally. For example, / b/
matches the character 'b'. By placing a backslash in front of b, that is by
using / \ b/, the character becomes special to mean match a word boundary
-Or-

For characters that are usually treated specially, indicates that the next
character is not special and should be interpreted literally. For example, * is a
special character that means O or more occurrences of the preceding
character should be matched; for example, / a*/ means match O or more
a's. To match * literally, precede the it with a backslash; for example, / a\ */
matches 'a*'.

A Matches beginning of input or line. For example, / *A/ does not match the
'A"in "an A," but does match itin "An A."

$ Matches end of input or line.For example, / t $/ does not match the 't' in
"eater", but does match it in "eat"

* Matches the preceding character O or more times. For example, / bo*/
matches 'boooo' in "A ghost booooed" and 'b' in "A bird warbled", but
nothing in "A goat grunted".

+ Matches the preceding character 1 or more times. Equivalent to {1,}. For
example, / a+/ matches the 'a' in "candy" and all the a's in "caaaaaaandy."

? Matches the preceding character O or 1 time.For example, / e?l e?/
matches the 'el' in "angel" and the 'le’ in "angle."

(The decimal point) matches any single character except the newline charac-
ter. For example, / . n/ matches 'an' and 'on' in "nay, an apple is on the
tree", but not 'nay".

16-120 Core Objects

Table 16-20

Special Characters Used in Regular Expressions (Continued)

Character

Meaning

(x)

{n}

{n}

{n,m}

[xyz]

["xyz]

(\b]

\b

\B

\cX

\d

Matches 'x' and remembers the match. For example, / (f 00) / matches
and remembers 'foo' in "foo bar." The matched substring can be recalled
from the resulting array's elements [1], ..., [n], or from the predefined
RegExp object's properties $1, ..., $9.

Matches either 'x' or 'y'.For example, / gr een| r ed/ matches 'green' in
"green apple" and 'red' in "red apple."

Where n is a positive integer. Matches exactly n occurrences of the preceding
character.For example, / a{ 2}/ doesn't match the 'a' in "candy," but it
matches all of the a's in "caandy," and the first two a's in "caaandy."

Where n is a positive integer. Matches at least n occurrences of the preceding
character. For example, / a{2, } doesn't match the 'a' in "candy", but
matches all of the a's in "caandy" and in "caaaaaaandy."

Where n and m are positive integers. Matches at least n and at most m occur-
rences of the preceding character. For example, / a{ 1, 3}/ matches
nothing in "cndy", the 'a’ in "candy," the first two a's in "caandy," and the first
three a's in "caaaaaaandy" Notice that when matching "caaaaaaandy", the
match is "aaa", even though the original string had more a's in it.

A character set. Matches any one of the enclosed characters. You can specify
a range of characters by using a hyphen. For example, [abcd] is the same
as[a-c] . They match the 'b' in "brisket" and the 'c' in "ache".

A negated or complemented character set. That is, it matches anything that is
not enclosed in the brackets. You can specify a range of characters by using a
hyphen. For example, [*abc] isthe same as [~a- c] . They initially match
'r"in "brisket" and 'h" in "chop."

Matches a backspace. (Not to be confused with \ b.)

Matches a word boundary, such as a space. (Not to be confused with [\ b] .)
For example, / \ bn\ w matches the 'no' in "noonday"; / \ wy\ b/ matches
the 'ly' in "possibly yesterday."

Matches a non-word boundary. For example, / \ WA Bn/ matches 'on' in
"noonday", and / y\ B\ w/ matches 'ye' in "possibly yesterday."

Where X is a control character. Matches a control character in a string. For
example, /\ cM matches control-M in a string.

Matches a digit character. Equivalent to [0-9]. For example, /\ d/ or /[O-
9]/ matches '2'in "B2 is the suite number."

Regular Expression 16-121

Table 16-20

Special Characters Used in Regular Expressions (Continued)

Character Meaning

\D Matches any non-digit character. Equivalent to [*0-9]. For example, /\ D/ or
/ [~0-9]/ matches 'B' in "B2 is the suite number."

\f Matches a form-feed.

\n Matches a linefeed.

\r Matches a carriage return.

\s Matches a single white space character, including space, tab, form feed, line
feed. Equivalentto [\f\n\r\t\v].Forexample,/\ s\ w*/ matches'
bar' in "foo bar."

\S Matches a single character other than white space. Equivalent to [»
\fAn\r\t\v].Forexample,/\ S\ w* matches 'foo' in "foo bar."

\t Matches a tab.

\v Matches a vertical tab.

\w Matches any alphanumeric character including the underscore. Equivalent to
[A-Za-z0-9_] . Forexample, /\ w/ matches 'a' in "apple," '5'in "$5.28,"
and '3'in "3D."

\W Matches any non-word character. Equivalent to [*A- Za- z0- 9_] . For
example, /\W or /[*$A- Za- z0- 9_]/ matches '%" in "50%."

\n Where n is a positive integer. A back reference to the last substring matching
the n parenthetical in the regular expression (counting left parentheses). For
example, / appl e(,)\ sorange\ 1/ matches 'apple, orange', in "apple,
orange, cherry, peach." A more complete example follows this table.

Note: If the number of left parentheses is less than the number specified in

\n, the \n is taken as an octal escape as described in the next row.
\ooctal Where \ ooct al is an octal escape value or\ xhex is a hexadecimal
\xhex escape value. Allows you to embed ASCII codes into regular expressions.

16-122

Core Objects

Examples

The literal notation provides compilation of the regular expression when the
expression is evaluated. Use literal notation when the regular expression will
remain constant. For example, if you use literal notation to construct a regular
expression used in a loop, the regular expression won't be recompiled on each
iteration.

The constructor of the regular expression object, for example, new
RegExp("ab+c"), provides runtime compilation of the regular expression.
Use the constructor function when you know the regular expression pattern
will be changing, or you don't know the pattern and are getting it from another
source, such as user input. Once you have a defined regular expression, and if
the regular expression is used throughout the script and may change, you can
use the conpi | e method to compile a new regular expression for efficient
reuse.

A separate predefined RegEXp object is available in each window; that is, each
separate thread of JavaScript execution gets its own RegEXp object. Because
each script runs to completion without interruption in a thread, this assures
that different scripts do not overwrite values of the RegExp object.

The predefined RegExp object contains the static properties i hput,
multiline,lastMatch,l astParen,l| eftContext,rightContext,
and $1 through $9. The i nput and mul ti | i ne properties can be preset. The
values for the other static properties are set after execution of the exec and

t est methods of an individual regular expression object, and after execution
of the mat ch and r epl ace methods of St ri ng.

The following script uses the r epl ace method to switch the words in the
string. For the replacement text, the script uses the values of the $1 and $2
properties of the global RegEXp object. Note that the RegExp object name is
not be prepended to the $ properties when they are passed as the second
argument to the r epl ace method.

re =/ (\wh)\s(\w)/;

str = "John Snith";
newstr=str.replace(re, "$2, $1");
(newstr)

This displays "Smith, John".

Regular Expression 16-123

In the following example, RegExp. i nput is set by the Change event. In the
get | nf o function, the exec method uses the value of RegExp. i nput asits
argument. Note that RegEXp is prepended to the $ properties.

function getlinfo() {

re = /(\w)\s(\d+)/;

re.exec();

al ert (RegExp.$1 + ", your age is " + RegExp. $2);
}

Enter your first name and your age, and then press Enter.
<FORMW>

<I NPUT TYPE: " TEXT" NAME="NanmeAge" onChange="getlInfo(this);">
</ FORM>

</ HTML>

Regular Expression Properties

Table 16-21 displays a summary of the regular expression properties. Note that
several of these properties have both long and short (Perl-like) names. Both
names always refer to the same value. Perl is the programming language from
which JavaScript modeled its regular expressions. Detailed descriptions of each
property follow the table.

Table 16-21 Regular Expression Properties

$1,.., %9 Parenthesized substring matches, if any.

$_ See i nput.

$* See mul tiline.

$& See | ast Mat ch.

$+ See | ast Paren.

$' See | ef t Cont ext .

$' See ri ght Cont ext .

global Whether to test the regular expression against all possible matches in a

string, or only against the first.

ignoreCase Whether to ignore case while attempting a match in a string.
input The string against which a regular expression is matched.
lastindex The index at which to start the next match.

16-124

Core Objects

Property of

Description

Example

Table 16-21 Regular Expression Properties (Continued)

lastMatch The last matched characters.

lastParen The last parenthesized substring match, if any.
leftContext The substring preceding the most recent match.
multiline Whether to search in strings across multiple lines.
rightContext The substring following the most recent match.
source The text of the pattern.

$1, ..., $9

Properties that contain parenthesized substring matches, if any.
RegEx

i nput is static, read-only. As a result, it is not a property of an individual
regular expression object. Instead, you always use it as RegExp. i nput .

The number of possible parenthesized substrings is unlimited, but the
predefined RegExp object can only hold the last nine. You can access all
parenthesized substrings through the returned array's indexes.

These properties can be used in the replacement text for the

St ri ng. r epl ace method. When used this way, do not prepend them with
RegEXxp. The example below illustrates this. When parentheses are not
included in the regular expression, the script interprets $n's literally (where n
is a positive integer).

The following script uses the r epl ace method to switch the words in the
string. For the replacement text, the script uses the values of the $1 and $2
properties of the global RegEXp object. Note that the RegEXp object name is
not be prepended to the $ properties when they are passed as the second
argument to the r epl ace method.

re = /(\wh)\s(\w+)/:

str = "John Smith";

newstr=str.replace(re, "$2, $1");
Consol e. Wite(newstr)

This displays "Smith, John".

Regular Expression 16-125

Property of

Description

$

Seei nput.

$*

Seermul tiline.

$&
See | ast MVat ch.

$+

See | ast Par en.

$|
See | eft Cont ext.

$|
Seeri ght Cont ext .

global
Whether the " g" flag is used with the regular expression. The gl obal
property is read-only.

RegEx

gl obal is a property of an individual regular expression object.

The value of gl obal istrue ifthe"g" flagisused; otherwise, itisf al se.
The " g" flag indicates that the regular expression should be tested against all
possible matches in a string.

You cannot change this property directly. However, calling the conpi | e
method changes the value of this property.

16-126

Core Objects

Property of

Description

Property of

Description

ignoreCase
Whether or not the " i " flag is used with the regular expression. The
i gnor ecase property is read-only.

RegEx

i gnor eCase is a property of an individual regular expression object.

The value of i gnoreCaseistrue ifthe"i " flagis used; otherwise, it is
fal se.The"i" flag indicates that case should be ignored while attempting a
match in a string.

You cannot change this property directly. However, calling the conpil e
method changes the value of this property.

input
The string against which a regular expression is matched. $_ is another name
for the same property.

RegEx

Because i nput is static, it is not a property of an individual regular expression
object. Instead, you always use it as RegEXp. i nput.

If no string argument is provided to a regular expression's exec ort est
methods, and if RegExp. i nput has a value, its value is used as the argument
to that method.

The script or the browser can preset the i nput property. If preset and if no
string argument is explicitly provided, the value of i nput is used as the string
argument to the exec ortest methods of the regular expression object.

i nput is set by the browser in the following cases:

When an event handler is called for a TEXT form element, i nput is set to the
value of the contained text.

When an event handler is called for a TEXTAREA form element, i nput is set
to the value of the contained text. Note that nultiline isalsosettotrue
so that the match can be executed over the multiple lines of text.

When an event handler is called for a SELECT form element, i nput is set to
the value of the selected text.

Regular Expression ~ 16-127

Property of

Description

When an event handler is called for a Li nk object, i nput is set to the value of
the text between and </ A>.

The value of the i nput property is cleared after the event handler completes.

lastindex
A read/write integer property that specifies the index at which to start the next
match.

RegEx

| ast | ndex is a property of an individual regular expression object.

This property is set only if the regular expression used the " g" flag to indicate
a global search. The following rules apply:

= Ifl astlndex is greater than the length of the string, r egexp. t est and
regexp. exec fail, and | ast | ndex is set to O.

= If | ast | ndex is equal to the length of the string and if the regular
expression matches the empty string, then the regular expression matches
input starting at | ast | ndex.

= If | astlndex isequal to the length of the string and if the regular
expression does not match the empty string, then the regular expression
mismatches input, and | ast | ndex is reset to 0.

= Otherwise, | ast | ndex is set to the next position following the most
recent match.

For example, consider the following sequence of statements:

re = /(hi)?/g Matches the empty string.
re("hi") Returns["hi ", "hi"] with| ast|ndex equalto 2.
re("hi") Returns [" "], an empty array whose zeroth element is the
match string. In this case, the empty string because
| ast | ndex was 2 (and still is 2) and " hi " has length 2.

16-128

Core Objects

Property of

Description

Property of

Description

Property of

Description

lastMatch

The last matched characters. $& is another name for the same property.
RegEx
Because | ast Mat ch is static, it is not a property of an individual regular

expression object. Instead, you always use it as RegExp. | ast Mat ch.

lastParen
The last parenthesized substring match, if any. $+ is another name for the same
property.

RegEx

Because | ast Par en is static (read-only), it is not a property of an individual
regular expression object. Instead, you always use it as RegExp. | ast Par en.

leftContext

The substring preceding the most recent match. $' is another name for the
same property.

RegEx

Because | ef t Cont ext is static (read-only), it is not a property of an
individual regular expression object. Instead, you always use it as
RegExp. | ef t Cont ext .

Regular Expression 16-129

multiline
Reflects whether or not to search in strings across multiple lines. $* is another
name for the same property.

Property of RegEx

Description Because mul ti | i ne is static, it is not a property of an individual regular
expression object. Instead, you always use it as RegExp. nul ti | i ne.
The valueof mul til i neistrue if multiple lines are searched, f al se if
searches must stop at line breaks.
rightContext
The substring following the most recent match. $' is another name for the
same property.

Property of RegEx

Description Because r i ght Cont ext is static (read-only), it is not a property of an
individual regular expression object. Instead, you always use it as
RegExp. ri ght Cont ext .
source
A read-only property that contains the text of the pattern, excluding the
forward slashes and " g" or"i " flags.

Property of RegEx

Description sour ce is a property of an individual regular expression object. It is read-only.
You cannot change this property directly. However, calling the conpi | e
method changes the value of this property.

16-130 Core Objects

Applies to:
Syntax

Parameters

Description

Regular Expression Methods

Table 16-22 displays a summary of the regular expression methods. Detailed
descriptions of each method follow the table.

Table 16-22 Regular Expression Methods

Compile Compiles a regular expression object.

Exec Executes a search for a match in its string parameter.
Test Tests for a match in its string parameter.

compile

Compiles a regular expression object during execution of a script.
RegExp

regexp. conpil e(pattern, fl ags)

regexp

The name of he regular expression. It can be a variable name or a literal.

pattern
A string containing the text of the regular expression.

fl ags
(Optional) If specified, flags can have one of the following 3 values:

= g-—global match
= i—ignore case

= gi—both global match and ignore case

Use the conpi | e method to compile a regular expression created with the
RegEXp constructor function. This forces compilation of the regular
expression once only which means the regular expression isn't compiled each
time it is encountered. Use the conpi | e method when you know the regular
expression will remain constant (after getting its pattern) and will be used
repeatedly throughout the script.

Regular Expression 16-131

Applies to:

Syntax

Parameters

Description

You can also use the conpi | e method to change the regular expression during
execution. For example, if the regular expression changes, you can use the
conpi | e method to recompile the object for more efficient repeated use.

Calling this method changes the value of the regular expression's sour ce,
gl obal ,andi gnoreCase properti es.

exec

Executes the search for a match in a specified string. Returns a result array.
RegExp

regexp. exec(str)
regexp(str)

regexp
The name of the regular expression. It can be a variable name or a literal.

str
(Optional) The string against which to match the regular expression. If
omitted, the value of RegExp.input is used.

As shown in the syntax description, a regular expression's exec method call be
called either directly, (with r egexp. exec(str)) or indirectly (with
regexp(str)).

If you are executing a match simply to find true orfal se, use thet est
method or the Stri ng sear ch method.

If the match succeeds, the exec method returns an array and updates
properties of the regular expression object and the predefined regular
expression object, RegExp. If the match fails, the exec method returns nul | .

Consider the following example:

//Match one d followed by one or nore b's foll owed by one d
/I Remenber matched b's and the follow ng d

/11 gnore case

nyRe=/ d(b+) (d)/i g;

myArray = nyRe.exec("cdbBdbsbz");

Table 16-23 shows the results for this script:

16-132

Core Objects

Table 16-23 Script Results
Object Property/Index Description Example
myArray The contents of myArray ["dbBd", "bB", "d"]
index The 0-based index of the matchin 1
the string.
input The original string cdbBdbsbz
[0] The last matched characters dbBd
[1], ...[n] The parenthesized substring [1] =DbB
matches, if any. The number of [2]=d
possible parenthesized substrings
is unlimited.
myRe lastindex The index at which to startthe next 5
match.
ignoreCase Indicates if the "i" flagwas used to true
ignore case
global Indicates if the "g" flag was used true
for a global match
source The text of the pattern d(b+)(d)
RegExp lastMatch The last matched characters dbBd
$&
leftContext The substring preceding the most ¢
$\Q recent match.
rightContext The substring following the most bsbz
$' recent match.
$1,..$9 The parenthesized substring $1=bB
matches, if any. The number of $2=d
possible parenthesized substrings
is unlimited, but RegExp can only
hold the last nine.
lastParen The last parenthesized substring d
$+ match, if any.

Regular Expression

16-133

If your regular expression uses the " g" flag, you can use the exec method
multiple times to find successive matches in the same string. When you do so,
the sear ch starts at the substring of st r specified by the regular expression's
| ast | ndex property. For example, assume you have this script:

myRe=/ ab*/ g;

str = "abbcdef abh"

myArray = nyRe.exec(str);

Console. Wite("\r\nFound " + nyArray[0] +

". Next match starts at " + nyRe.lastl ndex)
mySecondArray = nyRe. exec(str);

Consol e. Wite("\r\nFound " + nySecondArray[0] +
". Next match starts at " + nyRe.lastl ndex)

This script displays the following text:

Found abb. Next match starts at 3
Found ab. Next match starts at 9

Examples In the following example, the user enters a name and the script executes a
match against the input. It then cycles through the array to see if other names
match the user's name.

This script assumes that first names of registered party attendees are preloaded
into the array A, perhaps by gathering them from a party database.
A = ["Frank", "Emly", "Jane", "Harry", "Nick", "Beth", "Rick",
"Terrence", "Carol", "Ann", "Terry", "Frank",
"Alice", "R ck",
"Bill", "Tont, "Fiona", "Jane", "WIlian', "Joan",
"Beth"]
function | ookup() {
firstName = /\w+/i();
if (!firstNane)
Alert (RegExp.input + " isn't a name!");
el se {
count = 0,
for (i=0; i<A length; i++)
if (firstName[O].toLower Case() ==
Ali].toLower Case()) count ++;
if (count ==1)
mdstring = " other has ";
el se
mdstring = " others have ";
wi ndow. al ert (" Thanks, " + count + midstring + "the
sanme nane!")
}
}
Enter your first name and then press Enter.
16-134 Core Objects

test
Executes the search for a match between a regular expression and a specified
string. Returns t r ue or f al se.

Syntax regexp.test(str)

Parameters regexp
The name of the regular expression. It can be a variable name or a literal.

str
(Optional) The string against which to match the regular expression. If
omitted, the value of RegExp.input is used.

Description When you want to know whether a pattern is found in a string use the t est
method (similar to the Stri ng. sear ch method); for more information
(but slower execution) use the exec method (similar to the Stri ng. mat ch
method).

Example The following example prints a message which depends on the success of the
test:

function testinput(re, str){
if (re.test(str))
mdstring = " contains ";
el se
mdstring = " does not contain ";
Console. Wite (str + mdstring + re.source);

Regular Expression 16-135

16-136 Core Objects

Index

Symbols <, 14-8

45 <=, 14-8

149 -=,4-4, 14-3

44,142 =, 4-4, 14-3

44142 ==,4-5,14-8

1=, 4-5, 14-8 > 14-8

$8, 16-126 >=, 14°8

$' 16-126 >>= 14-4

$*,16-126 i>1>4:1114'4

$+, 16-126 v

$_,16-126 Rl

$1, ..., $9, 16-125 = 14-4

%, 4-4, 14-3 > 14-9

%=, 4-4, 14-3

&&, 4-5, 14-9 A

&=, 14-3 abs, 16-56

¥, 4-4, 14-3 accessing

*=, 4-4,14-3 cookies, 8-23

+, 4-4, 14-2, 14-10 drop-down selections, 5-3
++, 4-4, 14-2 selected values, 7-8

+=, 4-4, 14-3, 14-10 URL parameters, 8-24

» 14-12 acos, 16-56

- 14-11 Activate (Method), 10-2

- separator, 4-3 Active (Property), 11-2
bmp, 1-7 active document level, 13-4
/,4-4—-4-5,14-3 AdaptiveState (Property), 11-3
/=, 4-4, 14-3 Add (Method), 10-3

/>, 4-5 AddAll (Method), 10-6

/>=,4-5 AddComputed (Method), 10-7

AddComputedItem (Method), 10-8 assignment operators

AddExportSection (Method), 10-9 definition, 4-4
AddFilterValue (Method), 10-12 description, 14-3
adding shorthand, 14-4
concatenating versus, 4-9 versus comparison operators, 4-5, 8-30
in JavaScript, 4-9 associating scripts
items to the request line, 12-9 with check boxes, 3-11
joins, 12-8 with command buttons, 3-5
objects to tab order, 1-16 with list boxes, 3-15
topics to a data model section, 12-7 with radio buttons, 3-7
addition operator, 4-4, 14-2 asterisk, 4-4, 14-3
AddTotals (Method), 10-14 atan, 16-58
AggregateLimits (Collection), 9-2 atan2, 16-59
Alert (Method), 10-15 AuditSQL (Method), 10-16
Alignment (Property), 11-4 AutoAlias (Property), 11-7
alignment properties, 1-9 — 1-10 AutoCommit (Property), 11-8
AllowNonJoinedQueries (Property), 11-5 AutoFrequency (Property), 11-9
ampersand, 4-5 Autolnterval (Property), 11-10
anchor, 16-91 AutoJoin (Property), 11-11
and operator, 4-5 automation controller, OLE, 8-26
API (Property), 11-6 AutoProcess (Property), 11-12
AppendQueries (Collection), 9-3 AutoScale (Property), 11-13
Application (Object), 9-4 AutoSizeHeight (Method), 10-18
application level, 13-3 AutoSizeWidth (Method), 10-19
applications, components of scripted, 8-2 available values
AreaChart (Object), 9-5 filling a drop down box with, 7-7
arguments, 16-43 filling a list box with, 7-4
drop-down item, 7-8 AvailableValues (Property), 11-14
list box item, 7-8 AxisItems (Collection), 9-6
arithmetic operators, 4-4, 14-2 AxisLabels (Collection), 9-7
arity, 16-44 AxisPlotValues (Property), 11-15
Array object AxisType (Property), 11-16
JavaScript, 16-2
methods, 16-7 B
properties, 16-5 i
asin, 16-57 background and border properties, 1-11
I BackgroundAlternateColor (Property), 11-17
assigning

chart types, 4-6 BackgroundAlternateFrequency (Property), 11-19

BackgroundColor (Property), 11-19

values, 4-15
BackgroundShowAlternateColor (Property), 11-19

2 Index

BarChart (Object), 9-8
BarLineChart (Object), 9-9
BeginLimitName (Property), 11-19, 11-23
big, 16-92
bitwise operators
definition, 14-5
logical, 14-6
shift, 14-7
blink, 16-93
BMP files, 1-7
bold, 16-94
Boolean object
JavaScript, 16-23
methods, 16-25
properties, 16-24
Boolean operators, 4-5
border and background properties, 1-10
BorderColor (Property), 11-23
BorderWidth (Property), 11-23
BottomMargin (Property), 11-23
boxes, 1-7, 7-1
break statements
definition, 15-3
using, 8-16
Brio Intelligence
methods, 10-1
objects, 9-1
properties, 11-1
scripting applications in, 8-2
Brio Intelligence object model See object model

browser cookies, using to pass parameters to ODS
documents, 8-22

browser, Object, 2-8
buttons
command, 1-7, 3-5
radio, 1-7, 3-7
bypassing
errors, 8-35
user IDs and passwords, 8-21

C

Call (Method), 10-20
caller, 16-45
calling functions, 8-4
case-sensitive code, 8-29
Catalog pane

in Design and Run modes, 1-5
Categoryltems (Collection), 9-10
ceil, 16-60
changing

control object titles, 3-3

tab order sequence, 1-16
characteristics, variable, 5-7

characters, special, used in Regular Expressions,
16-120

charAt, 16-95
charCodeAt, 16-96
chart facts
controlling with if...else, 6-12
controlling with switch, 6-13
setting, 5-15
Chart section, 13-7
ChartSection (Object), 9-11
ChartThisPivot (Method), 10-21
ChartType (Property), 11-28
check boxes
changing states with, 6-3
definition, 1-7
using, 3-11
Checked (Property), 11-30
checking errors, Console window and, 2-14
Close (Method), 10-22
Clusterby (Property), 11-31
code entry, 8-35
code structure, in JavaScript, 4-2
code, case-sensitive, 8-29
collection, definition, 2-3
Color (Property), 11-32
Column (Object), 9-12

Index

Columns (Collection), 9-13
ColumnType (Property), 11-33
command buttons

definition, 1-7

using, 3-5
commands, EIS section, 1-21
comment statements, 15-5
comparison operators, 4-5

list of, 14-8

versus assignment operators, 4-5
compile, 16-131
components, of scripted applications, 8-2
concat, 16-8, 16-96
concatenate operator, 4-4
concatenation, 4-9
conditional statements, 8-7
conditional tests, 8-30
Connect (Method), 10-23
Connected (Property), 11-34
Connection (Object), 9-14
connection files, scripting, 12-6
Console (Object), 9-16
Console window, using to check errors, 2-14
constant, definition, 2-3
constructor, 16-79
continue statements

definition, 15-6

using, 8-15
Control (Object), 9-17
control events, 2-6
control objects

changing titles, 3-3

events associated with, 2-6

list of, 1-6

scripting, 3-2
control structures, 6-2 — 6-4, 6-8
controller, OLE automation, 8-26

controlling graphics and controls visibility, example,

12-5

controls
enabling and disabling, 12-4
scripting EIS, 3-1
Controls (Collection), 9-18
ControlsCheckBox (Object), 9-19
ControlsCommandButton (Object), 9-20
ControlsDropDown (Object), 9-21
ControlsListBox (Object), 9-22
ControlsRadioButton (Object), 9-23
ControlsTextBox (Object), 9-24
converting data types, 4-16
Cookies (Collection), 9-25

cookies, browser, using to pass parameters to ODS
documents, 8-22

Copy (Method), 10-24
core objects

Array, 16-2

Boolean, 16-23

Date, 16-26

Function, 16-41

Math, 16-50

Number, 16-72

Object, 16-78

Regular Expression, 16-119

String, 16-87
CornerLabels (Object), 9-27
cos, 16-61
Count (Property), 11-35
CreateConnection (Method), 10-25
CreateDateGroup (Method), 10-26
CreateLimit (Method), 10-27
creating

EIS sections, 1-4, 3-2

OCEs (connection files), 12-6

Results limits, 7-12

variable limits, 12-10
CSSExport (Property), 11-36
CurrentDir (Property), 11-37
CustomSQL (Property), 11-38

4 Index

CustomSQLFrom (Method), 10-29
CustomSQLWhere (Method), 10-30
CustomValues (Property), 11-39
Cutting Script, 2-10

D

DashStyle (Property), 11-40
data models, downloading, 12-7
Database (Property), 11-41
DatabaseList (Property), 11-43
DatabaseName (Property), 11-44
DataFunction (Property), 11-45
DataLabels (Object), 9-28
DataModelSection (Object), 9-29
DataType (Property), 11-47
Date Field (Object), 9-31
Date object

JavaScript, 16-26

methods, 16-27

properties, 16-27
DateNow Field (Object), 9-32
DateTime Field (Object), 9-33
DateTimeNow Field (Object), 9-34
DBLibAllowChangeDatabase (Property), 11-48
DBLibApiSeverity (Property), 11-49
DBLibDatabaseCancel (Property), 11-50
DBLibPacketSize (Property), 11-51
DBLibServerSeverity (Property), 11-52
DBLibUseQuotedIdentifiers (Property), 11-53
DBLibUseSQLTable (Property), 11-54
declaring variables

dynamically, 4-15

global, 4-14

local, 4-14
decrement operator, 4-4, 14-2
default

mode, 1-5

tab order, 1-16
DefinedJoinPath (Object), 9-37

DefinedJoinPaths (Collection), 9-35
defining functions, 8-3, 8-5
delete operator, 14-12
delete statements, 15-8
deleting

EIS sections, 1-4

objects, 1-8
Description (Property), 11-55
Description pane, 2-10
design guides, 1-18
Design Guides command, 1-21
Design mode, 1-5
Design/Run Mode command, 1-21
designing scripts, 8-33
Dimension (Object), 9-38
Dimensions (Collection), 9-40
disabling controls, 12-4
Disconnect (Method), 10-31
Display (Property), 11-56
displaying

connection login boxes, 12-6

rulers, 1-19

Table catalog, 12-7

values in text boxes, 12-2
DisplayName (Property), 11-57
division operator, 4-4, 14-3
DMCatalog (Object), 9-41
DMCatalogltem (Object), 9-42
DMCatalogltems (Collection), 9-43
do...while statements

definition, 15-9

using, 8-13
Document (Object), 9-44
document level

active, 13-4

events, 2-7
Documents (Collection), 9-45
documents, ODS, passing parameters to, 8-22
DoEvents (Method), 10-32

Index

downloading data models, 12-7
Drilllnto (Method), 10-33
drop-down boxes
accessing selections, 5-3
definition, 1-7
filling with available values, 7-7
filling with multiple values, 7-3
in the Limits EIS section, 5-9
typical use, 5-2
using for loops, 7-2
drop-down item argument, 7-8

drop-down selections, modifying limits with,

example, 5-9
Duplicate (Method), 10-34
dynamically declaring variables, 4-15

E

E, 16-51
Effect (Property), 11-58
EIS controls, scripting, 3-1
EIS section
control objects, 1-7
creating, 1-4
default mode, 1-5
definition, 1-2
enabling and disabling controls, 12-4
events, 2-5
graphic objects, 1-6
layout tools in, 1-18
menu commands, 1-21
object model map, 13-6
properties, 1-8
renaming, 1-4
toolbar, 1-19
EISSection (Object), 9-46
elements, properties and, 16-3
embedding objects, 1-7
EnableAsyncProcess (Property), 11-59
Enabled (Property), 11-60

EnableTransActionMode (Property), 11-61
enabling controls, 12-4
EndLimitName (Property), 11-62
entering code, 8-35
equal sign assignment operator, 4-4
equal test operator, 4-5
errors
bypassing, 8-35
checking using the Console window, 2-14
eval, 16-80
evaluations, short-circuit, 14-10
events, 1-22, 2-4
example scripts, 12-5
exec, 16-132
ExecuteBScript (Method), 10-35
Execution window, using to test scripts, 2-13
Executive Information Systems, 1-1
exercises
Adding Comparison and Assignment Buttons, 4-6
Associating a Script with a List Box, 3-15
Concatenating Values, 4-11
Declaring a Variable, 5-8
Summing Values, 4-12

Using a for Loop to Fill a List Box with Limit
Values, 7-5
Using a switch Statement to Change Chart Types,
6-9
Using an if...else Statement to Change Chart
Types, 6-5
Using JavaScript to Clear and Assign New Results
Limits in Drop-Down Boxes, 7-14
Using Loops to Access List Box Selections, 7-10
Using Operators as Characters, 4-8
Using the Assignment Operator, 4-7
Using the Comparison Operator, 4-6
exp, 16-62
Export (Method), 10-36
exporting scripts, 8-27
ExportWithoutQuotes (Property), 11-63

6 Index

F

Facts (Object), 9-47
Field (Object), 9-48
Fields (Collection), 9-49
Filename (Property), 11-64
FileName Field (Object), 9-50
FilePath (Property), 11-65
files

BMP, 1-7

text, exporting scripts to, 8-27
Fill (Object), 9-51
filling boxes with values, 7-3 — 7-4, 7-7
FillUnderRibbon (Property), 11-66
Finding/Replacing Script, 2-16
fixed, 16-97
floor, 16-63
Focus (Property), 11-67
focus, object determining, 1-16
FocusSelection (Method), 10-38
Font (Object), 9-52
font properties, 1-12
fontcolor, 16-98
fontsize, 16-99
Footer (Object), 9-53
forloops, using, 7-2
for statements

definition, 15-10

using, 8-12
for...in statements

definition, 15-11

using, 8-17
Form (Collection), 9-54
Formula (Property), 11-68
forward slash, 4-4, 14-3
fromCharCode, 16-100
FullName (Property), 11-69
Function object

JavaScript, 16-41

methods, 16-48

properties, 16-42
function statements, 15-12
functions

calling, 8-4

defining, 8-3

G

general scripting reference, 8-1
GetCell (Method), 10-39
getDate, 16-28
getDay, 16-29
getFullYear, 16-32
getHours, 16-29
getMinutes, 16-30
getMonth, 16-30
getSeconds, 16-31
getTime, 16-31
getTimezoneOffset, 16-32
getting
help with problem scripts, 8-36
global property, 16-126
global variables, declaring, 4-14
graphic objects
events associated with, 2-5
list of, 1-6
graphics and controls, controlling the visibility of,
12-5
graphics, inserting, 1-21
greater than, 4-5
greater than or equal to, 4-5
Grid command, 1-21
grids, 1-18
Group (Object), 9-56
Group (Property), 11-70
Groupltem (Object), 9-58
Groupltems (Collection), 9-59
Groups (Collection), 9-57
guides, design, 1-18

Index

7

H

Header (Object), 9-60

headers, page, turning off, 12-11
Height (Property), 11-71

help, online, 2-10

Hide (Method), 10-40

HideSelection (Method), 10-41

hiding toolbars, 5-17

hierarchy, object model, 13-2

Home Dialog command, 1-21
horizontal lines, 1-6
HorizontalAlignment (Property), 11-72
Hostname (Property), 11-73
HTMLExportBreakCount (Property), 11-74

IDs, user, bypassing, 8-21
if statements, 6-2
if statements, inline, 8-9
if...else statements
control structure syntax, 6-2
controlling chart facts with, 6-12
definition, 15-13
switch versus, 6-8
using, 6-4, 8-8
Ignore (Property), 11-75
ignoreCase, 16-127
IgnoreNulls (Property), 11-76
I, 4-5
ImportDataFile (Method), 10-42
ImportSQLFile (Method), 10-43
IncludeNulls (Property), 11-77
including
limit values in URLs submitted to ODS, 12-11
operators in strings, 4-8
increment operator, 4-4, 14-2
index, 16-5
Index (Property), 11-78

indexOf, 16-100
inline if statements, 8-9
input, 16-5, 16-127
Insert Control command, 1-21
Insert Graphic command, 1-21
inserting

EIS objects, 1-7

EIS sections, 1-4
IntervalFrequency (Property), 11-79
italics, 16-102
Item (Method), 10-45
item argument and method, 7-8

J

JavaScript
basic syntax, 4-2
basics, 5-1
case-sensitivity, 4-2, 8-29
code structure, 4-2
concatenating versus adding, 4-9
control structures, 6-1 — 6-2
core objects, 16-1
entering syntax, 8-35
examples, 12-1
improving performance, 8-33
keywords, 15-1
manipulating objects with, 8-17
objects. See core objects.
OLE automation controller within, 8-26
operators, 4-4, 14-1
arithmetic, 14-2
logical, 14-9
special, 14-11
string, 14-10
reserved words, 4-17
sample, 2-11
statement elements, 4-3
statements, 15-1 — 15-2
syntax, 4-1

8 Index

troubleshooting, 8-28
join, 16-9
Join (Object), 9-61
Joins (Collection), 9-62
JoinsOptions (Collection), 9-63
-j scriptcnd, 8-2

K

KeepTogether (Property), 11-81
KeepWithNext (Property), 11-80

L

labeled statements, 8-14
definition, 15-14
using, 8-14
LabelFrequency (Property), 11-82
labels, text, 1-7
LabelsAxis (Object), 9-64
LabelText (Property), 11-83
LabelValues (Object), 9-65
lastIndex, 16-128
lastIndexOf, 16-103
lastMatch, 16-129
lastParen, 16-129
LastPrinted (Property), 11-84
LastPrinted Field (Object), 9-66
LastSaved (Property), 11-85
LastSaved Field (Object), 9-67

LastSQLStatement (Property), 11-86

Layer (Method), 10-47
layout tools, 1-18

LeftAxis (Object), 9-70
leftContext, 16-129
LeftMargin (Property), 11-87
legal names, for variables, 4-2
Legend (Collection), 9-69
Legend (Object), 9-68
length, 16-6, 16-88

less than or equal to, 4-5
Limit (Object), 9-71
limits

modifying, 5-9

Query, modifying, 5-14

Results, creating, 7-12

Results, modifying, 5-9
Limits (Collection), 9-73
LimitValues (Collection), 9-75
LimitValueType (Property), 11-88
Line (Object), 9-78
LineChart (Object), 9-77
lines, 1-6
link, 16-104
list box

definition, 1-7

filling with available values, 7-4

item argument, 7-8

using, 3-15
LN10, 16-52
LN2, 16-52
LoadFromFile (Method), 10-49
LoadSharedLibrary (Method), 10-50
local variables, declaring, 4-14
LocalJoins (Collection), 9-79
LocalJoins (Scripting), 9-79
LocalResults (Collection), 9-80
LocalResults (Scripting), 9-80, 9-82
LocalResultsTopicltems (Collection), 9-82
log, 16-64
LOGI10E, 16-52
LOG2E, 16-53
logical operators, 4-5, 14-9
logical operators, bitwise, 14-6
LogicalOperator (Property), 11-89
loop statements, 8-12

manipulating objects with JavaScript, 8-17

Index

map, object model, 13-1
MarkerBorderColor (Property), 11-90
MarkerFillColor (Property), 11-91
MarkerSize (Property), 11-92
MarkerStyle (Property), 11-93
match, 16-105
Math object

JavaScript, 16-50

methods, 16-55

properties, 16-51
max, 16-65
MAX_VALUE, 16-74
menu commands, EIS section, 1-21
MetadataPassword (Property), 11-94
MetadataUser (Property), 11-95
MetaFileChoice (Property), 11-96
method, valueOf, object types for, 16-85
methods

Array object, 16-7

Boolean object, 16-25

Brio Intelligence, 10-1

Date object, 16-27

definition, 2-3

Function object, 16-48

Item object, 7-8

Math object, 16-55

Number object, 16-77

Object object, 16-80

OpenURLY(), 8-20

Regular Expression object, 16-131

Shell(), 8-19

String object, 16-89
Microsoft automation interfaces, 8-25
min, 16-66
MIN_VALUE, 16-74
minum sign, 14-2
minus sign, 4-4
models, data, downloading, 12-7
modes, switching between Design and Run, 1-5

ModifyComputed (Method), 10-51
modifying

limits, 5-9

Query limits, 5-14

Results limits, 5-9
modulus operator, 4-4, 14-3
Move (Method), 10-52
multiline, 16-130
multiple values, filling boxes with, 7-3
multiplication operator, 4-4, 14-3
MultiSelect(Property), 11-97

N
Name (Property), 11-98

naming

variables, 4-2
naming EIS sections, 1-4
NaN, 16-75
Navigation toolbar, 1-20
navigation, object model, 13-1
Negate (Property), 11-99
NEGATIVE_INFINITY, 16-75
new, 14-13
New (Method), 10-53
not equal test operator, 4-5
Number object

JavaScript, 16-72

methods, 16-77

properties, 16-73
NumberFormat (Property), 11-100

0

Object browser, 2-8
object level events, 2-5
object model
description pane, 2-10
hierarchy, 13-2
map, 13-1

10 Index

Microsoft automation interfaces, 8-25

navigating, 13-1

online help, 2-10

terminology, 2-2 — 2-3
Object object

JavaScript, 16-78

method, 16-80

properties, 16-78
object properties

list of, 1-13

setting, 1-13

setting with JavaScript, 12-3
object types, for valueOf method, 16-85
objects

associated events

control, 2-6
graphic, 2-5

Brio Intelligence, 9-1

control, 1-6

core, 16-1

definition, 2-3

deleting, 1-8

embedding, 1-7

Function, 16-41

graphic, 1-6

in Catalog pane, 1-5

inserting, 1-7

manipulating with JavaScript, 8-17

scripting control, 3-2

section, 1-6

using variables for, 5-13
ODBCDatabasePrompt (Property), 11-101
ODBCEnableLargeBufferMode (Property), 11-102
ODS documents, passing parameters to, 8-22
ODSUsername (Property), 11-103
OLAPConnection (Object), 9-83
OLAPLabel (Object), 9-84
OLAPMeasure (Object), 9-87
OLAPMeasures (Collection), 9-88

OLAPQuery section, object model map, 13-9
OLAPQuerySection (Object), 9-89
OLAPSlicer (Object), 9-90
OLAPSIicers (Collection), 9-91
OLE automation controller, 8-26
OLPLabels (Collection), 9-85
OnActivate (Method), 10-54
OnChange (Method), 10-56
OnClick (Method), 10-57
OnDeactivate (Method), 10-58
OnDoubleClick (Method), 10-59
OnEnter, 10-60
OnExit, 10-61
OnlnterruptQueryProcess(Method), 10-62
online help, 2-10
OnPostProcess (Method), 10-62
OnPreProcess (Method), 10-63
OnShutdown (Method), 10-64
OnStartup (Method), 10-65
Open (Method), 10-66
OpenURL (Method), 10-67
OpenURL() Method, 8-20
Operator (Property), 11-104
operators

assignment, 14-3

assignment vs comparison, 4-5

bitwise, 14-5 — 14-7

comparison, 14-8

conditional, 14-11

JavaScript, 4-4

logical, 14-9

short-circuit evaluation, 14-10

shorthand assignment, 14-4

special, 14-11

string, 4-8, 14-10
or operator, 4-5
order, default tab, 1-16
Orientation (Property), 11-106
ovals, 1-7

Index

11

Owner (Property), 11-107 pop, 16-10
POSITIVE_INFINITY, 16-76
P pow, 16-67
PrintOut (Method), 10-70
Process (Method), 10-71
ProcessEventOrigin (Property), 11-114

page headers, turning off for first page in reports,
12-11

PageBreak (Property), 11-108
PageCount Field (Object), 9-92
PageFooter (Object), 9-93
PageHeader (Object), 9-94
PageNm (Object), 9-95
PageXofY Field (Object), 9-96
parameters, passing to ODS documents, 8-22
Parentheses (Collection), 9-97
Parentheses (Object), 9-99

parse, 16-33

Password (Property), 11-109
passwords, bypassing, 8-21

Path (Property), 11-110

Path Field (Object), 9-100
PathSeparator (Property), 11-111
Pattern (Property), 11-112
percent sign, 4-4, 14-3

processing queries

using “don’t prompt for database logon”, 12-12

using “prompt for database logon”, 12-13
ProcessStoredProc (Method), 10-72
ProcessToTable (Method), 10-73
Prompt (Property), 11-115
Prompt To Save dialog box, turning off, 12-11
properties

alignment, 1-9 — 1-10

Array object, 16-5

background and border, 1-11

Boolean object, 16-24

Brio Intelligence, 11-1

Date object, 16-27

definition, 2-3

font, 1-12

Function object, 16-42

Math object, 16-51

Number object, 16-73

object, 1-13

Object object, 16-78

picture, 1-15

periods, as separators, 4-3
PhysicalName (Property), 11-113
PI, 16-53

picture properties, 1-15

pictures, 1-7

PieChart (Object), 9-101

pipe, 4-5 Regular Expression object, 16-124

retrieving object, 12-3

setting EIS, 1-8

setting object, 12-3

String object, 16-88

tab order, 1-16
Properties command, 1-21

Pivot section, object model map, 13-8
PivotFact (Object), 9-102

PivotFacts (Collection), 9-103
PivotLabel (Object), 9-104
PivotLabels (Collection), 9-105
PivotLabelTotals (Object), 9-106
PivotSection (Object), 9-107
PivotThisChart (Method), 10-68
PivotTo (Method), 10-69

plus sign, 4-4

prototype
Array property, 16-6
Boolean property, 16-24
Date property, 16-27

12 Index

Function property, 16-46

Number property, 16-76

Object property, 16-79

String property, 16-88
push, 16-11

Q

Query Limit (Object), 9-108

Query limits, modifying, 5-14

Query section, object model map, 13-5
Query SQL (Object), 9-109
QueryInProcess (Property), 11-116
QuerySection (Object), 9-110
QuerySize (Property), 11-117

Quit (Method), 10-74

quotation marks, strings and, 4-2

R

radio buttons

definition, 1-7

using, 3-7
random, 16-68
Recalculate (Method), 10-75
recalculating results, 8-33
RecentFiles (Collection), 9-112
rectangles, 1-6
references

general scripting, 8-1

syntax, 8-32
Refresh (Method), 10-76
RefreshAvailableValues (Method), 10-77
RefreshData (Property), 11-118
RefreshDataNow (Method), 10-78
Regular Expression object

Javascript, 16-119

methods, 16-131

properties, 16-124

regular expressions, special characters used in,
16-120

Remove (Method), 10-79
Remove Selected Items command, 1-21
RemoveAll (Method), 10-81
RemoveExportSection (Method), 10-82
removing objects from tab order, 1-16
renaming, EIS sections, 1-4
replace, 16-106
Report section

object model map, 13-8

toolbar, 1-19
ReportChart (Object), 9-113
ReportCharts (Collection), 9-114
ReportFooter (Object), 9-115
ReportGroup (Object), 9-116
ReportHeader (Object), 9-117
ReportName Field (Object), 9-118
ReportPivot (Collection), 9-120
ReportPivot (Object), 9-119

reports, turning off page headers for first page in,

12-11

ReportTable (Object), 9-121
ReportTables (Collection), 9-122
Request (Object), 9-123
Requests (Collection), 9-124
reserved words, 4-17
ResetCustomerSQL (Method), 10-83
ResetPrintProperties (Property), 11-120
ResizeToBestFit (Method), 10-84
Result Limit (Object), 9-127
Results (Collection), 9-126
Results (Object), 9-125
Results limits

creating, 7-12

modifying, 5-9
Results section, object model map, 13-8
results, recalculating, 8-33
retrieving object properties, 12-3
return statements, 15-15

Index

13

reverse, 16-12

RightAxis (Object), 9-128
rightContext, 16-130
RightMargin (Property), 11-121
Rotation (Property), 11-122
round, 16-68

round rectangles, 1-6
RowCount (Property), 11-123
RowLimit (Property), 11-124
RowLimitActive (Property), 11-125
RowNumber (Property), 11-126
rulers, 1-19

Rulers command, 1-21

Run mode, switching to, 1-5

)

sample scripts
Add a Computed Column to a Query Request line,
12-9
Add Items to The Request line, 12-9
Add Joins, 12-8
Add Topics to a Data Model Section, 12-7
Create an OCE, 12-6
Create and Set Variable Limits, 12-10
Display a Connection Login Box, 12-6
Display a Table Catalog, 12-7

Include Limit Values in the URL submitted to the
ODS, 12-11

ODS User Name as a Limit, using, 12-10

Process multiple queries against different
databases in the ODS using the, 12-12

Prompt for Database logon, 12-13
Setup Topic Objexts Variables, 12-8

Turn off page headers for the first page in the
Reporter, 12-11

Using a Brio Intelligence 6.6 Limit Dialog Box
andStoring Selected Value in Text Box, 12-10

Save (Method), 10-85
SaveAs (Method), 10-86

SaveResults (Property), 11-127
SaveWithoutUsername (Property), 11-128
ScaleMax (Property), 11-129
ScaleMin (Property), 11-130
ScaleX (Property), 11-131
ScaleY (Property), 11-132
script commands, launching, 8-2
Script Editor

Description pane, 8-32

using, 2-7
script results, 16-133
scripted applications, components of, 8-2
scripting

applications, 8-2

control objects, 3-2

EIS controls, 3-1

reference, 8-1
Scripting pane, 2-9
scripting, finding and replacing, 2-16
Scripts command, 1-21
scripts, exporting to text files, 8-27
scripts, testing, Execution window and, 2-13
scripts, troubleshooting, 8-28
Scrollable (Property), 11-133
ScrollbarsAlwaysShown (Property), 11-134
search, 16-107
Section (Object), 9-129
section level events, 2-6
section objects, 1-6
sections

Chart, 13-7

EIS, 1-2, 13-6

Query, 13-5
Sections (Collection), 9-130
Select (Method), 10-87
selected values, accessing, 7-8
SelectedIndex (Property), 11-135
SelectedList (Object), 9-131

selections

14 Index

accessing with drop-down boxes, 5-3

using variables for, 5-7
SendSQL (Method), 10-88
separators, statement, 4-3
Session (Object), 9-132
setDate, 16-34
setHours, 16-34
setMinutes, 16-35
setMonth, 16-35
SetODSPassword (Method), 10-89
SetPassword (Method), 10-90
setSeconds, 16-36
SetStoredProcParam (Method), 10-91
setTime, 16-36
setting

chart facts, 5-15

EIS properties, 1-8

object properties, 12-3

topic object variables, 12-8
setYear, 16-37
Shadow (Property), 11-136
Shape (Object), 9-133
Shapes (Collection), 9-134
SharedLibrary (Object), 9-135
Shell (Method), 10-92
Shell() Method, 8-19
shift, 16-13
shift operators, bitwise, 14-7
ShiftPoints (Property), 11-137
short-circuit evaluation operator, 14-10
shorthand assignment operators , 14-4
Show3DObjects (Property), 11-138
ShowAdvanced (Property), 11-139
ShowAllPositive (Property), 11-140
ShowBackPlane (Property), 11-141
ShowBarValues (Property), 11-142
ShowBorder (Property), 11-143

ShowBrioRepositoryTables (Property), 11-144

ShowCatalog (Property), 11-145

ShowColumnTitles (Property), 11-146
ShowColumnTotal (Property), 11-147
ShowFullNames (Property), 11-148
ShowHorizontalPlane (Property), 11-149
ShowlconJoins(Property), 11-150

ShowIntervalTickmarks (Property), 11-151

ShowlntervalValues (Property), 11-152
ShowLabel (Property), 11-153
ShowLabels (Property), 11-154
ShowLegend (Property), 11-155
ShowLocalResults (Property), 11-156
ShowMenuBar (Property), 11-157
ShowMetadata (Property), 11-158
ShowOutliner (Property), 11-159
ShowPercentages (Property), 11-160
ShowRowNumbers (Property), 11-161
ShowSectionTitleBar (Property), 11-162
ShowStatusBar (Property), 11-163
ShowSubtitle (Property), 11-164
ShowTickmarks (Property), 11-165
ShowTitle (Property), 11-166
ShowValues (Property), 11-167
ShowValuesAtRight (Property), 11-168
ShowVerticalPlane (Property), 11-169
sin, 16-69

Size (Property), 11-170

slice, 16-14, 16-108

small, 16-109

sort, 16-18

SortByFact (Method), 10-93
SortByLabel (Method), 10-94
SortFactName (Property), 11-171
SortFunction (Property), 11-172
Sortltems (Collection), 9-136
SortNow (Method), 10-95

SortOrder (Property), 11-173

source, 16-130

space-saving variables, 8-28

special characters, in regular expressions , 16-120

Index

15

special operators, 14-11 StringRetrieval (Property), 11-178

SpecificMetadatalLogin (Property), 11-174 strings, concatenation and addition of, 4-10
splice, 16-16 Style (Property), 11-179
split, 16-110 sub, 16-114
Spring (Method), 10-96 substr, 16-115
SQLName (Property), 11-175 substring, 16-116
SQLNetRetainDateFormats (Property), 11-176 SubTitle (Property), 11-180
sqrt, 16-70 subtraction operator, 4-4, 14-2
SQRT1_2, 16-53 sup, 16-117
SQRT2, 16-54 SuppressDuplicates (Property), 11-181
StackClusterType (Property), 11-177 SurfaceValues (Property), 11-182
statement separators, 4-3 SuspendRecalculation (Property), 11-183
statements switch statements
break, 8-16, 15-3 control structures, 6-3
comment, 15-5 controlling chart facts with, 6-13
conditional, 8-7 controlling statement execution, 6-8
continue, 8-15, 15-6 definition, 6-8, 15-16
delete, 15-8 using, 8-10
do...while, 8-13, 15-9 versus if...else, 6-8
eturn, 15-15 switching between Design and Run modes, 1-5
for, 8-12, 15-10 SyncWithDatabase (Method), 10-97
for...in, 8-17, 15-11 syntax, 4-2, 15-1
function, 15-12 syntax reference, 8-32
if...else, 6-2, 6-4, 8-8, 15-13
inline if, 8-9 T
JavaScript, 15-1
label, 8-14 tab order
labeled, 15-14 default, 1-16
loop, 8-12 setting, 1-16 .
switch, 6-3, 6-8, 8-10, 15-16 tab order Propertles, 1-16
var, 15-18 Table section, object model map, 13-9

TableFact (Object), 9-138
TableFacts (Collection), 9-139
TableSection (Object), 9-140
tan, 16-71

test, 16-135

test if operators, 4-5

while, 8-13, 15-19
with, 8-18, 15-20
strike, 16-113
String object
JavaScript, 16-87
methods, 16-89

properties, 16-88 testing scripts, Execution window and, 2-13

tests, conditional, 8-30

string operators, 14-10
Text (Property), 11-184

16 Index

text box, 1-7

text files, exporting scripts to, 8-27
text labels, 1-7

TextWrap (Property), 11-185

this, 14-11, 14-15
TickmarkFrequency (Property), 11-186
Time Field (Object), 9-141
TimeLimit (Property), 11-187
TimeLimitActive (Property), 11-188
TimeNow Field (Object), 9-142
Title (Property), 11-189
toGMTString, 16-38
toLocaleString, 16-39
toLowerCase, 16-118

Toolbar (Object), 9-143

toolbar, Navigation, 1-20

Toolbars (Collection), 9-145
toolbars, hiding, 5-17

tools, layout, 1-18

Topic (Object), 9-146

Topicltem (Object), 9-147
Topicltems (Collection), 9-148

unary negation operator, 14-2
understanding
Brio Intelligence events, 2-4
Brio Intelligence object model, 2-2
control structure syntax, 6-2
functions, 8-3
UnhideAll (Method), 10-98
UnionController (Property), 11-195
UniqueRows (Property), 11-196
Unselect (Method), 10-99
unshift, 16-22
UnSpring (Method), 10-100
unwatch, 16-84
URL (Collection), 9-150
URL (Property), 11-197

URL parameters, using to pass parameters to ODS

documents, 8-22

UseAlternateMetadataLocation (Method), 10-101

user IDs, bypassing, 8-21
Username (Property), 11-198
using

loops, 7-2

assignment versus comparison operators, 4-5
Brio Intelligence 6.6 Limit dialog box, 12-10

browser cookies to pass parameters to ODS
documents, 8-22

TopicName (Property), 11-190

Topics (Collection), 9-149

TopMargin (Property), 11-191

toString, 16-21, 16-25, 16-48, 16-77, 16-82
ToString() (Function), 16-41

ToString() (Method), 16-72

toUpperCase, 16-118

troubleshooting scripts, 8-28

Console window, to check errors, 2-14
design tools, 1-18
drop-down boxes, 5-2
Execution window, to test scripts, 2-13
JavaScript statements, 8-7
JavaScript to open Web and ODS documents, 8-19
ODS user name as limit, 12-10
Script Editor, 2-7
variables
for objects, 5-13
for selections, 5-7
UTC, 16-40

turning off
page headers, 12-11
Prompt To Save dialog box, 12-11
Type (Property), 11-192
typeof, 14-11, 14-15
types, object, for valueOf method, 16-85

u
umn, 9-139

Index 17

v Execution, 2-13
WindowState (Property), 11-206
with statements

definition, 15-20

using, 8-18

valueOf, 16-84

valueOf method, object types for, 16-85
values, 7-3 —7-4,7-7-7-8

Values properties, 1-17

ValuesAxis (Object), 9-151
ValueSource (Property), 11-199

words, reserved, 4-17
working
with EIS objects, 1-6
with EIS sections, 1-4
Write (Method), 10-102
Writeln (Method), 10-103

var statements, 15-18
variable characteristics, 5-7
VariableLimit (Property), 11-200

variables
assigning values, 4-15
characteristics, 5-7 X
declaring global, 4-14 XAxisLabel (Object), 9-154
declaring local, 4-14 XCategory (Object), 9-155
definition, 4-13 XLabels (Object), 9-156

dynamically declaring, 4-15

naming, 4-2

Y
YLabels (Object), 9-157

space-saving, 8-28
using for a drop down selection, 5-7
using for objects, 5-13
Version (Property), 11-201 z
vertical lines, 1-6
VerticalAlignment (Property), 11-202
View (Property), 11-203
Visible (Property), 11-204
Visual Basic, 8-25
void, 14-11, 14-16

ZAxisLabel (Object), 9-158
ZCategory (Object), 9-159
ZLabels (Object), 9-160

w

watch, 16-86
WebClientDocument (Object), 9-152
while statements
definition, 15-19
using, 8-13
Width (Property), 11-205
windows
Console, 2-14

18 Index

	BrioQuery Object Model and Executive Information Systems
	About This Book
	Overview
	Executive Information Systems
	EIS Section
	Working with the EIS Section
	Inserting an EIS Section
	Renaming an EIS Section
	Deleting an EIS Section
	Switching Between Design and Run Modes

	Working with EIS Objects
	Inserting EIS Objects
	Deleting EIS Objects

	Setting EIS Properties
	Alignment Properties
	Border And Background Properties
	Font Properties
	Object Properties
	Picture Properties
	Tab Order Properties
	Values Properties

	Using Design Tools
	Layout Tools
	Design Guides
	Grids
	Rulers
	EIS Section Toolbar

	Navigation Toolbar

	EIS Menu Command Reference
	Summary

	Brio Intelligence Object Model
	Understanding the Brio Intelligence Object Model
	Understanding Brio Intelligence Events
	Object Level Events
	Section Level Events
	Document Level Events

	Using the Script Editor
	Object Browser
	Scripting Pane
	Description Pane and Online Help

	Sample JavaScript Script
	Testing Scripts Using the Execution Window
	Checking Errors Using the Console Window
	Finding/Replacing Script
	Summary

	Scripting EIS Controls
	Scripting Control Objects
	Creating a New EIS Section
	Changing a Control Object’s Title

	Associating Scripts with Command Buttons
	Associating Scripts with Radio Buttons
	Associating Scripts with Check Boxes
	Associating Scripts with List Boxes
	Exercise: Associating a Script with a List Box

	Summary

	Brio JavaScript Tutorials
	JavaScript Syntax
	Basic JavaScript Syntax
	JavaScript Code Structure
	JavaScript Operators
	Using Assignment versus Comparison Operators
	Exercise: Adding Comparison and Assignment Buttons
	Exercise: Using the Comparison Operator
	Exercise: Using the Assignment Operator

	Including Operators in Strings
	Exercise: Using Operators as Characters

	Concatenating versus Adding
	Exercise: Concatenating Values
	Exercise: Summing Values

	Variables
	Declaring Local Variables
	Declaring Global Variables
	Dynamically Declaring Variables
	Assigning Values

	Reserved Words
	Summary

	JavaScript Basics
	Using Drop-Down Boxes
	Accessing a Drop-Down Selection
	Using a Variable for the Selection
	Exercise: Declaring a Variable

	Modifying Limits
	Modifying a Results Limit
	Using a Variable for an Object
	Modifying a Query Limit

	Finishing the Document
	Setting a Chart Fact
	Hiding Toolbars

	Summary

	JavaScript Control Structures
	Understanding Control Structure Syntax
	About if...else Statements
	Exercise: Using an if...else Statement to Change Chart Types

	About switch Statements
	Exercise: Using a switch Statement to Change Chart Types

	Controlling Chart Facts with if...else
	Controlling Chart Facts with switch
	Summary

	Drop-Down and List Boxes
	Using for Loops
	Filling Boxes with Multiple Values
	Filling a List Box with Available Values
	Exercise: Using a for Loop to Fill a List Box with Limit Values

	Filling a Drop-Down Box with Available Values

	Accessing Selected Values
	Drop-Down Item Argument
	List Box Item Argument
	Exercise: Using Loops to Access List Box Selections

	Creating Results Limits
	Exercise: Using JavaScript to Clear and Assign New Results Limits in Drop-Down Boxes

	What’s Next
	Summary

	Brio Scripting Reference
	General Scripting Reference
	Scripting Applications in Brio Intelligence
	Understanding Functions
	Defining Functions
	Calling Functions
	Function Scope
	Defining Functions in Different Scopes

	Using JavaScript Statements
	Conditional Statements
	if...else Statements
	Inline if Statements
	switch Statements

	Loop Statements
	for Statements
	do...while Statements
	while Statements
	label Statements
	continue Statements

	break Statements

	Manipulating Objects with JavaScript
	for...in Statement
	with Statement

	Using JavaScript to Open Web and OnDemand Server Documents
	Shell() Method
	OpenURL() Method
	Bypassing the Userid and Password
	Including Limit Values in the URL Submitted to the ODS
	Passing Parameters to OnDemand Server Documents Using Browser Cookies or URL Parameters
	Accessing Cookies
	Accessing URL Parameters

	Microsoft Automation Interfaces and the Object Model
	OLE Automation Controller within JavaScript
	Exporting Scripts to Text Files
	Troubleshooting Scripts
	Space-Saving Variables
	Case-Sensitive Code
	Assignment Operators Versus Comparison Operators
	Conditional Tests
	Syntax Reference
	Recalculating Results
	Designing Your Script
	Code Entry
	Bypass Errors
	Getting Help with a Problem Script

	Objects
	Methods
	Properties
	JavaScript Examples
	Displaying and Entering Values in a Text Box
	Retrieving and Setting the Properties of an Object
	Enabling and Disabling Controls
	Controlling the Visibility of Graphics and Controls
	Creating an OCE (connection file)
	Displaying a Connection Login Box
	Downloading Data Models
	Displaying a Table Catalog
	Adding Topics to a Data Model Section
	Setting up Topic Object Variables
	Adding Joins
	Adding Items to the Request Line
	Adding a Computed Column to a Query Request Line
	Creating and Setting Variable Limits
	Using the ODS User Name as a Limit
	Using a Brio Intelligence 6.6 Limit Dialog Box and Storing Selected Value�in�Text�Box
	Turning off the Page Headers for the First Page in the Report
	Including Limit Values in the URL Submitted to the ODS
	Turning off the Prompt To Save Dialog Box
	Processing Queries Using “Don’t Prompt For Database Logon”
	Processing Queries Using “Prompt For Database Logon”

	Object Model Map
	Object Model Hierarchy
	Application Level
	Active Document Level
	Query Section
	EIS Section
	Chart Section
	Results, Report, and Pivot Sections
	Table and OLAPQuery Sections

	General JavaScript Reference
	JavaScript Operators
	Arithmetic Operators
	Assignment Operators
	Bitwise Operators
	Bitwise Logical Operators
	Bitwise Shift Operators

	Comparison Operators
	Logical Operators
	Short-Circuit Evaluation

	String Operators
	Special Operators

	Statements
	Core Objects

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

