
4980 Great America Parkway
Santa Clara, CA 95054 USA
+1(408)496-7400

BrioQuery Object Model and
Executive Information Systems

Version 6.6

BrioQuery Object Model and Executive Information Systems — Version 6.6

Part Number Part Number Variable

© Copyright 2002 Brio Software

All rights reserved. Printed in the USA.

This product and related products and documentation are protected by copyright and

are distributed under licenses restricting their use, copying, distribution, and

decompilation. No part of this product or related documentation may be reproduced

in any form by any means without prior written permission of Brio Software and its

licensors.

Brio Software

4980 Great America Parkway

Santa Clara, CA 95054

+1(408)496-7400

support@Brio.com

sales@Brio.com

www.Brio.com

Refer to the Brio Software License Agreement in this package before installing or using

the product.

If you find any errors or problems with this documentation, please notify Brio

Software. Brio Software does not guarantee that this document is without error. The

information in this document is subject to change without notice.

Trademarks

Brio®, Brio Inform™, Brio Intelligence™, Brio Performance Applications™,

Brio Performance Builder™, Brio Performance Suite™, Brio Portal™, Brio Reports™,

Brio Software™, Personal SQR™, and SQR™ are trademarks or registered trademarks

of Brio Software in the United States and other countries. All other marks are the

trademarks or servicemarks of Brio’s suppliers or partners and are the property of such

third parties.

Contents in Brief

About This Book

PART I Overview
CHAPTER 1 Executive Information Systems

CHAPTER 2 Brio Intelligence Object Model

CHAPTER 3 Scripting EIS Controls

PART II Brio JavaScript Tutorials
CHAPTER 4 JavaScript Syntax

CHAPTER 5 JavaScript Basics

CHAPTER 6 JavaScript Control Structures

CHAPTER 7 Drop-Down and List Boxes

PART III Brio Scripting Reference
CHAPTER 8 General Scripting Reference

CHAPTER 9 Objects

CHAPTER 10 Methods

CHAPTER 11 Properties

CHAPTER 12 JavaScript Examples

CHAPTER 13 Object Model Map

PART IV General JavaScript Reference
CHAPTER 14 JavaScript Operators

CHAPTER 15 Statements

CHAPTER 16 Core Objects

Index

iv Contents in Brief

Contents

About This Book

In This Book . xiii

Audience . xiv

Typographic Conventions . xiv

Related Documents . xv

Help . xvi

PART I Overview

CHAPTER 1 Executive Information Systems

EIS Section . 1-2

Working with the EIS Section . 1-4
Inserting an EIS Section . 1-4
Renaming an EIS Section . 1-4
Deleting an EIS Section . 1-4
Switching Between Design and Run Modes . 1-5

Working with EIS Objects . 1-6
Inserting EIS Objects . 1-7
Deleting EIS Objects . 1-8

Setting EIS Properties . 1-8
Alignment Properties . 1-9
Border And Background Properties . 1-10
Font Properties . 1-12
Object Properties . 1-13
Picture Properties . 1-15
Tab Order Properties . 1-16
Values Properties . 1-17

Using Design Tools . 1-18
Layout Tools . 1-18

Design Guides . 1-18
Grids . 1-18
Rulers . 1-19
EIS Section Toolbar . 1-19

Navigation Toolbar . 1-20

EIS Menu Command Reference . 1-21

CHAPTER 2 Brio Intelligence Object Model

Understanding the Brio Intelligence Object Model 2-2

Understanding Brio Intelligence Events . 2-4
Object Level Events . 2-5
Section Level Events . 2-6
Document Level Events . 2-7

Using the Script Editor . 2-7
Object Browser . 2-8
Scripting Pane . 2-9
Description Pane and Online Help . 2-10

Sample JavaScript Script . 2-11

Testing Scripts Using the Execution Window . 2-13

Checking Errors Using the Console Window . 2-14

Finding/Replacing Script . 2-16

CHAPTER 3 Scripting EIS Controls

Scripting Control Objects . 3-2
Creating a New EIS Section . 3-2
Changing a Control Object’s Title . 3-3

Associating Scripts with Command Buttons . 3-5

Associating Scripts with Radio Buttons . 3-7

Associating Scripts with Check Boxes . 3-11

Associating Scripts with List Boxes . 3-15
-vi Contents

Exercise: Associating a Script with a List Box . 3-15

PART II Brio JavaScript Tutorials

CHAPTER 4 JavaScript Syntax

Basic JavaScript Syntax . 4-2

JavaScript Code Structure . 4-2

JavaScript Operators . 4-4
Using Assignment versus Comparison Operators 4-5

Exercise: Adding Comparison and Assignment Buttons 4-6
Exercise: Using the Comparison Operator 4-6
Exercise: Using the Assignment Operator 4-7

Including Operators in Strings . 4-8
Exercise: Using Operators as Characters . 4-8

Concatenating versus Adding . 4-9
Exercise: Concatenating Values . 4-11
Exercise: Summing Values . 4-12

Variables . 4-13
Declaring Local Variables . 4-14
Declaring Global Variables . 4-14
Dynamically Declaring Variables . 4-15
Assigning Values . 4-15

Reserved Words . 4-17

CHAPTER 5 JavaScript Basics

Using Drop-Down Boxes . 5-2
Accessing a Drop-Down Selection . 5-3
Using a Variable for the Selection . 5-7

Exercise: Declaring a Variable . 5-8

Modifying Limits . 5-9
Modifying a Results Limit . 5-9
Using a Variable for an Object . 5-13
Modifying a Query Limit . 5-14

Finishing the Document . 5-15
Setting a Chart Fact . 5-15
Contents -vii

Hiding Toolbars . 5-17

CHAPTER 6 JavaScript Control Structures

Understanding Control Structure Syntax . 6-2

About if...else Statements . 6-4
Exercise: Using an if...else Statement to Change Chart Types 6-5

About switch Statements . 6-8
Exercise: Using a switch Statement to Change Chart Types 6-9

Controlling Chart Facts with if...else . 6-12

Controlling Chart Facts with switch . 6-13

CHAPTER 7 Drop-Down and List Boxes

Using for Loops . 7-2

Filling Boxes with Multiple Values . 7-3
Filling a List Box with Available Values . 7-4

Exercise: Using a for Loop to Fill a List Box with Limit Values . 7-5
Filling a Drop-Down Box with Available Values 7-7

Accessing Selected Values . 7-8
Drop-Down Item Argument . 7-8
List Box Item Argument . 7-8

Exercise: Using Loops to Access List Box Selections 7-10

Creating Results Limits . 7-12
Exercise: Using JavaScript to Clear and Assign New Results Limits in Drop-
Down Boxes . 7-14

What’s Next . 7-18

PART III Brio Scripting Reference

CHAPTER 8 General Scripting Reference

Scripting Applications in Brio Intelligence . 8-2

Understanding Functions . 8-3
Defining Functions . 8-3
Calling Functions . 8-4
Function Scope . 8-5

Defining Functions in Different Scopes . 8-5

Using JavaScript Statements . 8-7
Conditional Statements . 8-7

if...else Statements . 8-8
Inline if Statements . 8-9
-viii Contents

switch Statements . 8-10
Loop Statements . 8-12

for Statements . 8-12
do...while Statements . 8-13
while Statements . 8-13
label Statements . 8-14
continue Statements . 8-15

break Statements . 8-16

Manipulating Objects with JavaScript . 8-17
for...in Statement . 8-17
with Statement . 8-18

Using JavaScript to Open Web and OnDemand Server Documents 8-19
Shell() Method . 8-19
OpenURL() Method . 8-20
Bypassing the Userid and Password . 8-21
Including Limit Values in the URL Submitted to the ODS 8-22
Passing Parameters to OnDemand Server Documents Using Browser
Cookies or URL Parameters . 8-22

Accessing Cookies . 8-23
Accessing URL Parameters . 8-24

Microsoft Automation Interfaces and the Object Model 8-25

OLE Automation Controller within JavaScript . 8-26

Exporting Scripts to Text Files . 8-27

Troubleshooting Scripts . 8-28
Space-Saving Variables . 8-28
Case-Sensitive Code . 8-29
Assignment Operators Versus Comparison Operators 8-30
Conditional Tests . 8-30
Syntax Reference . 8-32
Recalculating Results . 8-33
Designing Your Script . 8-33
Code Entry . 8-35
Bypass Errors . 8-35
Getting Help with a Problem Script . 8-36
Contents -ix

CHAPTER 9 Objects

CHAPTER 10 Methods

CHAPTER 11 Properties

CHAPTER 12 JavaScript Examples

Displaying and Entering Values in a Text Box . 12-2

Retrieving and Setting the Properties of an Object 12-3

Enabling and Disabling Controls . 12-4

Controlling the Visibility of Graphics and Controls 12-5

Creating an OCE (connection file) . 12-6

Displaying a Connection Login Box . 12-6

Downloading Data Models . 12-7

Displaying a Table Catalog . 12-7

Adding Topics to a Data Model Section . 12-7

Setting up Topic Object Variables . 12-8

Adding Joins . 12-8

Adding Items to the Request Line . 12-9

Adding a Computed Column to a Query Request Line 12-9

Creating and Setting Variable Limits . 12-10

Using the ODS User Name as a Limit . 12-10

Using a Brio Intelligence 6.6 Limit Dialog Box and
Storing Selected Value in Text Box . 12-10

Turning off the Page Headers for the First Page in the Report 12-11

Including Limit Values in the URL Submitted to the ODS 12-11

Turning off the Prompt To Save Dialog Box . 12-11

Processing Queries Using “Don’t Prompt For Database Logon” 12-12

Processing Queries Using “Prompt For Database Logon” 12-13

CHAPTER 13 Object Model Map

Object Model Hierarchy . 13-2

Application Level . 13-3

Active Document Level . 13-4

Query Section . 13-5

EIS Section . 13-6
-x Contents

Chart Section . 13-7

Results, Report, and Pivot Sections . 13-8

Table and OLAPQuery Sections . 13-9

PART IV General JavaScript Reference

CHAPTER 14 JavaScript Operators

Arithmetic Operators . 14-2

Assignment Operators . 14-3

Bitwise Operators . 14-5
Bitwise Logical Operators . 14-6
Bitwise Shift Operators . 14-7

Comparison Operators . 14-8

Logical Operators . 14-9
Short-Circuit Evaluation . 14-10

String Operators . 14-10

Special Operators . 14-11

CHAPTER 15 Statements

CHAPTER 16 Core Objects

Index
Contents -xi

-xii Contents

About This Book
Welcome to Brio Intelligence Object Model and Executive Information Systems.
This book focuses on providing an understanding of Executive Information
System (EIS) sections, and the JavaScript syntax and object framework,
specifically as they apply to interacting with Brio Intelligence document
elements.

The book describes how to create custom applications in the EIS section, how
to use JavaScript to script and control Brio Intelligence documents, how
JavaScript programs are interpreted by the Brio engine, how JavaScript
programs are used to provide dynamic control of a Brio Intelligence
document, how documents enhanced with JavaScript are able to respond to
user interaction, and how JavaScript is used within Brio Intelligence to
respond to user events and the document lifecycle.

In This Book
Brio Intelligence Object Model and Executive Information Systems is one of four
books that explain how to use Brio Intelligence (see “Related Documents” on
page -xv). This book contains four main parts:

■ Part I, “Overview,” provides an overview of the EIS section and introduces
the Brio Intelligence object model and JavaScript, an object-oriented
programming language.

■ Part II, “Brio JavaScript Tutorials,” provides hands-on experience with
creating JavaScript scripts. The exercises focus on the relationship between
the Executive Information System, the Brio Intelligence object model, and
the built-in Script Editor for creating customized, interactive front-ends to
enterprise data.

■ Part III, “Brio Scripting Reference,” describes the structure of applications
scripted in Brio Intelligence and provides general reference and
troubleshooting information. It is also a complete reference to Brio
Intelligence’s objects, methods, and properties, and to the Brio Intelligence
object model.

■ Part IV, “General JavaScript Reference,” provides information on
JavaScript operators, statements, and core objects.

Audience
This book is written for developers who create documents using Brio
Intelligence Explorer or Designer and who need to create front-ends using the
EIS functionality provided by the Brio Intelligence application.

The tutorials are written for the application designer who has Brio Intelligence
experience, but little or no JavaScript experience. The reference sections are
written for all levels of Brio Intelligence users who need detailed information
on Brio Intelligence elements and JavaScript.

Typographic Conventions
This book uses the following typographic conventions:

■ Options, buttons, or tabs that you need to choose and text that you need to
type are indicated in bold.

Select Typical Install. Type 1234.

■ Key names are shown in square brackets.

Press [Down Arrow]

■ Two key names joined with a plus sign (+) are consecutive keystrokes. Press
and hold down the first key while pressing the second key.

Press [Ctrl+Z]

■ Options in a menu command path are separated with an arrow. The
following example indicates that you are to open the File menu and choose
the Open menu item.

Choose File→Open.
xiv About This Book

Note When an instruction includes a menu command, the toolbar icon (if one exists) for the
command appears in the left margin. The keyboard shortcut (if one exists) for the command is
listed in brackets at the end of the line.

■ Variables you replace with specific information are shown in italics.

sp_adduser login_id

■ Files, directories, and paths are shown in a monospace font.

Sample1.bqy is located in the BrioQuery/Samples directory.

■ A Note, Tip, or Caution is a brief side-note that deserves special attention or
does not fit within the normal flow of text. These types of information are
set off in the text by an icon in the margin.

Note This is an example note.

Tip This is an example tip.

Caution This is an example caution.

Related Documents
Along with the Brio Intelligence Object Model and Executive Information
Systems book, there are three additional Brio Intelligence books:

■ Getting Started with Brio Intelligence 6.6 provides an overview of Brio
Intelligence and explains the Brio Intelligence user interface and basic
commands. It includes how to retrieve data using Brio Intelligence, how to
query new data and change existing queries, and how to query a single
database as well as multiple databases. It also covers how to work with
query results.

■ Data Analysis and Reporting with Brio Intelligence 6.6 describes how to use
the Brio Intelligence application’s powerful reporting features—pivots,
charts, and tables—and the Report Designer to create spectacular reports.

✏

✏

✰

!

About This Book xv

■ Brio Intelligence 6.6 Administration Guide explains data modeling, including
how to modify existing data models, and create new data models. It also
discusses metadata definitions, database connectivity, and document
scheduling.

Help
Brio Intelligence comes with a number of user manuals as well as an extensive
online help system. If you need help with Brio Intelligence and cannot find the
answers you need in the documentation, and you have a current Brio Technical
Support agreement, call Brio Customer Support at +1(800)337-6324 (within
North America) or +1(619)610-5769. You may also send an email message to
support@brio.com.

Please be prepared to provide your valid customer number and company
name. You also need to know the version of Brio Intelligence you are using.
xvi About This Book

P A R T I

IOverview

2

1 Executive Information Systems

An Executive Information System (EIS) is a customizable document front-end
that makes it easy for developers to build and deploy analytic applications and
for end users to access information.

This chapter provides an overview of the EIS section and explains how to
create and work with EIS sections, and how to use EIS objects and properties.
It contains:

■ EIS Section

■ Working with the EIS Section

■ Working with EIS Objects

■ Setting EIS Properties

■ Using Design Tools

■ EIS Menu Command Reference
1-1

EIS Section
The EIS section provides a streamlined, push-button approach to querying a
database. Through the EIS section, application designers can quickly combine
report sections and enhanced EIS controls to build and deploy analytic
applications that deliver prepackaged business content, including:

■ Simple forms to collect multiple input parameters for a report

■ Executive dashboard applications, complete with visual drill-down from
high-level metrics to underlying data content

■ Browser-style navigation pages to assist users in maneuvering around and
between documents

Brio Intelligence allows developers to customize the EIS section to create an
interface that focuses on precisely those views of the data that are relevant to
the end user. When end users open a Brio Intelligence document, the
customized EIS section appears as the document front-end. The user can
navigate the EIS section with a click of a button, enter parameters, and run
reports without any in-depth knowledge of the data structure or the Brio
Intelligence application. Each button click, item selection, or navigation
sequence invokes a script which the Brio Intelligence application processes in
the background.
1-2 Executive Information Systems

You customize an EIS section by dragging objects from the Catalog pane to the
Content pane, and then attaching scripts to them that are executed in response
to an event or action.

Ruler Units of Measurement Embedded Picture Ruler Design/Run Alignment Resizing Layers

Section
Pane

Graphic
Items

Control
Items

Embedded Command Button Embedded Drop-down List

Embedded
Graphic

Embedded
Text

Content
Pane

Embedded
Chart
Section

Sections

Catalog
Pane
EIS Section 1-3

1-4 Executive Information Systems

Working with the EIS Section
Like other Brio Intelligence report sections, the EIS section is a section you add
to a Brio Intelligence document. The EIS section always appears at the top of
the Section pane.

Inserting an EIS Section
When you add a new EIS section, it is listed after any existing EIS sections.

To insert a new EIS section:

Renaming an EIS Section
The first EIS section inserted in a document is given the default section name
of EIS. Subsequent EIS sections are numbered sequentially, for example, EIS2,
EIS3, EIS4, and so on.

To rename an EIS section:

1 In the Section pane, select the EIS section you want to rename.

2 Choose Edit→Rename Section.

The Section Label dialog box appears.

3 Enter a new name in the Label field and click OK.

Deleting an EIS Section
To delete an EIS Section:

1 In the Section pane, select the EIS section you want to delete.

2 Choose Edit→Delete Section.

The Delete Section dialog box appears.

3 Click Delete.

➤ Choose Insert→New EIS.

Switching Between Design and Run Modes
The EIS section has two modes:

■ Design mode – Used when designing the EIS section. In Design mode, the
objects available for inclusion in the EIS section are displayed in the Catalog
pane.

■ Run mode – Used when deploying the EIS section to end users. This is the
default mode for all EIS sections. The Catalog pane is empty in Run mode.

All EIS sections are always in the same mode. Brio Intelligence documents
open by default with EIS sections in Run mode. Changing one EIS section to
Design mode changes all EIS sections to Design mode.

To toggle between Design mode and Run mode:

Choose EIS→Design Mode. [Ctrl+D]
Working with the EIS Section 1-5

Working with EIS Objects
Brio Intelligence provides a variety of embeddable objects to help you
construct a custom EIS section, including:

■ Sections – Results, Chart, Pivot, Table, and OLAP sections from the active
document.

When you embed an existing section in an EIS section, the section is
automatically resized to fit. You can resize the embedded section in the EIS
Content pane if you wish. In addition, data in embedded sections are
automatically updated to reflect any changes made in the original section.

Note In Run mode, active embedded tables and results have the Sort Ascending and Sort
Descending options available on the shortcut menu. You can also resize Table and Results
columns.

■ Graphics – Lines, rectangles, ovals, and pictures for which you can set
colors and border properties. Table 1-1 lists the graphics objects available
in the Catalog pane of the EIS section.

■ Controls – Widgets to include in the application interface for which you
can set fonts and default values. Controls provide users a way to interact
with the application and can be populated with values at design time or
dynamically populated using JavaScript. Table 1-2 lists the EIS control
objects and their suggested use.

Tab le 1 -1 EIS Graphic Objects

Graphic Object Description

Line Creates a line that you can rotate.

Hz Line Creates a horizontal line.

Vt Line Creates a vertical line.

Rectangle Creates a rectangle.

Round Rectangle Creates a rectangle with rounded corners.

✏

1-6 Executive Information Systems

Working with EIS Objects 1-7

Inserting EIS Objects
To embed an object in an EIS section:

1 Choose EIS→Design Mode. [Ctrl+D]

2 In the Catalog pane, expand the folder that contains the object you want to insert.

3 Click the object you want to insert and drag it to the Content pane.

You can also use the following procedure to insert control and graphic objects:

1 Choose EIS→Design Mode. [Ctrl+D]

2 Go to the EIS Menu.

3 Choose EIS→Insert Graphic→Option or Insert Control→Option.

Select a graphic or control object from the menu.

4 Click the Content pane to insert the control or graphic.

Oval Creates an oval.

Text Label Creates a text label that you can use as a caption.

Picture Allows you to insert bitmaps (.bmp extension).

Tab le 1 -2 EIS Control Objects

Control Object Suggested Use

Command Button To initiate or activate a process.

Radio Button To select one from a group of choices.

Check Box To toggle an option on/off or true/false. A check box either contains a
check mark or is empty.

List Box To list multiple values from which users can make one or more selec-
tions.

Drop Down To list multiple values from which users can make only one selection.

Text Box To gather and display user input.

Tab le 1 -1 EIS Graphic Objects (Continued)

Graphic Object Description

Deleting EIS Objects
To delete embedded sections, controls, and graphics:

1 Choose EIS→Design Mode. [Ctrl+D]

2 In the Content pane, select the object you want to delete.

To select multiple objects, press and hold [Ctrl] while selecting objects. Notice
the selection handles that appear.

3 Choose EIS→Remove Selected Items. [Ctrl+D]

Setting EIS Properties
Use the Properties dialog box to set properties for an entire EIS section or for
specific objects within an EIS section. Many EIS objects have unique
properties. For instance, a radio button has a Radio Group property and a list
box has a Multiple Selection property. Tab-order properties are section-wide
but are accessible in the Properties dialog boxes for both the overall EIS section
as well as for the individual objects.

To set properties in an EIS section:

■ For the EIS section’s properties, make sure that no objects are selected in
the EIS Content pane.

■ For specific object properties, select the object in the EIS Content pane.

1 Choose EIS→Properties

The Properties dialog box appears. The active page depends on the selection
made prior to invoking the dialog box.

2 Click through the tabs to set properties for the selected object.

3 Click OK to apply the selected settings and close the Properties dialog box.

Available properties include:

■ Alignment – Horizontal and vertical alignment, and text wrapping and
rotation.

■ Border And Background– Border color, width, style, and shadow, and
background color and pattern.
1-8 Executive Information Systems

■ Font – Font family, style, size, effects (underline, overline, double overline),
and color.

■ Object – Name, title, visible, enable (control objects only), locked, scroll
bars always shown, and auto-size. For embedded sections, view-only,
active, or hyperlink.

■ Picture – File name, size, and effects for EIS background and graphic object
pictures.

■ Tab Order – Object path that end users follow when they press the [Tab] in
Run mode.

■ Values – User-defined values that populate list box, drop down, or text box
controls.

Detailed information on each of these properties is presented on page 1-9
through page 1-17.

Alignment Properties
Use the Alignment page of the Properties dialog box to specify how objects are
aligned in the EIS Content pane.
Setting EIS Properties 1-9

Table 1-3 describes the properties available on the Alignment page and
specifies which properties apply to which objects.

Border And Background Properties
Use the Border And Background page of the Properties dialog box to set colors
and styles for graphics object borders and backgrounds.

Tab le 1 -3 Alignment Properties

Property Description Applies to Object

Horizontal Alignment Sets the horizontal text alignment to either Left, Center, or Right. Text labels, pictures

Vertical Alignment Sets the vertical text alignment to either Top, Middle, or Bottom. Text labels, pictures

Rotation Sets the rotation alignment to either Horizontal, Vertical, Vertical Rotated Up, or
Vertical Rotated Down.

Text labels, pictures

Text Wrap Sets the text wrap property. Text labels, pictures

Preview Shows the results of the property settings on the selected object. Text labels, pictures
1-10 Executive Information Systems

Table 1-4 describes the properties available on the Background And Borders
page and specifies which properties apply to which objects.

Tab le 1 -4 Background And Border Properties

Property Description Applies to Object

Border Color Sets the color of the border. All graphics objects except pictures

Border Width Sets the width of the border from 1pt to 6pt. All graphics objects except pictures

Border Style Sets style of the border to solid, dashed, or dotted. All graphics objects except pictures

Border Shadow Sets the shadow of a graphic object. All graphics objects except lines and
pictures

Background Color Sets fill color of the graphic object. Default (white), None (trans-
parent), Custom (combination of a color mixed with pattern)

All graphics objects except lines and
pictures

Background Pattern Sets the background color by blending the Background color and
white to produce a percentage fill of the pattern. Solid sets 100%
of the background color, 75% blends in 25% white, 50% blends
in 50% white, and 25% blends in 75% white.

All graphics objects except lines and
pictures

Preview Shows the results of the property settings on the selected object.All graphics objects except pictures
Setting EIS Properties 1-11

Font Properties
Use the Font page of the Properties dialog box to

Table 1-5 describes the properties available on the Font page and specifies
which properties apply to which objects.

Tab le 1 -5 Font Properties

Property Description Applies to Object

Font Sets the type of font. Text label graphics objects, all control objects

Font Style Sets the style to one of the following: Regular, Italic, Bold, or
Bold Italic.

Text label graphics objects, all control objects

Font Size Sets the font size. Text label graphics objects, all control objects

Font Color Sets the font color. Text label graphics objects, all control objects

Font Effects Sets the font effect to one of the following: Underline, Overline,
or Double Overline.

Text label graphics objects, all control objects
1-12 Executive Information Systems

Object Properties
Use the Object page of the Properties dialog box to set object-specific
properties. While many of the properties are the same for all objects, some
object properties apply only to certain objects. For example, only the radio
button control object has a Group Name property, and only the list box
control object has an Allow Multiple Selections property. There are also object
properties that apply only to sections.

Table 1-6 describes the properties available on the Object page and specifies
which properties apply to which objects.

Tab le 1 -6 Object Properties

Property Description Applies to Object

Name Sets the object’s name. The object model uses this name to reference
this object.

All objects (embedded sections,
graphics, and controls)

Title Specifies an optional name title for the object. Command button, radio button,
check box, and text box controls

Visible Allows the object to be visible during Run mode. All sections

Enabled Turns objects on or off. All controls
Setting EIS Properties 1-13

Locked Locks an object’s position in the Content pane. All objects (embedded sections,
graphics, and controls)

Scrollbars Always
Shown

Turns on scroll bars in Run mode if the size of the original object
exceeds the allotted region in the EIS Content pane. This option is not
available if Auto-Size is selected.

Pivot, Results, and Table sections

Auto-Size Sizes the object to fit in the allotted region in the EIS Content pane.

If not selected, the embedded object retains the size of the original sec-
tion. Vertical and horizontal scroll bars are enabled so that users can
easily navigate through the data.

Pivot and Table sections

Group Name Enables you to provide a distinct name for a group of radio buttons. The
default Radio Group name is RadioGroup.

Radio button controls

Allow Multiple
Selections

Allows users to select multiple values in a list box. By default, a single
value is returned from a list box selection.

List box controls

Password Displays asterisks (*) in place of characters typed in a text box. Text box controls

Scrollable Turns on scroll bars for viewing data not visible in the immediate display
area.

Text box controls

View Only Provides read-only interaction with the embedded section, which
appears as a thumbnail in the EIS section. View Only is the default
setting for all embedded sections.

All embedded sections

Active Provides limited analytical interaction with the embedded section,
which appears clipped in the EIS section. Only a subset of the analytical
functions available in the original sections are available for use in
embedded sections.

All embedded sections

Hyperlink Allows users to easily navigate to the original section from the embed-
ded section, by clicking the thumbnail in the EIS section.

All embedded sections

Tab le 1 -6 Object Properties

Property Description Applies to Object
1-14 Executive Information Systems

Picture Properties
Use the Picture page to specify properties for picture graphics objects and EIS
section background pictures.

Table 1-7 describes the properties available on the Picture page.

Tab le 1 -7 Picture Properties

Property Description

Picture Sets the bitmap (.bmp) file that is used for the picture graphic object.

Picture Scale Sets the height and width for the picture as a percentage of the original size.

Picture Effect Sets the picture effect to one of the following: None, Stretch, Clip or Title.
Setting EIS Properties 1-15

Tab Order Properties
Use the Tab-Order page to define the tab order (trail) of EIS objects, or to add
or remove selected EIS objects from the tab order. The default tab order is the
order in which the objects were added to the EIS content pane.

Note The EIS background is not considered an object in the tab-order definition.

■ Double-click an object name in the list to add or remove it from the tab
order. Objects preceded by an asterisk (*) are included in the tab order.

■ Click Up or Down to change the tab order sequence of one or more selected
objects.

Tab order is defined from top to bottom. Initial focus is placed on the
asterisked object listed first in the tab-order definition. Each toggle between
Run and Design modes re-initializes the tab order back to the first asterisked
object in the list.

The tab order also includes disabled and invisible EIS objects and overrides
any Enable and Visible properties settings. You need to determine whether you
want to include disabled or invisible objects in your tab-order definition.

✏

1-16 Executive Information Systems

When an object is deleted from an EIS section, its name is removed from the
tab-order definition. However, the order of all other objects is preserved. For
instance, if the tab order is command button→radio button→check
box→drop down, and the radio button is deleted, the tab order should still be
command button→check box→drop down.

Values Properties
Use the Values page of the Properties dialog box to define one or more values
for the List Box and Drop Down control objects.

■ To define values for a list box or drop down control object, type a value in
the List Value field and click Add.

Note To add multiple values for list boxes or drop downs, make sure the Allow Multiple Selection

check box on the Object page is selected.

■ To remove values from the list, select one or more values and click Remove.

■ To change the order of the listed values, select a value and click Move Up or
Move Down.

✏

Setting EIS Properties 1-17

Using Design Tools
Brio Intelligence gives you complete control of your EIS section setup and
provides a number of layout and navigation tools that assist you in designing
effective, high-quality custom applications.

Layout Tools
A rich set of layout aids is available to help you easily create professional
looking EIS sections. All the layout tools are available from the EIS Menu or
the EIS Section Toolbar.

Design Guides
Design guides are horizontal and vertical lines that you place in your report to
help you line up objects. Design guides are similar to grids in that objects
automatically snap to align to the design guides.

If rulers are visible, click the ruler and drag one or more design guides from
both the horizontal and vertical rulers.

To toggle the display of design guides:

A check mark appears next to Design Guides to indicate they are visible.
Choose the option again to clear the check mark and remove the design guides.

Grids
Brio Intelligence provides a layout grid that automatically snaps all objects to
the closest grid spot.

To toggle the display of the grid:

A check mark appears next to Grid to indicate the grid is visible. Choose this
option again to clear the check mark and remove the grid from view.

➤ Choose EIS→Design Guides.

➤ Choose EIS→Grid.
1-18 Executive Information Systems

Using Design Tools 1-19

Rulers
Horizontal and vertical rulers help you line up items based on precise units of
measure. Available units of measurement include inches, centimeters, and
pixels, which you select by clicking the measure indicator at the intersection
of the top and left rulers.

To toggle the display of the ruler:

A check mark appears next to Ruler to indicate the ruler is visible. Choose this
option again to clear the check mark and remove the ruler from view.

EIS Section Toolbar
The EIS Section toolbar provides icons that enable you to quickly maneuver
multiple EIS objects.

■ Design/Run Mode – Toggles between Design and Run modes.

■ Align – Aligns several objects at the same time. Objects are aligned to the
first object you select. Select the first object, then hold down [Ctrl] and
select the remaining objects. Click the arrow on the Align icon and choose
an alignment option: left, center, right, top, middle, or bottom.

■ Make Same Size – Resizes the selected objects to the same size. Objects are
resized to match the first object you select. Select the first object, then hold
down [Ctrl] and select the remaining objects. Click the arrow on the Make
Same Size icon and choose a resizing option: width, height, or both.

■ Layer – Stacks a single object in relative position to other objects. Layer
include four rearrangement options: Bring To Front, Send To Back, Bring
Forward, and Send Backward. Use this feature to layer multiple objects so
that only the sections of the objects you want visible are shown.

➤ Choose EIS→Ruler.

Design/Run Mode
Align
Make Same Size
Layer

Navigation Toolbar
Use the Navigation toolbar to return to an EIS section from another section
when the Section catalog, Section title bar, toolbars, and menus have been
turned off.

The Navigation toolbar is hidden by default, but you can use scripts to enable
it. When activated, it is available in all sections and includes the Back, Forward,
and EIS Home buttons.

Use the following scripts to work with the Navigation toolbar. The first script
turns on the Navigation toolbar. The second script turns on all toolbars with
the exception of the Navigation toolbar. The third script turns off all toolbars.

Example 1: //Syntax for turning on Navigation toolbar
Toolbars["Navigation"].Visible=true;

Example 2: //Syntax for turning on all toolbars except the Navigation toolbar

j=Toolbars.Count

for (i=1; i<=j; i++) {
if (Toolbars[i].Name != "Navigation") {Toolbars[i].Visible=true}

}

Example 3: //Syntax for turning off all toolbars
j=Toolbars.Count

for (i=1; i<=j; i++) {
Toolbars[i].Visible=false

}

1-20 Executive Information Systems

EIS Menu Command Reference
Table 1-14 provides a quick reference to the commands available on the EIS
menu and lists any related shortcuts.

Tab le 1 -8 EIS Menu Commands

Command Description
Keyboard
Shortcut

Shortcut
Menu

Design Guides Toggles the design guides on and off.

Grid Toggles the grid on and off.

Rulers Toggles the rulers on and off.

Insert Graphic Allows you to insert a graphic element.

Insert Control Allows you to insert a control button or box.

Remove Selected
Items

Deletes the selected item.

Scripts Displays the Script Editor. [F8] ✔

Properties Displays the property menu for the selected item. ✔

Home Dialog Allows you to designate a particular EIS section as
the home EIS section. The default is the EIS section
first created.

Design Mode Toggles between the design and run mode. [Ctrl+D]
EIS Menu Command Reference 1-21

Summary
This chapter provided an overview of the EIS section, and familiarized you with the
concepts, procedures, and tools involved with custom application design. As you
continue, remember these points:

■ The EIS section is what you use to develop custom applications referred to as
Executive Information Systems. It acts as the front-end to a Brio Intelligence
document and simplifies your users’ interactions with databases and other
document sections.

■ You can embed a variety of objects to help you construct a custom EIS, including
Results, Table, Chart, Pivot and OLAP sections, graphics, bitmap pictures, and
graphical interface controls.

■ Customized EIS sections are event driven and execute scripts in response to an
action, such as clicking a button or opening a document.

■ You can control the order in which users navigate a customized EIS section by
specifying a tab-order definition in the Properties dialog box.
1-22 Executive Information Systems

2 Brio Intelligence Object Model

The Brio Intelligence object model is the cornerstone for scripting a
customized interface, or EIS, to enterprise data with JavaScript. The object
model and the built-in Script Editor provide quick and easy access to all levels
of the Brio interface.

This chapter describes the Brio Intelligence object model and the scripting
tools available to the application designer, and explains how to automate EIS
sections using Brio Intelligence events. It contains:

■ Understanding the Brio Intelligence Object Model

■ Understanding Brio Intelligence Events

■ Using the Script Editor

■ Sample JavaScript Script

■ Testing Scripts Using the Execution Window

■ Checking Errors Using the Console Window
2-1

Understanding the Brio Intelligence Object Model
The Brio Intelligence object model is a hierarchical representation of Brio
Intelligence objects and the actions and attributes used to manipulate those
objects. It consists of a collection of objects, each of which has its associated
methods (actions) and properties (attributes).

Objects in Brio Intelligence can include the application, documents, sections,
limits, connections, graphics, controls, catalog items, topics, request lines,
results columns, chart labels, pivot side labels, facts, menu bars, status bars,
toolbars, and so on.

Objects
2-2 Brio Intelligence Object Model

Brio Intelligence methods include create, activate, open, close, save, add, copy,
remove, process, export, recalculate, and so on. For example, a data results
object (the results of a query to a database or a table containing results data)
has a recalculate method. This method (or action) refreshes (or recalculates)
data based on updated parameters in the document.

Properties of Brio Intelligence objects include an object name, value,
alignment, color, and so on. You can view properties or set (modify) the value
of a property. For example, all graphics objects have a “visible” property. You
can check to see if the property is set to true, suggesting that the object is
visible. Or, you can set the property to false, making the object invisible.

Table 2-1 defines basic terminology for the Brio Intelligence object model.

C

Typically, the object model is manipulated by the JavaScript language from
inside an EIS section to build self-contained analytic applications. On
Windows systems, the object model is also accessible via Automation
Interfaces (OLE Automation) that allow the Brio Intelligence application to be
controlled by external applications such as Excel, VB, C++, Delphi, or any
application capable of making OLE Automation calls.

Tab le 2 -1 Brio Intelligence Object Model Terminology

Term Definition Example
Brio Intelligence
Example

Object Something that is perceived as an
entity and referred to by a name.

Tree, leaf, fruit Application, sec-
tion, document

Method What it can do; action that is executed
when an object receives a message.

Grow, bear fruit,
drop leaves

Activate, Copy, Add

Property Characteristic quality or distinctive fea-
ture; attribute.

Name, color,
growing pattern

Active, Visible, Type

Collection Group of objects. Grove Documents

Constant A value that does not change or vary. Number Constants
Understanding the Brio Intelligence Object Model 2-3

Understanding Brio Intelligence Events
Custom applications (that is, EIS sections) developed using Brio Intelligence
are event driven. An event is an action recognized by a Brio Intelligence
document, section, or EIS object. Brio Intelligence event-driven applications
execute scripts in response to an event, such as clicking a button or opening a
document. When an event occurs, Brio Intelligence invokes the script attached
to the event. The order in which your application executes events depends on
what the user does; there is no set sequence of actions.

Note Brio Intelligence uses JavaScript as its scripting language since the release of Brio Intelligence
version 6.0. Documents scripts created using the older Brio scripting language are
automatically converted to JavaScript when the document is first opened.

Brio Intelligence has a set of predefined events. You determine how these
events respond by attaching a script to the event. For example, if you want a
button to perform an action when clicked, you attach a script that defines your
action to the OnClick event associated with the button.

Brio Intelligence predefines events as follows:

■ Object Level Events – Events associated with EIS objects.

■ Section Level Events – Events associated with EIS sections.

■ Document Level Events – Events associated with Brio Intelligence
documents.

✏

2-4 Brio Intelligence Object Model

Object Level Events
Table 2-2 describes the predefined events associated with EIS objects
(embedded sections, graphics, and controls).

.

In addition to the overall object level events, graphic objects and control
objects have specific predefined events with which they are associated, as
shown in Table 2-3 and Table 2-4.

Tab le 2 -2 Object Level Events

Event Objects Supporting Event Action That Invokes Event

OnClick Sections: Hyperlinked embedded section (not
applicable for view-only or active embedded sections)

Graphics: Line, horizontal line, vertical line, rectangle,
round rectangle, oval, text label, picture

Controls: Command button, radio button, check box,
list box

Clicking on a section, graphic, or
control.

OnDoubleClick Controls: List box Double-clicking on a value in the list
box.

OnSelection Controls: List box Selecting a value in a list box.

OnChange Controls: Text box Changing data in a text box.

OnEnter Controls: Text box Entering a text box.

OnExit Controls: Text box Leaving a text box.

OnRowDoubleClick Sections: Active embedded Results or Table sec-
tions (not for view-only or hyperlinked sections)

Double-clicking on a row from an
active embedded Results/Table
section.

Tab le 2 -3 Events Associated with Graphic Objects

Graphic Object Event

Line OnClick

Horizontal Line OnClick

Vertical Line OnClick
Understanding Brio Intelligence Events 2-5

Section Level Events
Section level event are events associated with EIS sections. The predefined
section level events and the actions that invoke the events are:

■ OnActivate – Entering an EIS section.

■ OnDeactivate – Exiting an EIS section.

Rectangle OnClick

Round Rectangle OnClick

Oval OnClick

Text Label OnClick

Picture OnClick

Tab le 2 -4 Events Associated with Control Objects

Control Object Event

Command Button OnClick

Radio Button OnClick

Check Box OnClick

List Box OnClick, OnDoubleClick

Drop Down OnSelection

Text Box OnEnter, OnExit, OnChange

Tab le 2 -3 Events Associated with Graphic Objects (Continued)

Graphic Object Event
2-6 Brio Intelligence Object Model

Document Level Events
Document level events are events associated with Brio Intelligence documents.
The predefined document level events and the actions that invoke the events
are:

■ OnStartUp – Opening a Brio Intelligence document.

■ OnShutDown – Closing a Brio Intelligence document.

■ OnPreProcess – Before a query is processed.

■ OnPostProcess – After a query is processed.

Caution OnShutDown events execute before any prompts in the Save dialog box

Using the Script Editor
Use the built-in Script Editor to add scripts to events. You can open the Script
Editor for a selected object, an active EIS section, or a document.

To add a script to a document event:

To open the Script Editor from within the EIS section:

To open the Script Editor for a selected object:

➤ Choose File→Document Scripts to open the Script Editor from any section other than
the EIS section.

➤ In Design mode, choose EIS→Scripts. [F8]

➤ Choose EIS→Scripts. [F8]

!

Using the Script Editor 2-7

The Script Editor contains the Object browser, the Description pane, the
Events drop-down menu, and the Scripting pane.

Object Browser
The Script Editor provides an Object browser in the left pane, where it displays
the object model, listing all available objects, properties, and methods. At the
top of the Brio Intelligence object model hierarchy is Application, which
represents the entire Brio Intelligence application and contains application-
wide settings and options, methods, and properties. (For a compete flowchart
of the object model, see Chapter 13, “Object Model Map.”)

Clicking any object or collection in the Object browser displays methods and
properties, as well as internal objects. Double-clicking a method or property
automatically generates scripts in the scripting pane of the Script Editor.

Contorl Object Scripting Pane

Object
Browser

Description
Pane

Event Trigger
2-8 Brio Intelligence Object Model

The Application object contains a Documents collection as well as an
ActiveDocument collection. In the active document Sample1.bqy, methods
and properties are available in two places in the object model hierarchy:

■ Application→Documents→Sample1.bqy

■ Application→ActiveDocument

A script that accesses multiple open documents should use the Documents
path to the methods and properties of a specific document. A script that affects
only the currently active document can use the ActiveDocument path.

Scripting Pane
Use the Scripting pane to enter scripts that are attached to specific object
events (such as mouse clicks, button clicks, and so on.). Use JavaScript to
control the logic and flow of your application. Use the object model to access
objects, properties, and methods. Double-click an item in the Object browser
and a reference to the object, property, or method automatically appears at the
cursor location in the Script Editor.

Methods and
Properties for
the Active
Document
Sample1.bqy

Control Object Event TriggerCut, Copy, Paste and
Find/Replace icon
Using the Script Editor 2-9

Above the Script Editor area is a drop-down menu that includes all available
events associated with the selected document, section, or object. Beside the
drop-down menu is the Event Trigger drop-down menu. This menu displays
the events for the control object, which is recognized as the action that will
invoke the script attached to the event.

After selecting the appropriate event, you can start typing in JavaScript and
referencing the object model. If you need to see or edit the script that extends
beyond the boundaries of the Scripting pane, use the horizontal and vertical
scroll bars.

Use the Cut icon to take out selected script from the editor and send it to the
Clipboard (a temporary storage place). With each subsequent copy or cut, the
Clipboard contents are overwrittern.

Use the copy icon to place a copy of the selected scripted on the Clipboard.

Use the Paste icon to place the contents of the Clipboard at the insertion point.
Script, which already exists at the insertion point, will be moved. Selected
script will be replaced when the Paste command is used.

Use the Find/Replace icon to search for and replace script and all instances of a
word, for example, you can replace "Chart" with "Pivot".

Description Pane and Online Help
When you select an item in the object model hierarchy, a brief description of
the item appears in the Description pane. For example, selecting the Active
Document Properties item displays the description Object/Document
ActiveDocument.

To display Help text for specific items in the object model:

The online help dialog box opens and displays information on the specific
method or property selected, such as the type of argument expected. Online
help is also accessible from the Help menu.

➤ Select the item, then click Help.
2-10 Brio Intelligence Object Model

Sample JavaScript Script
Each level of the object model has a Methods folder that contains actions
(methods) applicable to an object at that level. You can “write” a script using
these methods by finding the object in the Object browser and double-clicking
the associated method.

The following procedure associate a JavaScript script to a document. The
script causes the SalesResults section (the object) to activate (the method)
when the document Sample1.bqy opens.

To create a script that activates the SalesResults section when Sample1.bqy
opens:

1 Open the Sample1.bqy file from within Brio Intelligence Designer.

2 Choose File→Document Scripts.

The Script Editor appears. OnStartup is selected by default in the Event drop-
down box.

3 Use the Object browser to navigate the object model and go to
Application→ActiveDocument→Sections→SalesResults→Methods.

4 Double-click Activate.

Brio Intelligence automatically enters a script in the Scripting pane and
attaches it to the OnStartup event listed in the Event drop-down box.
Sample JavaScript Script 2-11

Tip Expand the view of the object model by clicking and dragging the striped
arrow at the bottom of the Object browser’s scroll bar.

5 Click OK to save the script and close the Script Editor.

6 Save and close the document.

7 Test your script by re-opening the document.

When Sample1.bqy opens, the SalesResults section of the document appears
by default.

Click and Drag
to Resize the
Object Browser

✰

2-12 Brio Intelligence Object Model

Testing Scripts Using the Execution Window
You can immediately test a script by adding it to the Execution window. For
example, instead of closing and re-opening a document to test it’s OnStartup
script, copy and paste the script into the Execution window and press [Enter].

Note The following procedure assumes that Sample1.bqy, opened in the “Sample JavaScript Script”

is still open.

To test a document script without closing the document:

1 Activate the EIS section of Sample1.bqy, by clicking the title in the section pane.

2 Choose View→Execution Window.

An Execution window opens:

3 Click the Design mode icon.

4 Open the document script created earlier (choose File→Document Scripts), copy the
script, and then paste it in the Execution Window.

5 Press [Enter] to test that the SalesResults section displays.

✏

Testing Scripts Using the Execution Window 2-13

Checking Errors Using the Console Window
The Console window records all error messages that occur from the time Brio
Intelligence starts until the application is closed or the window is cleared (with
Edit→Clear).

Note The following exercise uses the script previously entered in the Execution window in

Sample1.bqy.

To view error messages in the Console window:

1 Open the Console window (View→Console Window).

2 Change Activate() in the Execution window to lower-case activate()

3 Press [Enter] to run the script in the Execution window.

An error appears in Console window that specifies the line number where the
error occurred and the JavaScript error. The same message also appears in the
Execution window because we are testing a statement in this window.

Line 1 contains the error. The error message is referring to the method (or
function) activate. Because JavaScript is case sensitive, it does not recognize
activate as Activate.

✏

Error Statement in Console Window

Error Statement in Execution Window
2-14 Brio Intelligence Object Model

Scripts can include JavaScript statements that write specific messages to the
Console window for debugging and troubleshooting. These messages can track
the progress of script execution and the state of objects in the script. Exercises
throughout the tutorials in the book use both the Console window and the
Alert dialog box for testing scripts.
Checking Errors Using the Console Window 2-15

Finding/Replacing Script
The Script Editor Find/Replace function allows you to search an entire script
for strings, puncuation marks, and numbers. You can retrieve matches by
treating each word as a prefix or as whole word only. Further differentiation
can be made by applying a case-sensitive constraint (upper and lower case
word matches).

The replace component of this function allows you to replace the first or
multiple occurrence(s) of a string, punctuation mark.

Tab le 2 -5 Find/Replace Definitions

Field Defintion

Find What Enter the search criteria that you wish to search on. The
search criteria can either be a string, punctuation mark or
number. When you make an entry in this field without match-
ing the whole word or case, search criteria acts as a prefix.
That is, "report" matches "reporting", "reporter" and
"reported.” This function does not support wildcats. .

Replace With Enter the replacement text for match.

Match Whole Word Instructs the Find/Replace feature to match only the entire
text that matches exactly your search criteria. For example,
"report" will only match "report". It will not match "report"
matches "reporting", "reporter" and "re-ported."

Match Case Instructs the Find/Replace feature to match only the text that
matches the uppercase or lowercase letters of your search
criteria. For example, if you specify "Chart", then an entry
must match the word "Chart" with a capital C. – that is,
"Chart" will only match "Chart".
2-16 Brio Intelligence Object Model

To find and replace:

1 Click anywhere in the Find What field and enter your search text.

To replace the matched search text with other text, click anywhere in the
Replace With field and enter the replacement text

You can either type the entry or past it.

2 To match the entire search text entirely, click the Match Whole Word Only field.

3 To match the exact case of the search text, click the Match Case field.

4 Select the direction from which to initiate the search in the Direction field.

5 To find and replace the next occurrence of the search text, click Replace.

To find and replace all occurrences of the search text, click ReplaceAll.

When the Find/Replace feature has finished executing, the following message
is displayed: "Reached the end of the script. All instances of search item
replaced" or "Reached the end of the script. Cannot find Search item".

Summary
When creating customized interfaces, remember these points:

■ Choose EIS→Design Mode to toggle between Design and Run modes. [Ctrl+D].

Direction Specify the direction from which to initiate the search be-
ginning at the insertion point. You can start the search in an
upward or downward direction. By default, the direc-tion is
from downward.

Replace Finds, then replaces the first occurrence of a match. This
allows you to confirm whether or not you want to make the
replacement.

ReplaceAll Replaces all occurrences of a match

Close Closes the Find/Replace window.

Tab le 2 -5 Find/Replace Definitions

Field Defintion
Finding/Replacing Script 2-17

■ Add scripts to documents and EIS sections by opening the Script Editor on the
document (File→Document Scripts) or the section (EIS→Scripts). [F8]

■ The Object browser in the Script Editor displays the entire Brio Intelligence
application, the Brio Constants, and the EIS section objects in a hierarchical
structure.

■ Object and their methods and properties can be accessed from more than one
place in the application hierarchy.

■ Create error-free scripts by navigating the object model and double-clicking the
applicable methods and properties.
2-18 Brio Intelligence Object Model

3 Scripting EIS Controls

The previous chapter introduced the Brio Intelligence object model and
explained how to use the built-in scripting tools to quickly add JavaScript to a
document. This chapter shows how to associate simple scripts to various EIS
control objects using the Script Editor and the Object browser. It contains:

■ Scripting Control Objects

■ Associating Scripts with Command Buttons

■ Associating Scripts with Radio Buttons

■ Associating Scripts with Check Boxes

■ Associating Scripts with List Boxes
3-1

Scripting Control Objects
This chapter explains how to associate JavaScript scripts with four of the EIS
control objects: command buttons, radio buttons, check boxes, and list boxes.
The exercises in this chapter guide you through inserting a new EIS section in
Sample3.bqy, adding control objects to the new section, and associating
scripts with the controls.

Creating a New EIS Section

To insert a new EIS section in Sample3.bqy and rename it:

1 Open the Sample3.bqy file from within Brio Intelligence Designer.

2 Choose Insert→New EIS to add a new EIS section to the document.

Inserting a new EIS section changes the document to Design mode. The
Content is blank and the Catalog pane displays the sections, graphics, and
control objects available for embedding in an EIS.

3 In the Section pane, double-click EIS to open the Section Label dialog box.

4 Type Controls in the Label field and then click OK to close the Section Label dialog box.

Section
Pane

Catalog
Pane

Content
Pane
3-2 Scripting EIS Controls

Changing a Control Object’s Title
When working with control objects, change the default title to a title the user
understands.

Note The exercise in this section assumes that you have previously inserted a new EIS section in
Sample3.bqy and renamed the new section Controls.

To change an object’s title:

1 Expand the Controls folder in the Catalog pane.

Note The Controls folder is only visible in Design mode.

✏

✏

Scripting Control Objects 3-3

2 Drag the desired control object (command button, text box, and so on) to the Content
pane.

3 Double-click the control object to display the Properties dialog box.

4 Type a new entry in the Title field and click OK to view the results.

The entry in the Title field appears as a label on the control object. The entry in
the Name field appears on the Title bar in the Script Editor and in the object
model.

Name on the Script Editor Title Bar
and in the object model.

Title on the Button
3-4 Scripting EIS Controls

Associating Scripts with Command Buttons
A command button is typically used to initiate or activate a process or action.

Note The exercise in this section assumes that you have previously inserted a new EIS section in
Sample3.bqy and renamed the new section Controls.

To associate a script with a command button:

1 Drag a command button control from the Catalog pane to the Content pane and use the
Properties dialog box to specify its title as RevSummary.

(See “Changing a Control Object’s Title” on page 3-3 for detailed
instructions.)

2 With the RevSummary object’s selection handles visible, choose EIS→Scripts. [F8]

✏

Associating Scripts with Command Buttons 3-5

The objects name (as show in the Name field of the Properties dialog box)
appears on the Title bar of the Script Editor, and the default event for the
object (OnClick) appears in the Event drop-down box.

3 Use the Object browser to navigate to:
ActiveDocument→Sections→RevSummary→Methods, then double-click Activate.

Brio Intelligence automatically enters the correct command in the Script
Editor.

4 Click OK to save the script and close the Script Editor.

5 Toggle to Run mode and click the RevSummary button. [Ctrl+D]

The RevSummary section displays, as dictated by the script.

You have just learned to associate a script with a command button. You can
review your script by activating the Controls EIS section, toggling to Design
mode, and opening the Script Editor for the command button.

Exercise Create another button. Associate the button with a script that duplicates the
RevSummary section. You can also try this on other BQY documents

ActiveDocument.Sections[“RevSummary”].Duplicate()

Object Name Object Event
3-6 Scripting EIS Controls

Associating Scripts with Radio Buttons
Radio buttons are typically used to allow a user to select one option from a
group of options; for example, to select one type of chart over another.

Note The exercises in this section assume that you have previously inserted an EIS section in
Sample3.bqy and renamed it Controls. These exercises show you how to embed a chart and

add radio buttons for user-control of the chart type.

To embed a chart in an EIS section:

1 In the Controls section, toggle to Design mode.

When in Design mode, the Catalog pane appears below the Section pane as a
hierarchical structure of available EIS objects.

2 Drag the chart named RevbyTime from the Catalog pane to the Content pane.

The script in this exercise changes the chart type to a line chart. Before
changing the chart with the script, verify that RevbyTime is a vertical bar chart.
To verify and change the chart type, activate the RevByTime section and
choose Format→Chart Type→Vertical Bar, then return to the Controls
section.

To associate a script with a radio button:

1 Drag a radio button control from the Catalog pane to the Content pane and use the
Properties dialog box to specify its title as Line.

(See “Changing a Control Object’s Title” on page 3-3 for detailed
instructions.)

✏

Associating Scripts with Radio Buttons 3-7

2 With the Line object’s selection handles visible, choose EIS→Scripts. [F8]

3 Use the Object browser to locate and expand the RevByTime section of ActiveDocument.

4 Expand the RevbyTime Properties folder, then double-click ChartType.

Brio Intelligence automatically enters the first part of the script in the Scripting
pane. Property ChartType as BqChartType appears in the Description pane.
BqChartType is a constant whose values appear in the Constants collection
of the Object browser.
3-8 Scripting EIS Controls

5 To select the applicable BqChartType, use the Object browser to scroll down to
Constants and expand it, then expand the BqChartType collection.

6 In the Scripting pane, type and equals sign (=) immediately after ChartType.

7 Double-click bqChartTypeLine.

Brio Intelligence adds the rest of the script to the Scripting pane.
Associating Scripts with Radio Buttons 3-9

8 Click OK to save the script and close the Script Editor.

9 Toggle to Run mode and click the Line radio button.

The chart changes to a Line chart.

Exercise Create a second radio button with the title Vertical Bar by toggling to Design
mode and working through the preceding exercise.

Add a script to this radio button to change the chart type to vertical bar
(bqChartTypeVerticalBar).

Tip Radio buttons work in groups: when one button in the group is selected, the
others in the same group are cleared. Set the group name in the Properties
dialog box for each button. The default group name is RadioGroup.

✰

3-10 Scripting EIS Controls

Associating Scripts with Check Boxes
A check box is typically used to indicate whether an option should be turned
on/off or is true/false.

The exercise in this section uses an if...else control structure. Chapter 6,
“JavaScript Control Structures,” goes into more detail on control structure
syntax and usage.

Note The exercise in this section assumes that you have previously inserted a new EIS section in
Sample3.bqy and renamed the new section Controls. If you have been following the tutorial

in sequence, you might try to associate a script to a check box on your own. The steps in the
following procedure are very similar to the steps in the previous sections.

To add a check box to the Controls section:

1 Drag a check box control from the Catalog pane to the Content pane and use the
Properties dialog box to change the Name and Title properties as follows:

■ Name – chk_IntervalValues

■ Title – Show/Hide Dollars

(See “Changing a Control Object’s Title” on page 3-3 for detailed
instructions.)

✏

Associating Scripts with Check Boxes 3-11

The Name chk_IntervalValues is used in the script for the Show/Hide Dollars
check box.

Note The rest of this exercise associates a script with the check box. The script turns on or off the
display of revenue values (the ShowIntervalValues property) of the RevByTime chart.

Consider that a check box has two conditions: checked and unchecked (or
cleared). Hence, the JavaScript needs to perform an action when a given
condition is true and negate that action if it is false. “If” a condition exists, then
a given action occurs; “else” the reverse happens.

To associate the ShowIntervalValues property with the check box:

1 With the Show/Hide Dollars check box object’s selection handles visible, choose
EIS→Scripts. [F8]

2 Type the following into the Script Editor:

✏

3-12 Scripting EIS Controls

if ()
{

}
else
{

}

■ The parentheses enclose a statement that tests the checked property of the
check box (chk_IntervalValues).

■ The first set of curly brackets, after the if, encloses the statement to execute
if the test is true.

■ The second set of curly brackets, after the else, encloses the statement to
execute if the test is not true.

3 Click in the parentheses after if, navigate to
Controls Objects→chk_IntervalValues→Properties, and then double-click Checked.

if (chk_IntervalValues.Checked)

4 Type ==true after Checked.

if (chk_IntervalValues.Checked==true)

Use “==” to mean is equal to or matches.

5 Click on the line between the curly brackets and add the statement to execute if the test
is true.

a. Use the Object browser to navigate to
Application→ActiveDocument→Sections→RevByTime→ValuesAxis→
Properties, and then double-click ShowIntervalValues.

You can see more of the object model by dragging the striped arrow at the
bottom of the Object browser’s scroll bar.

b. Type =true and a semicolon (;) at the end of the line in the Scripting pane.

if (chk_IntervalValues.Checked==true)
{
ActiveDocument.Sections["RevByTime"].ValuesAxis.ShowIntervalValues=true;
}

6 Click on the line between the curly brackets (after else) and add the statement to
execute if the test is false.

a. Use the Object browser to navigate to
Application→ActiveDocument→Sections→RevByTime→ValuesAxis→Pr
operties, and then double-click ShowIntervalValues.
Associating Scripts with Check Boxes 3-13

b. Type =false and a semicolon (;) at the end of line in the Scripting pane.

else
{
ActiveDocument.Sections["RevByTime"].ValuesAxis.ShowIntervalValues=false;
}

7 Click OK to save the script and close the Script Editor.

8 Toggle to Run mode and test how the check box works. [Ctrl+D]

You have just learned to associate a script with a check box.

Exercise Create another check box. Associate the check box with a script that shows/hides
another property of the chart.

RevByTime Section with
Show/Hide Dollars Check Box
Selected

RevByTime Section with
Show/Hide Dollars Check Box
Not Selected

RevByTime Section with
Show/Hide Dollars Check Box
Not Selected
3-14 Scripting EIS Controls

Any property in the chart’s Property dialog (in the chart section) can be accessed
through the object model and JavaScript. To view RevByTime chart properties,
activate this section by clicking the title in the Sections pane, click in white space
close to the chart, right-click, and then select Properties from the menu that
appears.

You can also try the exercise on some other BQY document.

Associating Scripts with List Boxes
A list box is typically used to list multiple values from which users can make
one or more selections. This section introduces the list box with an exercise
limited to creating the list values and displaying an alert with a single selection
as the alert message. For more detail on scripting a list box, see Chapter 7,
“Drop-Down and List Boxes.”

Note The exercise in this section assumes that you have previously inserted a new EIS section in
Sample3.bqy and renamed the new section Controls.

Exercise: Associating a Script with a List Box
To associate a script with a list box:

1 Drag the list box icon from the Catalog pane to the Content pane of the Controls section.

2 With the list box control selection handles visible, choose EIS→Properties.

The Properties dialog box appears.

✏

Associating Scripts with List Boxes 3-15

3 Enter Time in the Name field and then clear the Allow Multiple Selections check box.

When Allow Multiple Values is not selected, only one selection is allowed.

4 Click the Values tab, add the values Today, Tomorrow, and Yesterday, and then click OK.

5 In the Content pane, select the Time list box control and choose EIS→Scripts. [F8]

6 Use the Object browser to navigate to Application→Methods, and then double-click
Alert.

Application.Alert()

Name Appears in the
Object Browser

Turns Multiple
Selections On and Off
3-16 Scripting EIS Controls

This method displays an alert box. The content of the alert is controlled with
arguments added between the parentheses.

7 Click in the parentheses after Alert and use the Object browser to navigate to
Controls Objects→Time→SelectedList→Methods, and then double-click Item.

Application.Alert(Time.SelectedList.Item())

The SelectedList object contains the list of user selections.
Time.SelectedList.Item() needs a number as the argument to point to
the specific item in the list of user selections.

8 Type 1 between the parentheses after Item.

9 Click OK to save the script and close the Script Editor.

10 Toggle to Run mode and select an item in the Time list box. [Ctrl+D]

An alert appears, displaying the selection.
Associating Scripts with List Boxes 3-17

You have just learned to associate a script with a list box.

Exercise Edit the Alert to say What a wonderful day! after the selected item. Type a plus
sign (+) in the parentheses after Item(1), and enclose the new phrase (a string) in
quotes.

Application.Alert(Time.SelectedList.Item(1)+" What a
wonderful day!")
3-18 Scripting EIS Controls

Summary
When adding scripts to EIS controls, remember these points:

■ Select the control and choose EIS→Scripts (or press [F8]) to open the Script
Editor.

■ The object label (or title), displayed in Run mode, is set in the object’s Properties
dialog box. One way to access the Properties dialog box is by double-clicking the
object.

■ The object name, displayed in the Object browser, is set in the Properties dialog
box.

■ Brio Intelligence constants (for example BqChartType) are accessible through the
Object browser in the Constants collection.
Associating Scripts with List Boxes 3-19

3-20 Scripting EIS Controls

P A R T I I

IIBrio JavaScript Tutorials

2

4 JavaScript Syntax

The previous chapters introduced the Product Name Variable object model,
EIS sections and controls, and adding JavaScript scripts to enhance the
functionality of a Product Name Variable document.

This chapter reviews JavaScript syntax. It contains:

■ Basic JavaScript Syntax

■ JavaScript Code Structure

■ JavaScript Operators

■ Variables

■ Reserved Words
4-1

Basic JavaScript Syntax
JavaScript is a powerful programming language with three basic syntax rules,
shown in Table 4-1.

JavaScript Code Structure
JavaScript uses dot notation or object.method() syntax. There is a dot, or
period, between each model path segment and before the method or property.
Methods always have parentheses. When there is a choice of Properties, they
are specified with square brackets, or with square brackets and quotes when
the choice is a string or name.

Table 4-2 summarizes the parts of a JavaScript.

Tab le 4 -1 Basic Syntax

Rule Example

JavaScript is case sensitive. Alert is not the same as alert.

Strings must be in quotes. The following two statements define a variable n as the string Brio, and then insert the
string value as an argument for the Alert method. The alert says Brio.
var n="Brio";
Application.Alert(n);

The following two statements define n without quotes. The alert generates the error
Brio is not defined because Brio is not a recognized JavaScript term.
var n=Brio;
Application.Alert("The company name is "+n);

Legal names (for variables, func-
tions, and objects):

■ Start with a letter and con-
tinue with only letters, num-
bers, or an underscore

■ Do not use reserved words

■ Are unique in context

The first character must be a letter or an underscore(_),
not a number. Subsequent characters may be any letter or
digit or an underscore, but not a hyphen, period, or
space.

sample legal name: _letters123

Names need to be unique in context. An EIS section cannot have two drop-down boxes
with the same name, a function cannot have two variables with the same name, a docu-
ment cannot have two sections with the same name

See “Reserved Words” on page 4-17 for a complete list of reserved words.
4-2 JavaScript Syntax

Tab le 4 -2 JavaScript Statement Elements

Parts of Code Examples

Object Model Paths:

■ Start with an uppercase letter

■ Separate path segments with a
period (.)

ActiveDocument.Sections.Count

is the correct syntax to access the Count property of the Sections in Active Docu-
ment, while
ActiveDocumentSections.Count

generates the following error because the separator between ActiveDocument and
Sections is missing:
ActiveDocumentSections is not defined

Methods (and Functions):

■ Separate from the object path with
a period (.)

■ Include parentheses for arguments

Activate() does not take arguments, but the parentheses are still required.
ActiveDocument.Sections["RevSummary"].Activate()

The Add() method requires a single argument, included in the parentheses.
Time.Add(TextBox1.Text)

The Alert() method requires at least one argument and allows for multiple optional
arguments. Multiple arguments are separated by commas.
Application.Alert(TextBox1.Text,"Text Box")

Properties:

■ Separate properties from objects
with a period (.)

■ Refer to one of a collection of prop-
erties, by number, in brackets []

■ Refer to one of a collection of prop-
erties, by name, in brackets, with
quotes [""]

When referring to the Count property of document sections, use:
ActiveDocument.Sections.Count

When referring to the first section (not the name, but the position in the section
array in the object model), use:
ActiveDocument.Sections[1]

When referring to a specific section named RevSummary, use:
ActiveDocument.Sections["RevSummary"]

Statement Separators:

■ Statements must end with a return
[Enter]

■ End statements with both a semico-
lon (;) and a return [Enter] to avoid
JavaScript errors

■ Separate short statements on one
line with a semicolon (;)

Statements can be on separate lines:
Time.Add(TextBox1.Text);
DropTime.Add(TextBox1.Text);

Multiple statements can be on one line, with a semicolon separating them:
Time.Add(TextBox1.Text);DropTime.Add(TextBox1.Text);

Comments

■ Use // for single line or inline

■ Use /* and */ for multiple lines

Time.Add(TextBox1.Text) // this is a comment
// DropTime.Add(TextBox1.Text)
// this line and the line above are both comments

/*
Everything in here is a comment until the end comment
marker.
*/
JavaScript Code Structure 4-3

JavaScript Operators
JavaScript provides one- or two-character symbols (operators) for use in
assigning values, performing math, increasing and decreasing counters, and
making comparisons. Table 4-3 lists available JavaScript operators.

It is important to use operators correctly to avoid JavaScript errors. Many
errors can be avoided if you understand:

■ Assignment versus comparison operators

■ How to use operators as characters in strings

■ Concatenation versus addition

Tab le 4 -3 JavaScript Operators

Type of Operator Symbol Operation Performed

Assignment Operator
returns the assigned value

= Assign a value

Arithmetic Operators
return the resulting value

+
+=

Addition or Concatenate
Addition (or Concatenate) and assign resulting value

-
-=

Subtraction
Subtraction and assign resulting value

*
*=

Multiplication
Multiplication and assign resulting value

/
/=

Division
Division and assign resulting value

%
%=

Modulus (integer remainder of dividing 2 operands)
Modulus and assign resulting value

++ Increment by 1 (x=x+1 is the same as x++)

-- Decrement by 1 (x=x–1 is the same as x––)
4-4 JavaScript Syntax

Using Assignment versus Comparison Operators
JavaScript makes a distinction between assignment (=) and comparison (==)
operators, as seen in Table 4-3.

■ Use = to assign the value on the right to the object on the left.

■ Use == to test if the values on both sides match (the result is true if they
match).

Note The following exercise uses the Product Name Variable file Sample3.bqy and the RevByTime
chart used in “Associating Scripts with Radio Buttons” on page 3-7. You can use any
Product Name Variable document that includes a chart.

Example Insert a new EIS section in Sample3.bqy. Add a line chart and two buttons
titled Comparison and Assignment.

Add a JavaScript script to the Comparison button to compare the type of chart to
bqChartTypeVerticalBar and open an alert that displays the result of the
comparison. Test the comparison button. What does the alert say?

Script the Assignment button to change the chart type to bqChartTypePie. Try
the comparison button again. What does the alert say now?

Comparison Operators
return a Boolean value
true or false

== Test if Equal

!= Test if Not Equal

> Test if Greater Than

< Test if Less Than

>= Test if Greater Than or Equal To

<= Test if Less Than or Equal To

Logical Operators
return a Boolean value
true or false

&& And (test if both operands are true)

|| Or (test if one or the other operand is true)

Tab le 4 -3 JavaScript Operators (Continued)

Type of Operator Symbol Operation Performed

✏

JavaScript Operators 4-5

Tip Both JavaScript scripts act on the actual chart, not the view of the chart in the
EIS section.

The script for the Comparison button uses == to test if ChartType matches
bqChartTypeVerticalBar. The alert displays true if they match, false if they
don’t match.

The Assignment button’s script uses = to set RevByTime’s ChartType property
equal to bqChartTypePie. The chart changes to a pie chart.

Exercise: Adding Comparison and Assignment Buttons
To add a chart, and Comparison and Assignment buttons:

1 Open Sample3.bqy and insert a new EIS section. Rename it Equal EIS.

Refer to“Creating a New EIS Section” on page 3-2 for information on
renaming a section.

2 Add two command buttons by dragging them from the Catalog pane to the Content pane.

3 Double-click one button and change the Title to Comparison.

4 Double-click the other button and change the Title to Assignment.

5 Drag the RevByTime chart from the Catalog pane to the Content pane.

Verify that the chart is a vertical bar chart. (To verify and/or change the chart
type, choose Format → Chart Type → Vertical Bar in the RevByTime section.)

Exercise: Using the Comparison Operator
To script the Comparison command button to make a comparison and return
an alert:

1 Select the Comparison button and choose EIS→Scripts. [F8]

2 Use the Object browser to navigate to Application→Methods, and then double-click
Alert.

F igu re 4 -1 Assigning and Comparing chart type

✰

4-6 JavaScript Syntax

3 Click in the parentheses of the Alert method.

4 Navigate to ActiveDocument→Sections→RevByTime→ Properties, and then double-
click ChartType.

Your script should look like this:

Application.Alert(ActiveDocument.Sections["RevByTime"].ChartType)

5 Type the comparison operator (==) after the property ChartType.

6 Navigate to Constants→BqChartType, and then double-click bqChartTypeVerticalBar.

Your script should now look like this:

Application.Alert(ActiveDocument.Sections["RevByTime"].ChartType==bqChartTypeVert
icalBar)

7 Click OK to save the script and close the Script Editor.

The Comparison button is ready to test.

In Run mode , click the Comparison button. The alert displays true if the chart
is a vertical bar chart, false if the chart is any other chart type.[Ctrl+D]

Exercise: Using the Assignment Operator
To assign a specific chart type with the Assignment command button:

1 In Design mode , select the Assignment button and choose EIS→Scripts. [F8]

2 Navigate to ActiveDocument→Sections→RevByTime→Properties and double-click
ChartType.

The script should look like this:

ActiveDocument.Sections["RevByTime"].ChartType

3 Type the assignment operator (=) after the ChartType property.

4 Navigate to Constants→BqChartType and double-click bqChartTypePie.

The script should now look like this:

ActiveDocument.Sections["RevByTime"].ChartType=bqChartTypePie

5 Click OK to save the script and close the Script Editor.

6 Toggle to Run mode and click the Assignment button, then click the Comparison button.
JavaScript Operators 4-7

Clicking the Assignment button assigns the chart type Pie to the RevByTime
chart. Subsequent clicks on the Comparison button displays the alert false
because the chart type is not vertical bar.

Including Operators in Strings
When JavaScript sees an operator, it performs the operation, even in strings. To
tell JavaScript to treat an operator as a character, add the “escape” character,
the backslash (\), in front of the operator.

Note The following exercise adds a script to the file Sample3.bqy to open the Brio
Enterprise 6 - What’s New.bqy file. You can use any two Product Name Variable
documents for this exercise.

Example Add a command button and a script to open a specific BQY document.

Verify where the file is on your system, and copy the path to this file from your
desktop. Escape the backslash in the directory path.

Exercise: Using Operators as Characters
To create a command button that opens a file:

1 Open Sample3.bqy and insert a new EIS section. Rename it Strings EIS.

Refer to“Creating a New EIS Section” on page 3-2 for instructions on
renaming a section.

2 Drag a command button from the Catalog pane to the Content pane.

3 Select the command button and choose EIS→Scripts.

4 Use the Object browser to navigate to Application→Documents→Methods and double-
click Open.

The Description pane shows that the arguments for the Open method are
strings: Document Open(String Filename, [optional] String
DisplayName). The second argument is not required and this script does not
include it. Step 6 through Step 7 adds the String Filename argument to the
Open method.

✏

4-8 JavaScript Syntax

Caution Strings must be quoted! The Documents.Open() method requires string
arguments.

5 Switch to the desktop and find and copy the path (not the file name) to the file you wish
to open.

For the Brio Enterprise 6 - What’s New.bqy document, the default
path is C:\Program Files\Brio\BrioQuery\Samples.

6 Add the path to the file inside the parentheses.

a. Click inside the parentheses, type quotes, and paste the path plus an ending
slash between the quote marks.

b. Type a backslash (\) in front of each slash in the file path.

The script should look similar to

Documents.Open("C:\\Program Files\\Brio\\BrioQuery\\Samples\\")

7 Copy the file name and paste it at the end of the path in the current script.

a. Switch back to the desktop and copy the exact file name.

b. Return to Product Name Variable and open the Script Editor on the
command button.

c. Click after the last slash in the path, before the ending quote mark, and
paste the file name.

The script should look similar to:

Documents.Open("C:\\Program Files\\Brio\\BrioQuery\\Samples\\Brio Enterprise 6 -
What's New.bqy")

8 Click OK to save the script and close the Script Editor.

9 Toggle to Run mode and click the command button to open the file.

Concatenating versus Adding
JavaScript recognizes several types of data including: strings of characters
(letters and numbers) and real or integer numbers. The data type affects the
results of expressions using the + and += operators. If all the values in the
expression are numeric, + performs addition. If one value is a string value, +
concatenates.

!

JavaScript Operators 4-9

Text boxes, list boxes, and drop-down boxes return string values, not numbers.
If these strings are to be treated as numbers, JavaScript needs to be told to
“parse” (change the value of) the string into a number.

JavaScript has two methods for parsing strings into numbers:

■ parseInt() converts a string into an integer

■ parseFloat() converts a string into a floating point number

Note Any Product Name Variable document can be used for the following exercise.

Example In Design mode, add three text boxes and a command button to a new or existing
EIS section in Sample3.bqy, similar to Addition of Strings in Figure 4-2. Script
the command button to add the values of the first and second text boxes, return-
ing the result in the third text box.

Enter numbers in both the first and second text box and click the button. What is
the result?

F igu re 4 -2 Concatenation and addition of strings

✏

4-10 JavaScript Syntax

Exercise: Concatenating Values
To concatenate the values of two text boxes to a third text box:

1 In Design mode, drag a text box from the Catalog pane to the Content pane of a new or
existing EIS section.

2 Double-click the text box and change the Name to operand1.

3 Add a command button to the right of operand1.

4 Double-click the command button and change the Title to +.

5 Copy and paste the operand1 text box, move it to the right of the + button.

The new text box is automatically renamed operand2 by
Product Name Variable.

Tip Product Name Variable allows copying and pasting of control objects only
when the Console window is closed, and only within the same document
section.

6 Copy and paste the operand1 text box again and move it to the right of operand2.

Product Name Variable automatically renames the new text box operand3.

7 Change the Name of operand3 to txt_result.

8 Select the + button and choose EIS→Scripts.

9 Add the following JavaScript:

txt_result.Text=operand1.Text+operand2.Text

To avoid typing errors, use the Object browser to navigate to EIS Objects, and
then select the Text property for each text box. Type only the = and +
operators.

10 Click OK to save the script and close the Script Editor.

In Run mode, type numbers in operand1 and operand2. They concatenate to
txt_result after you click the + button.[Ctrl+D]

✰

JavaScript Operators 4-11

Note The following exercise continues from the previous one, but changes the script to add instead
of concatenate strings.

Exercise: Summing Values
To sum the values in two text boxes to a third text box:

1 In Design mode, select the + button and choose EIS→Scripts. [F8]

2 Add the parseInt() method around operand1.Text.

txt_result.Text=parseInt(operand1.Text)+operand2.Text

3 Add the parseInt() method around operand2.Text.

txt_result.Text=parseInt(operand1.Text)+parseInt(operand2.Text)

Caution The method parseInt is lowercase, with the I capitalized.

4 Click OK to save the script and close the Script Editor.

In Run mode, the sum of the numbers in operand1 and operand2 appears in
txt_result after you click the + button.

✏

!

4-12 JavaScript Syntax

Variables
Variables are user-defined names that temporarily store data such as numbers,
strings, or other objects (a string, a limit, a chart, a pivot, and so on.). Variables
can be created and defined when the variable is needed, or formally declared at
the beginning of the script. Variables can be either local or global and have two
important characteristics:

■ Name – Word used to identify the variable. A variable name must not be a
reserved word and must start with a letter. Letters, numbers, or an
underscore can be used in the the name. Do not use periods, spaces or
hyphens.

■ Data Type – Type of information stored in the variable, including:

❑ Numbers – For example, 1 or 6.5777

❑ Booleans – True or false

❑ Strings – For example, Brio Technology

❑ null – Keyword which denotes a null value. The null value is also a
primitive value.

❑ undefined – Top-level property whose value is undefined. The
undefined value is also a primitive value.

Note ■ There is no method to distinguish explicitly between integer values (for example, 2) and

real (floating point) numbers (for example, 3.14.). In addition, there is no date data type.
However, you can use the Date object to handle date manipulations.

Chapter 5, “JavaScript Basics” introduces the use of variables in JavaScript
scripts.

✏

Variables 4-13

Declaring Local Variables
Use the term var to declare a new local variable.

var variable

A local variable is available only to the function or event handler script that
defines it, and cannot be accessed by another function or event. Once a name is
declared, it is assigned a value of null or undefined unless you assign a specific
value when declaring the variable name.

In the Product Name Variable object model, it is helpful to adopt a naming
convention that starts with the type of object and includes the action or value.
For example, a list box containing StoreType data values could be named
Lbx_storeType.

Caution JavaScript is case sensitive. A variable named Lbx_StoreType is not the same
as lbx_StoreType.

Declaring Global Variables
Global variables are available throughout Product Name Variable and include
document and custom scripts, all EIS control and section scripts, the Report
Designer section, the computed items features of the Results, Chart, and Pivot
sections, and other BQY documents opened in the same instance of
Product Name Variable.

Note Global variables are not available between BQY documents when using the Web client (that is,

the Insight plug-in) because Web browsers do not support them. Cookies should be used to
write variables shared between documents.

A global variable is defined outside of a function or event and once defined,
can be accessed by other functions and events. You must assign a specific value
to global variable when you declare it. If you type:

gvariable

you get a run-time “not defined” error because global variables can not have a
value of null or undefined.

!

✏

4-14 JavaScript Syntax

Note There is no way to bypass a “not defined” error, not even by using try-catch syntax since it is a
run-time error. The JavaScript engine halts execution before “try” has a change to “catch” an
exception. This is expected behavior of the JavaScript language.

To prevent this error, assign a specific value to the global variable when
declaring it:

gvariable=25

You should consider some naming convention to distinguish global variables
from local variables, such as an extra “g” at the beginning of the global variable
name.

Dynamically Declaring Variables
You can also dynamically declare a variable by creating a new property on an
object, for example:

ActiveDocument.MyName = "Dan"

These variables are similar to global variables but they can be seen only within
the scope of the object with which they are associated, and they exist only as
long as the object exists. To access this variable you need to include the object
name as well as the variable name, for example:

Console.Writeln(ActiveDocument.MyName)

Assigning Values
The JavaScript assignment operator (=) assigns a value to a variable. The type
of data can be a number (the number of items or the result of a calculation), an
object (a string or an object path), or a boolean (true or false).

var Result = 15 // The value 15 is assigned to
 the variable named Result
var Result = Result + 2 // The variable Result is incremented by 2

The data type can be changed at any time. For local variables, the data type is
null or undefined until a value is assigned. Once a value is assigned, the
variable’s data type defines whether the + operator concatenates or adds; to
add, all values must be numeric. See “Concatenating versus Adding” on
page 4-9 for converting a string to a number.

✏

Variables 4-15

JavaScript is a dynamically typed language. This means that you do not need to
specify the data type of a variable when you declare it. Data types are converted
automatically as needed during script execution. This allows you to reuse
variables with different data types. For example, if you define a variable, such
as:

var version = 6.5

Later, you can assign a string value to the same variable:

version = "Product Name Variable 6.6"

Since JavaScript is dynamically typed, this assignment does not cause an error
message.

In expressions involving numeric and string values with the + operator,
JavaScript converts numeric values to strings. For example, consider the
following statements:

// returns The version is 6.5
x = "The version is " + 6.5

In statements that involve other operators, JavaScript does not convert
numeric values to strings, for example:

"50" - 5 // returns 45
"60" + 5 // returns 65
4-16 JavaScript Syntax

Reserved Words
JavaScript sets aside certain words that have a unique meaning and cannot be
used as function or variable names, or method and object names. Some of the
reserved words are in use in the current version of JavaScript or are intended
for use in a future version.

Table 4-4 lists JavaScript’s reserved words.

 (Continued) Tab le 4 -4 Reserved Words in JavaScript

abstract do if package throw

boolean double implements private throws

break else imports protected transient

byte extends in public true

case false instanceof return try

catch final int short var

char finally interface static void

class float long super while

const for native switch with

continue function new synchronized

default goto null this
Reserved Words 4-17

Summary
When creating JavaScript scripts, remember the following points:

■ Avoid the JavaScript error “...is not defined” by clicking through the Object browser
to generate statements and typing quotes around string values.

■ The “=” operator means “equal” and assigns a value. The “==” operator means
“matches” and compares values.

■ Escape special JavaScript characters with the backslash (\).

■ The “+” and “+=” operators concatenate when any value is a string. When all
values are numeric, they perform addition.
4-18 JavaScript Syntax

5 JavaScript Basics

The previous chapter covered JavaScript terminology, variables, and operators.
This chapter associates a script to a drop-down box, and the exercises in this
chapter introduce the use of variables for more flexible scripts, shorter codes
lines, and clearer logic. This chapter contains:

■ Using Drop-Down Boxes

■ Modifying Limits

■ Finishing the Document

Note The exercises in this chapter use the file Sample1mod.bqy and the Limits EIS, Limits Query,
Limits Results, and Limits Chart sections.

✏

5-1

Using Drop-Down Boxes
Drop-down boxes are typically used to list multiple values from which users
can make one selection.

You can use limits that were set in other sections to limit the values available in
drop-down boxes.

For example, Activate the Limits Results section of Sample1mod.bqy and
double-click Territory on the Limit line. There are seven available Territory
values in the database, but only three are selected in the Show Values list (Asia,
North America, and South America). This means the Results section displays
only products sold in Asia, North America, and South America.

In the Limits EIS section, the territories shown in the drop-down box also are
limited to these three selected values.
5-2 JavaScript Basics

This chapter shows you how to create a script that allows the user to view the
pie chart according by territory as selected from the drop-down box .

The exercises in this section add a script to a drop-down box to display an
alert. The exercises introduce two concepts:

■ Accessing a Drop-Down Selection

■ Using a Variable for the Selection

Note Use the file Sample1mod.bqy to add a script to DropDown1 in the Limits EIS section.

Accessing a Drop-Down Selection
To add a JavaScript script to the drop-down box to display the selection in an
alert:

1 Open Sample1mod.bqy, activate the Limits EIS section, and change to Design mode.

✏

Using Drop-Down Boxes 5-3

2 Double-click DropDown1 to display the Properties dialog box, change the Name field to
drp_Territory, and then click OK.

Tip To clarify the purpose of control objects when viewed through the object
model, adopt a naming convention that includes the type of object (drp_ for a
drop-down box) and the type of information or action associated with the
object (Territory for database Territory options).

3 Open the Script Editor for the drop-down box.

Right-click drp_Territory (changed from DropDown1)—which should still
have handles around the box—and select Scripts from the shortcut menu.

Note This rest of this exercise shows how to click through the object model to associate a script to

drp_Territory, a Limits EIS object. The script will apply the Item method, using a pointer to the
selected item (SelectedIndex) as the method argument.

✰

✏

5-4 JavaScript Basics

4 Expand Methods and Properties for Limits EIS Objects→drp_Territory.

To see both methods and properties for drp_Territory, scroll down, or click the
striped arrow below the scroll bar to expand the catalog pane.

5 Double-click the Item method to enter drp_Territory.Item() in the Script Editor.

drp_Territory.Item()

6 Place the cursor inside the parentheses of the Item method, and then double-click
SelectedIndex from the Properties folder.

7 Type a semicolon (;) and a return [Enter] at the end of the line.

The line now reads:

drp_Territory.Item(drp_Territory.SelectedIndex);

The SelectedIndex property of a drop-down box is the index number (or
position number) of the selected value. Item() uses this argument to return
the text the user selected.

8 Add a new statement using the Alert method with the drop-down selection as its
argument.

a. Type Alert() or double-click Alert from within Application→Methods.

b. Copy the first JavaScript statement and paste it inside the Alert method’s
argument parentheses.

c. Delete the semicolon from within the argument.

d. Type a semicolon (;) and return [Enter] at the end of the statement.
Using Drop-Down Boxes 5-5

9 Click OK to save the current script and close the Script Editor.

10 Toggle to Run mode , click the arrow in the drp_Territory drop-down box and select an
item.

Selecting an item causes a popup message to appear.

The Alert method displays a popup message that contains the name of the item
selected from the drop-down box.
5-6 JavaScript Basics

Using a Variable for the Selection
A variable is a temporary holder of information, such as the user’s selection in
a drop-down box. Using variables clarifies the programming logic, making it
easier to troubleshoot. Table 5-1 lists the characteristics of a variable.

This exercise uses a variable to hold the user’s selection (the first line of the
script from the preceding exercise). A variable can be declared in one statement
and the value assigned in another:

var Selection;
Selection=Territory.Item(Territory.SelectedIndex);

or the statements can be combined:

var Selection=Territory.Item(Territory.SelectedIndex);

Note The following exercise continues from the previous section. This exercise alters the script in the
drop-down box (renamed drp_Territory) in the Limits EIS section of Sample1mod.bqy.

Tab le 5 -1 Variable Characteristics

Characteristic Explanation

Name Names must start with a letter or underscore. Subsequent characters may include letters,
numbers, or the underscore (drp_Territory is a legal name). A variable name cannot be a
reserved word (new is a reserved word, but newVariable is not).

Use a JavaScript var statement to declare a variable name before it is used. For example:
var newVariable;

In the above statement, JavaScript reserves the name newVariable, with a value of null or
undefined.

Value Values are assigned to variables with the JavaScript assignment operator (=). Any type of data
can be assigned to a variable: an object (a string, a user selection, an object path), a boolean
(true or false), or a number. For example:
var newVariable;
newVariable=true;

The value can be assigned in a separate statement like above, or in the same statement that
declares the variable name. For example:
var newVariable=true;

newVariable (and its value) is available only within the script or function that declares it, pre-
venting accidental changes from other scripts using the same variable name.

✏

Using Drop-Down Boxes 5-7

Exercise: Declaring a Variable
To declare a variable and assign the drop-down selection:

1 Toggle to Design mode , open the Script Editor on drp_Territory.

2 Type var Selection= at the beginning of the first line of the existing script.

var Selection=drp_Territory.Item(drp_Territory.SelectedIndex);

This declares a new variable Selection, and assigns the user’s selection to it.

3 Replace the argument for Alert with the variable Selection.

var Selection=drp_Territory.Item(drp_Territory.SelectedIndex);
Alert(Selection)

4 Click OK to save the script and close the Script Editor.

5 Test the script by toggling to Run mode and selecting an item from the drop-down box.

An alert containing the name of the selected item should appear.

If the alert displays “undefined”, the alert argument has not been assigned a
value. This is most likely a typo: If the variable is defined with a capital “S” for
Selection, the variable in the alert argument must also have a capital “S”.

The exercises in this section used JavaScript and the Brio object model to
access a user’s selection in a drop-down box. The Item method, with
SelectedIndex as the argument can be acted on directly, or a variable can
hold the selection, clarifying the JavaScript logic: get the selection, act on it.
5-8 JavaScript Basics

Modifying Limits
The drop-down box in the Limits EIS section of Sample1mod.bqy displays
three Territory options and a pie chart of total unit sales. Continuing from the
previous exercises, the exercises in this section change the drop-down script so
the user’s selection modifies the Limit line in the Limits Results section instead
of displaying an alert. When the Limits Results section recalculates, the pie
chart shows data for the selected Territory.

Study the JavaScript in Figure 5-1. The basic steps to modify an existing limit
are:

1. Remove the existing value.

2. Add a value.

3. Assign a “limit operator” .

4. Recalculate (results and tables), or Process (queries).

Modifying a Results Limit
The advantage of modifying a Results section limit is that it excludes data from
the display without affecting the local data set and without a database
connection. Processing Query section limits requires a database connection.

Caution There must be a limit on the Limit Line for the script to execute. If there is no
existing limit, an “uncaught exception” error will be recorded in the Console
window and the rest of the script will not execute.

Note This exercise assumes that the Script Editor for the drop-down box drp_Territory is open. If it is
not, open the file Sample1mod.bqy and activate the Limits EIS section. In Design mode,
select the drop-down box drp_Territory, and then right-click to select Scripts.

F igu re 5 -1 Script to Modify the First Limit (Limit 1) with a Drop-Down Selection

Statements to modify
an existing limit. Each
statement ends with a
semicolon.

Commented statements
ignored by JavaScript.
Multi-line comments
start with /* and end
with */

!

✏

Modifying Limits 5-9

To modify an existing limit with the drop-down selection:

1 Delete the Alert line in the existing JavaScript.

There should be one statement left in the scripting pane.

var Selection=drp_Territory.Item(drp_Territory.SelectedIndex);

2 Use the Object browser to navigate to Application→ActiveDocument→Sections→
Limits Results→Limits→1→SelectedValues→Methods), and double-click RemoveAll.

The Limits Results section is low in the object model hierarchy because it is the
result of a second query (every section that pertains to the first query comes
before it).

The RemoveAll method deletes any current values, making “room” for the
new selection.

3 Type a semicolon (;) at the end of the statement, and then press [Enter].

ActiveDocument.Sections["Limits Results"].Limits[1].SelectedValues.RemoveAll();

JavaScript recognizes an end-of-statement when it sees a return [Enter] or a
semicolon (;). It is good practice to end statements with both, especially when
a long line wraps and starts looking like several lines in the Script Editor.

4 Add the user’s selection as the next statement in the script.

a. Double-click the Add method (in the same Methods folder as RemoveAll).

b. Type the variable Selection as the argument for Add (inside the
parentheses).

c. Type a semicolon (;) at the end of the statement, and then press [Enter].

ActiveDocument.Sections["Limits
Results"].Limits[1].SelectedValues.Add(Selection);

This step adds the selection the user chose as the value for the limit.

5 For the next statement, add the limit operator.

a. Navigate up the object model to object 1, expand the Properties folder, and
then double-click Operator.
5-10 JavaScript Basics

b. Type = after Operator.

The Brio Intelligence object model includes a collection of Constants. Use
the BqLimitOperator constant to set the Operator value in the next step.

c. In the object model Constants collection, open BqLimitOperator, and
double-click bqLimitOperatorEqual.

You may want to close all expanded folders to access Constants more easily.

d. End the statement with a semicolon (;) and a return [Enter].

ActiveDocument.Sections["Limits
Results"].Limits[1].Operator=bqLimitOperatorEqual;

6 Double-click the Recalculate method from ActiveDocument→Sections→Limit Results
→Methods.
Modifying Limits 5-11

ActiveDocument.Sections["Limits Results"].Recalculate()

The Recalculate method instructs Brio Intelligence to recalculate the
results data. It takes no arguments, but still has parentheses because it is a
method.

7 Click OK to save the script and close the Script Editor.

8 Toggle to Run mode and select a different item in the drop-down box.

In Run mode, selecting an item in the drop-down box changes the limit value
and operator, and recalculates the results to include data for a Territory equal
to the selection. The pie chart updates with the current results data.
5-12 JavaScript Basics

Using a Variable for an Object
The JavaScript script for modifying a limit with the drop-down selection is:

var Selection=drp_Territory.Item(drp_Territory.SelectedIndex);

ActiveDocument.Sections["Limits Results"].Limits[1].SelectedValues.RemoveAll();
ActiveDocument.Sections["Limits Results"].Limits[1].SelectedValues.Add(Selection);
ActiveDocument.Sections["Limits Results"].Limits[1].Operator=bqLimitOperatorEqual;
ActiveDocument.Sections["Limits Results"].Recalculate()

Several words in the last four statements are repeated in each line—the path to
Limits[1] and the path to Limits Results section. A variable can hold these
objects (the repeated words), which makes the JavaScript logic easier to read.

Note This following exercise edits the JavaScript associated with drp_Territory from the previous
exercise (in the Limits EIS section of Sample1mod.bqy) to use a variable for the object path.

Exercise Refer to Figure 5-1 on page 5-9 and study the last two sets of statements—using a
variable for the object (path). Select one of the sets to enter in Design mode.

Start by commenting out the last four statements in your current script by typing
/* before the first ActiveDocument.Sections statement and */ after the
fourth one. This will make the four lines comment lines that JavaScript does not
execute.

Enter one set of statements with a variable newChoice holding the object path. Do
not enclose these statements in comments.

Test the new statements in Run mode. Selecting an item in the drop-down box
should still change the pie chart results.

Caution Don’t end an object path value with a period. The syntax error “missing name
after . operator” refers to an incomplete object model path.

✏

!

Modifying Limits 5-13

5-14 JavaScript Basics

The first set of commented statements in Figure 5-1 creates a variable equal to
navigating from ActiveDocument to Limits[1].

var newChoice;
newChoice=ActiveDocument.Sections["Limits Results"].Limits[1];
newChoice.SelectedValues.RemoveAll();
newChoice.SelectedValues.Add(Selection);
newChoice.Operator=bqLimitOperatorEqual;
ActiveDocument.Sections["Limits Results"].Recalculate()

The second set creates a variable equal to navigating from ActiveDocument to
the Limits Results section (one step up in the hierarchy).

var newChoice;
newChoice=ActiveDocument.Sections["Limits Results"];
newChoice.Limits[1].SelectedValues.RemoveAll();
newChoice.Limits[1].SelectedValues.Add(Selection);
newChoice.Limits[1].Operator=bqLimitOperatorEqual

Modifying a Query Limit
The same JavaScript logic modifies a Results and a Query limit, except a query
uses Process instead of Recalculate to update the data with the new limit value.
Processing a query requires a database connection.

Exercise Change the existing limit in the Limits Query section based on the drop-down
selection. Use the Process method instead of the Recalculate method to
update the query results.

ActiveDocument.Sections["Limits Query"].Process()

To test the script, a database connection is needed. Use Brio 6.0 Sample
1.oce. Leave the Host Name and Host Password blank.

The exercises in this section modified a limit according to a user’s selection.
Variables were used to hold the user’s choice and to hold the object model path
to the limit line object.

Finishing the Document
The Limits EIS section contains an active pie chart and a drop-down box that
allows the user to choose limit options. To “finish” this document as a user
interface, set Limits EIS as the section that displays when the document is
opened (refer to “Sample JavaScript Script” on page 2-11). Additional features
to add are:

■ Setting a Chart Fact

■ Hiding Toolbars

Setting a Chart Fact
A chart in an EIS section can be passive (View-only), can activate the chart
section when clicked (Hyperlink), or can access drill down options when right-
clicked (Active). The pie chart in the Limits EIS section is set to Active in the
Properties dialog box, which allows direct access to underlying Product Line
data.

When the user drills down into underlying data, the chart section’s
X-Categories are changed to reflect this action. With JavaScript, the chart can
be returned to the top level (Product Line).

The following script executes when the Limits EIS section is activated.
Finishing the Document 5-15

Note This following exercise sets the XCategory of the Limits Chart section to display the top level
fact: Product Line. The script is added to the Limits EIS section of Sample1mod.bqy.

To script an EIS section to set a chart to a specific fact:

1 Activate the Limits EIS section by clicking the title in the Section pane.

2 Toggle to Design mode and choose EIS→Scripts to open the Script Editor on the active
section.

3 Declare a variable topDrill and assign the string Product Line.

var topDrill="Product Line";

The variable topDrill now holds the chart fact Product Line.

4 RemoveAll XCategories from the Limits Chart section.

ActiveDocument.Sections["Limits Chart"].XCategories.RemoveAll();

5 Add topDrill to the XCategories of the chart section.

ActiveDocument.Sections["Limits Chart"].XCategories.Add(topDrill);

6 Click OK to save the script and close the Script Editor.

In Run mode, when the user selects Limits EIS in the Section pane, or the
document automatically activates this section (see “Sample JavaScript Script”
on page 2-11 for setting a section to activate when the document is opened),
the chart shows Product Line data.

The same JavaScript can be added to a command button, so the user can
choose to return the chart to Product Line at any time.

✏

5-16 JavaScript Basics

Hiding Toolbars
JavaScript scripts can be added to the document itself, executing OnStartup or
OnShutdown. Add scripts to these events to perform any startup and shutdown
tasks.

Note The following exercise hides the application Status bar, the Format toolbar, and the document
Section/Catalog pane. There are other toolbars accessible in each of these areas of the Brio

Intelligence object model. Use this exercise as a starting point to accessing the various
toolbars.

To hide toolbars:

1 Choose File→Document Scripts to open the Script Editor on the document.

2 Use the Object browser to navigate the object model, and set the property for the Status
bar, the Formatting toolbar, and the Section/Catalog pane to false.

a. In Application→Properties, double-click ShowStatusBar, and then type
=false. End the statement with a semicolon and a return.

Application.ShowStatusBar=false;

The menu bar can be accessed at this level of the object model, with
ShowMenuBar property.

b. In Application→Toolbars→Formatting→Properties, double-click Visible,
and then type =false. End the statement with a semicolon and a return.

Toolbars["Formatting"].Visible=false;

Several other toolbars are accessible under Application→Toolbars.

c. In Application→ActiveDocument→Properties, double-click ShowCatalog,
and then type =false. End the statement with a semicolon and a return.

ActiveDocument.ShowCatalog=false;

The Section title bar can be accessed at this level of the object model with
the ShowSectionTitleBar property.

✏

Finishing the Document 5-17

Summary
When scripting EIS controls, remember these points:

■ Separate JavaScript statements with a semicolon and a return.

■ Adopt a naming convention to simplify selection of the correct EIS control object in
the Object browser.

■ Before adding new values, use the RemoveAll method to clear any existing
values.

■ Use the Recalculate method to update results data. Use the Process
method to update query data.

■ Variables are temporary names for specific values or data. Two example uses for a
variable are (1) to hold the use selections and access the selection by name; and
(2) to shorten a long object model path and ease logic verification.

■ Results and Table section limits do not require a database connection; Query
section limits do.
5-18 JavaScript Basics

6 JavaScript Control Structures

The scripts in previous chapters execute each statement in sequence—from the
first to the last. The power and utility of JavaScript includes the ability to
change the statement order with control structures.

Control structures allow the execution order to change based on the state of
objects or the user selection. This chapter introduces control structures. It
contains:

■ Understanding Control Structure Syntax

■ About if...else Statements

■ About switch Statements
6-1

Understanding Control Structure Syntax
The basic syntax of a control structure is:

type of control (control statement)
{ block of statements to execute, based on the value of the control statement ; }

■ Parentheses hold the control statement and are a required part of the
control structure syntax.

■ Curly brackets delineate the control statement block or control body.

■ Each statement in the body of the control structure ends with a semicolon.

The result of the control statement defines whether or not the statements in
the control block are executed. Statements outside the control block are always
executed. Table 6-1 describes three JavaScript control structures and their
syntax.

Tab le 6 -1 JavaScript Control Structures

Control Explanation Syntax

If An if tests the condition of a control statement,
using the comparison or logical operators in
Table 4-3 on page 4-4.

The body statements execute only if the condition
tests true.

if (condition returning true or false)
{

statements;
}
statements executed after control;

If…else An if...else tests the condition of a control state-
ment, using the comparison or logical operators in
Table 4-3 on page 4-4.

The body of the if executes only when the condition
tests true. The body of the else executes if the con-
dition tests false.

if (condition returning true or false)
{

statements;
}
else
{

statements;
}
statements executed after control;
6-2 JavaScript Control Structures

Chapter 3, “Scripting EIS Controls” introduced check boxes, using the
condition of the check box (checked or unchecked) to show or hide interval
values of a chart. The exercises in this chapter change the ChartType property
with a check box (see Figure 6-1).

Switch A switch compares an expression to multiple case
values. Statements within a case execute only if
the case value matches the expression value.

Each case can end with an optional break state-
ment which breaks out of the switch control block
and continues execution with statements that
follow the end of switch.

An optional default statement executes only if
none of the case values match the expression
value.

If there is no default statement, and no matching
case value is found, execution continues with the
statement that follows the end of switch.

switch (expression returning a value)
{
case value :

statements;
break;

case value :
statements;

break;
.
.
.

default :
statements;

}
statements executed after control;

F igu re 6 -1 Check Boxes Used to Change Between Two States: Pie Chart and Line Chart

Tab le 6 -1 JavaScript Control Structures (Continued)

Control Explanation Syntax

State 1: Check box is not
checked.

State 2: Check box is
checked.
Understanding Control Structure Syntax 6-3

About if...else Statements
The JavaScript logic to set the ChartType to a Line if the check box is checked
is:

if (the checked property of the Check Box==true)
{
set the chart type to a line chart
}

JavaScript tests whether the Checked property of the check box matches true.
When the condition test returns true (yes, the Checked property matches
true), it executes the body of the if statement block. When the condition test
returns false (no, the Checked property does not match true), it skips the if
statement block.

With this JavaScript logic, when the check box is selected, the pie chart changes
to a line chart. When the check box is cleared, the chart does not change
because the condition test (chk_ChartType.Checked==true) is false.

Use an if...else statement to expand the if to change the chart back to a pie chart
when the condition test is false. JavaScript tests the Checked property of the
check box. When the check box is checked, the body of the if executes. When
the check box is not checked, the body of the else executes.Brio Intelligence

Note The following exercise adds scripts to new control objects in the Limits EIS section of

Sample1mod.bqy.
✏

6-4 JavaScript Control Structures

Exercise: Using an if...else Statement to Change Chart Types
To display a line chart if the check box is checked, otherwise (else) display a pie
chart:

1 Add a new check box to Limits EIS, change the Name to chk_ChartType, and change the
Title to Show Chart As A Line Chart (use the Properties dialog box).

2 Open the Script Editor on the new Show Chart As A Line Chart check box. [F8]

3 Type if (), a return [Enter], an open curly bracket ({), two returns [Enter], and a close
curly bracket (}).

if ()
{

}

The parentheses hold the controlling condition test. The curly brackets are for
the body of the if, executed only when the condition tests to true.

4 Click inside the control part of the if, then use the Object browser to navigate to Limits
EIS Objects→chk_ChartType→Properties and double-click Checked.

if (chk_ChartType.Checked)
{

}

The Description pane shows Property Checked as Boolean. There are two
Boolean values: true and false.

5 After the chk_ChartType.Checked property, type ==true.

if (chk_ChartType.Checked==true)
{

}

Verify that there are two equal signs, meaning match true, not assign the value
true. Condition statements use the comparison or logical operators in
Table 4-3 on page 4-4.

6 Add a statement in the body of the if statement to change the Limits Chart to type Line.

a. Click inside the body of the if (on the blank line between the curly
brackets), then use the Object browser to navigate to
Application→ActiveDocument→Sections→Limits Chart→Properties
and double-click ChartType.
About if...else Statements 6-5

if (chk_ChartType.Checked==true)
{
ActiveDocument.Sections["Limits Chart"].ChartType
}

The Description Pane shows Property ChartType as BqChartType. Find the
collection for BqChartType in the object model under Constants.

b. After ChartType, type an equal sign (=), navigate to
Constants→BqChartType, and double-click bqChartTypeLine.

c. Type a semicolon (;) at the end of the statement.

if (chk_ChartType.Checked==true)
{
ActiveDocument.Sections["Limits Chart"].ChartType=bqChartTypeLine;
}

The semicolon clarifies where the statement ends and is recommended
practice.

7 On a new line, after the close curly bracket for the if, type else, a return [Enter], an open
curly bracket ({), two returns [Enter], and a close curly bracket (}).

}
else
{

}

The curly brackets are for the body of the else, executed only when the
condition tests false.

8 Click in the body of the else and use the Object browser to add a statement to change
the Limits Chart to a pie chart.

else
{
ActiveDocument.Sections["Limits Chart"].ChartType=bqChartTypePie;
}

The statement should end with a semicolon.

9 Click OK to save the script and close the Script Editor.

10 Toggle to Run mode to test the script.

When Show Chart As Line Chart is checked, the chart type changes to Line.
When it is not checked, the chart type is Pie. The on/off (checked/unchecked)
states of the check box controls two chart type options.
6-6 JavaScript Control Structures

Exercise Add a new check box to the Limits EIS section of Sample1mod.bqy. Add an if
statement that shows the chart legend when the check box is selected, and hides it
when the check box is not selected.

ShowLegend requires a Boolean (true or false) assignment. The statement to
show the chart legend is:
ActiveDocument.Sections["Limits Chart"].ShowLegend=true;

The JavaScript script to show a chart legend if chk_ShowLegend is true is:

if (chk_ShowLegend.Checked==true)
{
ActiveDocument.Sections["Limits Chart"].ShowLegend=true;
}
else
{
ActiveDocument.Sections["Limits Chart"].ShowLegend=false;
}

Caution Use one equal sign when assigning a value, use two equal signs when testing if
the value matches true.

Tip The check box and its script show the chart legend when the check box is
selected and its state becomes “checked.” Since the chart legend is already
showing, the check box must be cleared to hide the legend the first time the EIS
section is used.

The initial state of the chart and the check box can be set with JavaScript
statements associated with the OnActivate event of the EIS section:

ActiveDocument.Sections["Limits Chart"].ShowLegend=true;
chk_ShowLegend.Checked=true;

These two statements set both ShowLegend and the check box Checked
properties to true when the section is activated.

!

✰

About if...else Statements 6-7

About switch Statements
switch statements use expressions, or cases, to control statement execution.
Each case holds one possible value and includes the statements to execute
when the value matches the expression result. Table 6-2 compares the control
logic of a switch to an if...else.

JavaScript evaluates the expression in a switch, then compares the expression
value to each case until it finds a matching value. The statements in the
matching case are executed and the next case is compared. If the matching case
ends with a break statement, JavaScript skips the rest of the cases (conserving
execution time).

Tab le 6 -2 switch versus If...else

switch if...else

switch (CheckBox.Checked)
{
case true :

set the chart type to a line chart
case false :

set the chart type to a pie chart
}

if (CheckBox.Checked==true)
{

set the chart type to a line chart
}
else
{

set the chart type to a pie chart
}

6-8 JavaScript Control Structures

Note Add a check box to the Limits EIS section of Sample1mod.bqy. Use switch logic instead of
if...else logic to change the chart type.

Exercise: Using a switch Statement to Change Chart Types
To switch to a line chart when Checked is true, or to a pie chart when Checked
is false:

1 Add a new check box to Limits EIS, and use the Properties dialog box to change the Title
to Switch Chart To Line Chart and the Name to chk_ChartType2.

2 Open the Script Editor on the new Switch Chart To Line Chart check box. [F8]

3 Type switch (), a return [Enter], an open curly bracket ({), two returns [Enter], and a
close curly bracket (}).

switch ()
{

}

The parentheses are for the expression. The curly brackets are for the body of
the switch.

4 Click inside the expression parentheses, and then use the Object browser to navigate to
Limits EIS Objects→chk_ChartType2 Properties) and double-click Checked.

switch (chk_ChartType2.Checked)
{

}

The Description pane shows Property Checked as Boolean. Since there are two
Boolean values (true and false), we will provide two case values.

5 In the body of the switch, add the case for a value of true, and the statement to change
the Limits Chart to a Line chart.

a. Click inside the body of the switch (on the blank line between the curly
brackets), type case true : and a return [Enter].

b. Navigate to Application→ActiveDocument→Sections→Limits Chart→
Properties and double-click ChartType.

The Description pane shows Property ChartType as BqChartType. Find the
collection for BqChartType in the object model under Constants.

✏

About switch Statements 6-9

c. After ChartType, type an equal sign (=), then navigate to
Constants→BqChartType and double-click bqChartTypeLine.

d. Type a semicolon (;) at the end of the statement, and a return [Enter].

e. Type break; and two returns [Enter].

switch (chk_ChartType2.Checked)
{
case true :
ActiveDocument.Sections["Limits Chart"].ChartType=bqChartTypeLine;
break;

}

The case for true changes the chart to a line chart and ends with a break
statement so other cases are ignored. The extra return is for readability.

6 Add the case for a value of false, and the statement to change the Limits Chart to a pie
chart.

a. Click inside the body of the switch (on the blank line above the closing
curly bracket), type case false : and a return [Enter].

b. Use the Object browser to navigate to Application→ActiveDocument→
Sections→Limits Chart→ Properties and double-click ChartType.

c. After ChartType, type an equal sign (=), and then navigate to
Constants→BqChartType and double-click bqChartTypePie.

d. Type a semicolon (;) at the end of the statement, and a return [Enter].

e. Type break; and a return [Enter].

switch (chk_ChartType2.Checked)
{
case true :
ActiveDocument.Sections["Limits Chart"].ChartType=bqChartTypeLine;
break;

case false :
ActiveDocument.Sections["Limits Chart"].ChartType=bqChartTypePie;
break;
}

Verify that there is a close curly bracket after the last case.

7 Click OK to save the script and close the Script Editor.

8 Toggle to Run mode to test the script.
6-10 JavaScript Control Structures

The chart should work the same with the switch as with the if...else logic.
When the check box is selected, the chart is a line chart; when the check box is
cleared, the chart is a pie chart.

Example DropDown1 (under Select View) of The Plan and Actual section of
Sample2mod.bqy allows the user to change the Costs, Sold, and Revenue charts
to display results in terms of Planned vs. Actual, Planned, or Actual.

The OnClick event for DropDown1 creates a variable for the user choice. Then,
depending on the value of choice, the JavaScript goes through each chart and
removes all facts, and adds the appropriate facts. This is done with an if...else
control structure.

In Design mode, with the Console window closed, copy and paste DropDown1
and rename the new one DropDown1_switch. Change the if...else control struc-
ture to a switch. (See “Controlling Chart Facts with if...else” on page 6-12 and
“Controlling Chart Facts with switch” on page 6-13 for the finished JavaScript
scripts.)

DropDown1
selection options
About switch Statements 6-11

Controlling Chart Facts with if...else
The JavaScript script for DropDown1, Plan and Actual section of
Sample2mod.bqy is:

var choice=ActiveDocument.Sections["Plan and
Actual"].Shapes.DropDown1[DropDown1.SelectedIndex];

if (choice=='Planned vs. Actual')
{
ActiveDocument.Sections["PlanActualCostsChart"].Facts.RemoveAll();
ActiveDocument.Sections["PlanActualCostsChart"].Facts.Add('Costs Plan');
ActiveDocument.Sections["PlanActualCostsChart"].Facts.Add('Costs Actual');

ActiveDocument.Sections["PlanActualSoldChart"].Facts.RemoveAll();
ActiveDocument.Sections["PlanActualSoldChart"].Facts.Add('Units Sold Plan');
ActiveDocument.Sections["PlanActualSoldChart"].Facts.Add('Units Sold Actual');

ActiveDocument.Sections["PlanActualRevenueChart"].Facts.RemoveAll();
ActiveDocument.Sections["PlanActualRevenueChart"].Facts.Add('Revenue Plan');
ActiveDocument.Sections["PlanActualRevenueChart"].Facts.Add('Revenue Actual');
}
else
if (choice=='Planned')
{
ActiveDocument.Sections["PlanActualCostsChart"].Facts.RemoveAll();
ActiveDocument.Sections["PlanActualCostsChart"].Facts.Add('Costs Plan');
ActiveDocument.Sections["PlanActualSoldChart"].Facts.RemoveAll();
ActiveDocument.Sections["PlanActualSoldChart"].Facts.Add('Units Sold Plan');
ActiveDocument.Sections["PlanActualRevenueChart"].Facts.RemoveAll();
ActiveDocument.Sections["PlanActualRevenueChart"].Facts.Add('Revenue Plan');
}
else
if (choice=='Actual')
{
ActiveDocument.Sections["PlanActualCostsChart"].Facts.RemoveAll();
ActiveDocument.Sections["PlanActualCostsChart"].Facts.Add('Costs Actual');
ActiveDocument.Sections["PlanActualSoldChart"].Facts.RemoveAll();
ActiveDocument.Sections["PlanActualSoldChart"].Facts.Add('Units Sold Actual');
ActiveDocument.Sections["PlanActualRevenueChart"].Facts.RemoveAll();
ActiveDocument.Sections["PlanActualRevenueChart"].Facts.Add('Revenue Actual');
}

6-12 JavaScript Control Structures

Controlling Chart Facts with switch
The JavaScript for DropDown1_switch, Plan and Actual section of
Sample2mod.bqy is:

var choice=ActiveDocument.Sections["Plan and
Actual"].Shapes.DropDown1_switch[DropDown1_switch.SelectedIndex];

switch (choice)
{

case 'Planned vs. Actual':
ActiveDocument.Sections["PlanActualCostsChart"].Facts.RemoveAll();
ActiveDocument.Sections["PlanActualCostsChart"].Facts.Add('Costs Plan');
ActiveDocument.Sections["PlanActualCostsChart"].Facts.Add('Costs Actual');

ActiveDocument.Sections["PlanActualSoldChart"].Facts.RemoveAll();
ActiveDocument.Sections["PlanActualSoldChart"].Facts.Add('Units Sold Plan');
ActiveDocument.Sections["PlanActualSoldChart"].Facts.Add('Units Sold Actual');

ActiveDocument.Sections["PlanActualRevenueChart"].Facts.RemoveAll();
ActiveDocument.Sections["PlanActualRevenueChart"].Facts.Add('Revenue Plan');
ActiveDocument.Sections["PlanActualRevenueChart"].Facts.Add('Revenue Actual');

break;

case 'Planned':
ActiveDocument.Sections["PlanActualCostsChart"].Facts.RemoveAll();
ActiveDocument.Sections["PlanActualCostsChart"].Facts.Add('Costs Plan');
ActiveDocument.Sections["PlanActualSoldChart"].Facts.RemoveAll();
ActiveDocument.Sections["PlanActualSoldChart"].Facts.Add('Units Sold Plan');
ActiveDocument.Sections["PlanActualRevenueChart"].Facts.RemoveAll();
ActiveDocument.Sections["PlanActualRevenueChart"].Facts.Add('Revenue Plan');

break;

case 'Actual' :
ActiveDocument.Sections["PlanActualCostsChart"].Facts.RemoveAll();
ActiveDocument.Sections["PlanActualCostsChart"].Facts.Add('Costs Actual');
ActiveDocument.Sections["PlanActualSoldChart"].Facts.RemoveAll();
ActiveDocument.Sections["PlanActualSoldChart"].Facts.Add('Units Sold Actual');
ActiveDocument.Sections["PlanActualRevenueChart"].Facts.RemoveAll();
ActiveDocument.Sections["PlanActualRevenueChart"].Facts.Add('Revenue Actual');

break;
}
Controlling Chart Facts with switch 6-13

Summary
When writing scripts for multiple possible object states or user selections, remember
these points:

■ Use if...else or switch logic to control which statements execute.

■ Add JavaScript to the EIS section to initialize EIS control objects and their
properties.
6-14 JavaScript Control Structures

7 Drop-Down and List Boxes

This chapter introduces the JavaScript for loop to manipulate multiple objects
with minimal scripting statements. It contains:

■ Using for Loops

■ Filling Boxes with Multiple Values

■ Accessing Selected Values

■ Creating Results Limits

■ What’s Next
7-1

Using for Loops
List boxes and drop-down boxes contain multiple values. These values can be
added at design time or with a JavaScript script and the Add method. For
example, to add the number 1 to a DropDown1, the JavaScript statement is:

DropDown1.Add(1);

To add the numbers 1 through 4 to DropDown1, the script might be:

DropDown1.Add(1);
DropDown1.Add(2);
DropDown1.Add(3);
DropDown1.Add(4);

This script repeats the same object model method until all the values are
added—with a different value each time. This could also be accomplished with
a for loop:

for (var i=1; i<=4; i=i+1)
{
DropDown1.Add(i);
}

The variable i holds the first value (or a pointer to the first value). It is then
tested against the total number of values. The test, is i less than or equal to the
total number of values (with a true or false result), controls whether the
statements inside the curly brackets execute. The Add method uses i as the
argument: the first time use the first value, the second time use the second
value, and so on. Once the statements in the body execute the first time, i is
then incremented by 1 with i=i+1 and retested. The Add statement executes
only while i<=4.

A JavaScript for loop (spelled with a lower-case “f”), and its three control
statements, uses this syntax:

for ([counter]; [condition-test]; [counter-increment])
{
object_model_path.method(counter);
}

■ Parentheses hold three control statements and are a required part of the
syntax. Control statements are separated with a semicolon.

■ Curly brackets delineate the control statement block (the body of the loop).

■ Each statement in the body of the for ends with a semicolon. There can be
multiple statements.
7-2 Drop-Down and List Boxes

The counter statement executes once, usually initializing a variable to point to
the first value. The condition-test executes after the counter is initialized, and
every time it is incremented. The counter-increment executes after the body
statements, incrementing the counter by 1.

Tip Typing a comma instead of a semicolon, or testing a condition that will never
be false causes an infinite loop. To stop an infinite loop, type [Alt+End]
simultaneously.

Filling Boxes with Multiple Values
The exercises in this section use the file Sample2mod.bqy and the MyEIS
section. This EIS section contains an empty list box and drop-down box, with
command buttons for the script to fill each box with multiple available values.
The values to add to the boxes are the available values from the limit line of the
PlanActualQuery section. There are two limits on the Limit line of
PlanActualQuery: Store Type and Territory.

The general steps to fill a drop-down or list box with multiple values are:

1. Get the total number of available values.

Assign the Count property of an object’s AvailableValues to a new variable.
The for loop’s control-test is i>=variablename.

2. Remove all values from the box to make room for the current values.

Use the RemoveAll method for the box.

3. Starting with the first available value, add it to the box. Repeat until all
values are added.

Control the loop with (i=1; i>=variablename; i++). The increment
statement, i++, increments the value of i by 1. It is the same as saying
i=i+1.

✰

Filling Boxes with Multiple Values 7-3

Filling a List Box with Available Values
The JavaScript script to fill the list box List_StoreType with available values
from the first limit on the Limit line of the PlanActualQuery section is:

/* Create a local variable for the count of values */
var count;
count=ActiveDocument.Sections["PlanActualQuery"].Limits[1].AvailableValues.Count;

/* Test the variable to compare with the number of values added to box */
Console.Writeln("total available values "+count);

/* Remove any existing values in the box*/
List_StoreType.RemoveAll();

/* Repeat for the total number of values*/
for (i=1; i<=count; i++)
{

/* Add available values to box */
List_StoreType.Add(ActiveDocument.Sections["PlanActualQuery"].Limits[1].
AvailableValues[i]);

}

This script uses Console.Writeln to verify the value of the variable. The list
box should be filled with the same number of values.

Writeln is pronounced Write Line and spelled with a lower-case “L”. In
previous exercises, Alert was used for testing the state of objects and variables.
Writing messages to the Console window does not require user interaction and
keeps a record of each line as it is written.

The Console window can also be used to track the execution of the script.
Adding console messages before and/or after each step can be helpful in
troubleshooting a script that is not working.

Tip There are two methods to send messages to the Console window: Write and
Writeln. Writeln ends each message with a line return. The Write method does
not end with a new line; each message starts immediately after the preceding
one.

Note The following exercise uses the MyEIS section in Sample2mod.bqy. The exercise adds a

JavaScript to the Fill List Box button to “fill” the list box List_StoreType with available values
from the first limit (Limits[1]) of the PlanActualQuery section.

✰

✏

7-4 Drop-Down and List Boxes

Caution There must be an existing limit on the Limit line for the JavaScript to execute.
If no limit exists, an “uncaught exception” error will be displayed in the
Console window and the rest of the script will not execute.

Exercise: Using a for Loop to Fill a List Box with Limit Values
To fill a list box with available limit values:

1 In Design mode, open the Script Editor on the Fill List Box command button. [F8]

2 Declare a variable count and assign the Count property of AvailableValues from the first
limit in the PlanActualQuery section.

a. Type var count to declare the variable name.

b. End the statement with a semicolon (;) and a return [Enter].

c. Type count= to assign the property in the next step.

d. Use the Object browser to navigate to Applications→ActiveDocuments→
Sections→PlanActualQuery→Limits→1→AvailableValues→Properties)
and double-click Count.

e. End the statement with a semicolon (;) and a return [Enter].

var count;
count=ActiveDocument.Sections["PlanActualQuery"].Limits[1].AvailableValues.Count;

3 Write the count of values to the Console window.

a. Navigate to Applications→Console→Methods and double-click Writeln.

b. As the method argument, type the string total available values in quotes.

c. Type +count after the string message.

This concatenates the string total available values and the value of count into
one argument for the Writeln method.

d. End the statement with a semicolon (;) and a return [Enter].

Console.Writeln("total available values "+count);

The message in the Console window displays the number of items that should
be added to the box.

4 Navigate to MyEIS Objects→List_StoreType→Methods and double-click RemoveAll.

List_StoreType.RemoveAll();

Before adding a new set of values to the list box, old values are deleted.

!

Filling Boxes with Multiple Values 7-5

5 Type a for loop with i =1, the condition test i<= count, and the increment statement i++.
Separate the control statements with a semicolon (;).

for (i=1; i<=count; i++)
{

}

The value of i is set to correspond to the first item in the AvailableValues array.
The condition test verifies that i is <= to the total number of items.

6 Click in the body of the for loop (between the curly brackets), and enter the statement to
add (to the list box) the available values from the first limit.

a. Navigate to MyEIS Objects→List_StoreType→Methods and double-click
Add.

b. As the argument for the Add method, navigate to
Applications→ActiveDocuments→Section →PlanActualQuery→Limits
→1→AvailableValues and double-click 1.

List_StoreType.Add(ActiveDocument.Sections["PlanActualQuery"].Limits[1].Available
Values[1]);

c. Change the pointer to the first AvailableValue to i.

List_StoreType.Add(ActiveDocument.Sections["PlanActualQuery"].Limits[1].Available
Values[i]);

7 Click OK to save the script and close the Script Editor.

8 Toggle to Run mode, display the Console window (View →Console Window), and then
click the Fill List Box button.

When the button is clicked, the Console window displays the message:

total available values 3

and three values are added to the list box.
7-6 Drop-Down and List Boxes

Filling a Drop-Down Box with Available Values
The exact same JavaScript logic is used to fill a drop-down box or a list box
from an existing limit on the Limit line of a Query or a Results section.

Exercise Fill the drop-down box in MyEIS section of Sample2mod.bqy with the available
values from the second existing limit (Limits[2]) of the PlanActualQuery section.

The script to fill a drop-down box is associated with the Fill Drop-Down Box
button and shown below.

/* Create a local variable for the count of values */
var count;
count=ActiveDocument.Sections["PlanActualQuery"].Limits[2].AvailableValues.Count;

/* Test the variable to compare with the number of values added to box */
Console.Writeln("total available values "+count);

/* Remove any existing values in the box*/
drp_Territory.RemoveAll();

/* Repeat for the total number of values*/
for (i=1; i<=count; i++)
{

/* Add available values to box */
drp_Territory.Add(ActiveDocument.Sections["PlanActualQuery"].
Limits[2].AvailableValues[i]);

}

Filling Boxes with Multiple Values 7-7

Accessing Selected Values
The Item method accesses the user selection(s) from a drop-down box or a list
box. Because a drop-down box allows one selection and a list box allows
multiple selections, the argument for Item is different for each object.

Drop-Down Item Argument
A drop-down box (an object) allows the user to select one item in the list. This
selection is stored in the object’s SelectedIndex property. This property is the
argument for the object’s Item method:

dropdownobject.Item(dropdownobject.SelectedIndex)

where dropdownobject is the name of the drop-down box.

“Accessing a Drop-Down Selection” on page 5-3 provides step by step
procedures for accessing a drop-down object’s selected value. The following
JavaScript script writes the selected value from drp_Territory to an alert when a
selection is made.

/* Define a local variable for the drop down selection */
var drp_selected;
drp_selected=drp_Territory.Item(drp_Territory.SelectedIndex);

/* Display a "Selection" alert with the selected value */
Application.Alert(drp_selected,"Selection")

List Box Item Argument
A list box can allow multiple user selections. Each selection is added to an array
object SelectedList. The Item method (for SelectedList), with a number 1 as the
argument, accesses the first item in the array:

listboxobject.SelectedList.Item(1)

where :

listboxobject is the name of the list box

1 is the first item in the SelectedList array.

Tip It does not matter what order the list box values are selected in, SelectedList
stores them in the same order they appear in the list box, not in selection order.

✰

7-8 Drop-Down and List Boxes

Use a JavaScript for loop to access each value in SelectedList. Initialize the
control variable to i (to match the first position in the array). Set the condition
to test if the variable is less than or equal to the count of values.

The JavaScript script to write the selected values from List_StoreType to an alert
is:

/* Define a local variable for the count of selections */
var countSelections;
countSelections=List_StoreType.SelectedList.Count;

/* Display a "Selection" alert with the selected value */
for (i=1; i<=countSelections; i++)
{

Application.Alert(List_StoreType.SelectedList.Item(i),"Selection");
}

A list box has two event handlers: OnClick and OnDoubleClick. When multiple
selections are allowed in a list box, either attach the script to the
OnDoubleClick event handler (the user double-clicks the last selection to
activate the JavaScript) or to a command button. With a command button, the
user clicks in the list box to make selections, and then clicks the button when
all selections are made.

What if there are no selections when the button is clicked?

If nothing is selected when the the JavaScript is activated, the Console window
displays the message “an uncaught exception error: Item not found”. To avoid
this error, execute the script if the Count property of SelectedList is greater than
zero. The following script writes the selected values from List_StoreType to an
alert (if a selection was made). The script is associated with the OnClick event
of the Display Selections button.

/* Define a local variable for the count of selections */
var countSelections;
countSelections=List_StoreType.SelectedList.Count;

/* If selections were made in the list box */
if (countSelections>0)
{

/* Display a "Selection" alert displaying the selected value */
for (i=1; i<=countSelections; i++)
{

Application.Alert(List_StoreType.SelectedList.Item(i),"Selection");
}

}

Accessing Selected Values 7-9

Note The following exercise assumes the list box List_StoreType (in the MyEIS section of
Sample2mod.bqy) contains three values. See “Filling a List Box with Available Values” on
page 7-4 for the JavaScript to add the values.

If you have not already done so, it is best to save the document before starting this exercise.

Exercise: Using Loops to Access List Box Selections
To access list box selections and write them to an alert:

1 In Design mode, open the Script Editor on the Display Selections button. [F8]

2 Define a local variable (countSelections) for the total count of selected items.

Use the Count property of SelectedList under List_StoreType.

var countSelections=List_StoreType.SelectedList.Count;

The value of countSelections serves as the condition test in the if and the for
statements.

Note The following step is an additional statement providing feedback on the number of selected
items—even if the Alert does not display.

3 Add a Console.Writeln statement that displays the number of selected items.

Console is in the Application collection.

Console.Writeln("number of selected items: "+countSelections);

This Console message always displays, even when no alert appears.

4 Add an if control block to execute when countSelections>0.

if (countSelections>0)
{

}

✏

✏

7-10 Drop-Down and List Boxes

5 In the body of the if, add a for loop with a control variable (i) set to 1, a condition test
i<= countSelections, and an increment for i (i++).

var countSelections=List_StoreType.SelectedList.Count;
if (countSelections>0)
{

for (i=1; i<=countSelections; i++)
{

}
}

The control variable i starts at 1 (which is less than or equal to countSelections)
and increments by 1 after each pass through the body of the loop.

6 In the body of the for loop, add an Alert statement, with each SelectedList value as the
argument.

a. Navigate to Application→Methods and double-click Alert.

Application.Alert()

b. Click in the parentheses of the Alert method, then navigate to MyEIS
Objects→List_StoreType→SelectedList→Methods and double-click Item.)

Application.Alert(List_StoreType.SelectedList.Item())

c. Type i in the Item argument parentheses.

Application.Alert(List_StoreType.SelectedList.Item(i));

7 Click OK to save the script and close the Script Editor, then toggle to Run mode.

8 Display the Console window (View →Console Window) and test the script by clicking on
the Display Selections button.

If nothing is selected in the list box when the button is clicked, the Console
window displays the message “number of selected items: 0”.

If multiple items are selected in the list box (hold [Shift] or [Ctrl] to select
multiple items), the Console window displays the number of selections and an
alert displays the first value in the SelectedList array. Click OK in the alert to
display the next item in the array, until all selections have been displayed.
Accessing Selected Values 7-11

Tip When using list boxes for user selections, offer the capability of clearing the
selections. Use one of the following scripts with the OnClick event of a new
command button or a text label (set the Font property of a text label to
Underline):

To clear selections in a list box:

var clear=List_StoreType.SelectedList.Count;
for(i=1; i<=clear; i++)
{
List_StoreType.Unselect(List_StoreType.SelectedList.
ItemIndex(1));
}

OR

List_StoreType.Enabled=false; List_StoreType.Enabled=true;

The statements above disable the list box which clears all selections, then
enable it.

Creating Results Limits
User selected values can limit results data for closer analysis. Applying the limit
to a results set, or to a table, does not require a database connection.

The steps to create a Results limit are:

1. Remove current limits from the limit line.

2. Create a limit object with the column name.

3. Add a value.

4. Assign an operator.

5. Add to the limit line.

6. Recalculate.

Refer to “Modifying Limits” on page 5-9 for a comparison of the steps.
Creating a new limit (versus changing an existing limit) requires three
additional steps:

■ Remove existing limits from the limit line (versus removing all current limit
values).

Use the RemoveAll method for the section’s Limits collection.

✰

7-12 Drop-Down and List Boxes

■ Create a new limit object, with the name of the database object (the results
or table column name).

The name must match an existing data column name. Use a variable to hold
the Name property of the column. Use another variable to hold the new
limit object with the method CreateLimit and the column name as the
method argument.

■ Add new limits to the limit line (after adding a value and an operator).

Use the Add method for the section’s Limits collection. The new limit
object is the argument.

The JavaScript script to add a new limit to the PlanActualResults section with
the selection from drp_Territory is:

/* remove limits from the limit line */
ActiveDocument.Sections["PlanActualResults"].Limits.RemoveAll()

/* create a variable to hold the column name, create a new limit with the name */
var nameLimit; var newLimit;
nameLimit=ActiveDocument.Sections["PlanActualResults"].Columns["Territory"].Name;
newLimit=ActiveDocument.Sections["PlanActualResults"].Limits.CreateLimit
(nameLimit);

/* add the selected value to the new limit */
newLimit.SelectedValues.Add(drp_Territory.Item(drp_Territory.SelectedIndex));

/* assign an operator to the new limit */
newLimit.Operator=bqLimitOperatorEqual;

/* add the limit to the limit line */
ActiveDocument.Sections["PlanActualResults"].Limits.Add(newLimit)

/* update results */
ActiveDocument.Sections["PlanActualResults"].Recalculate()

Note The following exercise uses the MyEIS section in Sample2mod.bqy to create a single limit on
the Limit line of PlanActualResults section. This exercise assumes the drop-down box
drp_Territory contains seven Territory values. See “Filling a Drop-Down Box with Available

Values” on page 7-7 for the JavaScript to add the values.

It is best to save this document before starting this exercise.

✏

Creating Results Limits 7-13

Exercise: Using JavaScript to Clear and Assign New Results
Limits in Drop-Down Boxes
To create a new Results limit with a drop-down selection:

1 In Design mode, open the Script Editor on the drp_Territory drop-down box. [F8]

2 Remove all existing limits from the Limit line of the PlanActualResults section.

a. Use the Object browser to navigate to ActiveDocument→Sections→
PlanActualResults→Limits→Methods and double-click RemoveAll.

b. Type a semicolon (;) and a return [Enter] at the end of the statement.

This statement removes all limits from the Limit line.

ActiveDocument.Sections["PlanActualResults"].Limits.RemoveAll();

3 Declare two new variables, nameLimit and newLimit, ending each declaration with a
semicolon (;).

var nameLimit; var newLimit;

Troubleshooting is easier if all variables are declared in one place. The variable
nameLimit holds the name of the results data column. The variable newLimit
holds the new limit object.

4 Using the Object browser, assign the Name property of the PlanActualResults Territory
column to nameLimit.

a. Type nameLimit= , then navigate to PlanActualResults→Columns→
Territory→Properties and double-click Name.

b. Type a semicolon (;) and a return [Enter] at the end of the statement.

nameLimit=ActiveDocument.Sections["PlanActualResults"].Columns["Territory"].Name;

5 Create a new limit object, with nameLimit as the argument.

a. Type newLimit=, then navigate to PlanActualResults→Limits→Methods
and double-click CreateLimit.

b. Type nameLimit as the argument for the CreateLimit method.

c. Type a semicolon (;) and a return [Enter] at the end of the statement.

newLimit=ActiveDocument.Sections["PlanActualResults"].Limits.CreateLimit(nameLimi
t);
7-14 Drop-Down and List Boxes

The CreateLimit method creates a new limit object with the same methods and
properties that all limit objects have.

The new limit is not visible in the Object browser (until the script executes).
Step 6 and Step 7 use the SelectedValues.Add method and Operator property
common to all limit objects.

6 Add the drp_Territory selection to newLimit as a SelectedValues.

a. Type newLimit.SelectedValues.Add() .

b. Click inside the parentheses, then use the Object browser to add the
selected value from drp_Territory to the Add method’s argument.

Use the Item method with the SelectedIndex property of drp_Territory.

newLimit.SelectedValues.Add(drp_Territory.Item(drp_Territory.SelectedIndex));

c. Type a semicolon (;) and a return [Enter] at the end of the statement.

7 Assign the bqLimitOperatorEqual Operator to newLimit.

a. Type newLimit.Operator=.

b. Double-click bqLimitOperatorEqual (from the Constants collection).

newLimit.Operator=bqLimitOperatorEqual;

c. Type a semicolon (;) and a return [Enter] at the end of the statement.

8 Add the new limit object (newLimit) to the limit line of the PlanActualResults section.

a. Navigate to ActiveDocument→Sections →PlanActualResults→Limits→
Methods and double-click Add.

ActiveDocument.Sections["PlanActualResults"].Limits.Add();

b. Type the new limit object (newLimit) as the argument to the method.

ActiveDocument.Sections["PlanActualResults"].Limits.Add(newLimit);

c. Type a semicolon (;) and a return [Enter] at the end of the statement.

The PlanActualResults section now has one limit with an operator and a user-
selected value.

9 End the script with a statement to recalculate the section PlanActualResults.

a. Navigate to ActiveDocument→Sections→PlanActualResults→Methods
and double-click Recalculate.

b. Type a semicolon (;) and a return [Enter] at the end of the statement.

ActiveDocument.Sections["PlanActualResults"].Recalculate();
Creating Results Limits 7-15

10 Click OK to save the script and close the Script Editor, then toggle to Run mode and test.

Making a selection from the drop-down box creates a new limit, and
recalculates the results. The limited results data is reflected in the chart.

Recalculating results (or tables) updates the displayed results according to the
local Limit line parameters. A local limit does not delete data from the local
data set (resulting from the original query), it just limits the display of the data.

The same basic steps are used to create a new local limit from list box
selections. Since a list box allows multiple selections, the script uses a for loop
to add all the selections to the limit.

Note The following exercise uses the MyEIS section in Sample2mod.bqy to create a single limit on
the Limit line of PlanActualResults section. This exercise assumes the list box List_StoreType,
contains three Store Type values. See “Filling a List Box with Available Values” on page 7-4 for

the JavaScript to add the values.

It is best to save this document before starting the exercise.

Exercise Add a script to the Calculate Limit button that adds the selections from the list
box, List_StoreType, to a new Store Type limit for PlanActualResults.

Consider what would happen if there are no selections in the list box when the
button is clicked. The script should execute the limit statements if the count of
selections is >0.

✏

7-16 Drop-Down and List Boxes

The script for adding multiple selections from List_StoreType is:

/* Assign the number of selections to a local variable */
var countSelections=List_StoreType.SelectedList.Count;

/* If there are selections in the list box */
if (countSelections>0)
{

/* remove limits from the limit line*/
ActiveDocument.Sections["PlanActualResults"].Limits.RemoveAll()

/* create a limit object with the column name */
var nameLimit; var newLimit;
nameLimit=ActiveDocument.Sections["PlanActualResults"].Columns["Store Type"]
.Name;
newLimit=ActiveDocument.Sections["PlanActualResults"].Limits.CreateLimit
(nameLimit);

for (i=1; i<=countSelections; i++)
{
/* add the selected values to the new limit*/
newLimit.SelectedValues.Add(drp_Territory.Item(drp_Territory.SelectedIndex));

}

/* assign an operator to the new limit*/
newLimit.Operator=bqLimitOperatorEqual;

/* add the limit to the limit line */
ActiveDocument.Sections["PlanActualResults"].Limits.Add(newLimit)

/* update results after adding limits */
ActiveDocument.Sections["PlanActualResults"].Recalculate()

}

Creating Results Limits 7-17

What’s Next
Part II of this manual provides reference information on JavaScript and the
Brio Intelligence object model, including documentation for specific
Objects,Brio Intelligence Methods, and Properties. It also introduces more
advanced JavaScript logic, offers troubleshooting tips and tricks, and
documents the statement structure and syntax covered in this tutorial.

Summary
When manipulating multiple objects, remember these points:

■ Use JavaScript for loops to execute the same statements with multiple values.

■ Use if statements to skip value manipulation statements when there are no values,
thus avoiding JavaScript errors.

■ Send messages to the Console window to pinpoint exactly what the script is doing:
and which statements are executing with what values.
7-18 Drop-Down and List Boxes

P A R T I I I

IIIBrio Scripting Reference

2

8 General Scripting Reference

This chapter provides reference information on using JavaScript with Brio
Intelligence. It contains:

■ Scripting Applications in Brio Intelligence

■ Understanding Functions

■ Using JavaScript Statements

■ Manipulating Objects with JavaScript

■ Using JavaScript to Open Web and OnDemand Server Documents

■ Microsoft Automation Interfaces and the Object Model

■ OLE Automation Controller within JavaScript

■ Exporting Scripts to Text Files

■ Troubleshooting Scripts
8-1

Scripting Applications in Brio Intelligence
When you use Brio Intelligence to create an application, the application can
comprise one or more Brio Intelligence documents and may contain one or
more of the components listed in Table 8-1.

On Windows platforms, you can launch script commands from the command
line. Script commands launched from the command line require the
-jscriptcmd flag. For example, to launch the Brio Intelligence application,
you would type:

brioqry.exe –jscriptcmd "Application.Documents.Open ("c:\\temp\\briodoc.bqy")"

Tab le 8 -1 Components of Scripted Applications

Component Description

Startup/Shutdown Scripts Scripts that run when a document is opened or closed.

To prevent a startup script from running, hold down [Ctrl] while
opening the document.

EIS Shapes and Controls User Interface components that enable users to interact with the
application.

Computed Columns Scripts that run within the context of a Results or Table section
column.

Custom Menu Items Special menu items that allow scripts to run from any section.
8-2 General Scripting Reference

Understanding Functions
Functions are one of the fundamental building blocks of JavaScript. A function
is a JavaScript procedure: a set of statements that performs a specific task. To
use a function, you must define it before your script can call it.

Defining Functions
A function definition consists of the function keyword, followed by:

■ The name of the function

■ A list of arguments to the function, enclosed in parentheses and separated
by commas

■ The JavaScript statements that define the function, enclosed in curly
braces { }

For example, to define a simple function named square, enter:

function square(number) {
return number * number;

}

The function square takes an argument called number. The function consists
of one statement that indicates to return the argument of the function
multiplied by itself. The return statement specifies the value returned by the
function, for example:

return number * number

All parameters are passed to functions by a value. The value is passed to the
function, but if the function changes the value of the parameter, the change is
not reflected globally or in the calling function. If you pass an object as a
parameter to a function and the function changes the object’s properties, that
change is visible outside the function. For example:

function myFunc(theObject) {
theObject.make="Toyota"

}
mycar = {make:"Honda", model:"Accord", year:1998}
x=mycar.make // returns Honda
myFunc (mycar) // pass object mycar to the function
y=mycar.make // returns Toyota (property was changed by the function)
Understanding Functions 8-3

Calling Functions
In a Brio Intelligence analytical application, you can call any function that is
defined in the current script context. You can also use functions that have been
defined globally or at a higher scope than the current context.

Defining a function does not execute it. Defining the function simply names
the function and specifies what to do when the function is called. Calling the
function actually performs the specified actions with the indicated parameters.
For example, you would call the function square as follows:

square(5)

The preceding statement calls the function with an argument of 5. The
function executes its statements and returns the value 25.

The arguments of a function are not limited to strings and numbers. You can
also pass whole objects to a function.

A function can be recursive, that is, it can call itself. For example, here is a
function that computes factorials:

function factorial(n) {
if ((n == 0) || (n == 1))

return 1
else {

result = (n * factorial(n-1))
return result
}

}

You could then compute the factorials of 1 through 5 as follows:

a=factorial(1) // returns 1
b=factorial(2) // returns 2
c=factorial(3) // returns 6
d=factorial(4) // returns 24
e=factorial(5) // returns 120
8-4 General Scripting Reference

Function Scope
Functions are accessible within the scope in which they are created unless they
are explicitly defined in a different scope. This means that a function which is
defined in the OnClick() event handler of a command button can only be
called by other statements in the same event handler. Example 1 shows two
command buttons in an EIS section, MyButton and YourButton.

Example 1 // MyButton
function square(value)
{
return value*value;
}
Alert (‘’The square of 3 equals ‘’+ square(3))

// YourButton
var retVal = square(3)
// generates a runtime error
Alert (‘’The square of 3 equals ‘’+ retVal)

The square function is only visible in the context of MyButton. As a result, a
call to the square function from YourButton generates a runtime error.

Defining Functions in Different Scopes
To make your functions visible to other scripts throughout the application, you
must explicitly define the scope in which your function will be visible. This can
be accomplished a number of different ways:

1. Using the with statement to set the current scope of a script.

2. Dynamically adding methods to objects.

3. Assigning a function to a global variable.

When you use the with statement to set the current scopes, functions defined
within the with statement become visible for that object. Example shows one
method for expressing the two command buttons.
Understanding Functions 8-5

// MyButton
With (YourButton)
{

function square(value)
{

return value*value;
}
Alert (“The square of 3 equals “+ square(3))

}

// YourButton
var retVal = square(3)
Alert (“The square of 3 equals “+ retVal)

By explicitly defining the square function within the context of the YourButton
object, you make the function visible to the scripts that are running behind
that button. Using this syntax is not restricted to objects within EIS. Any object
from the object model can be used in conjunction with the with statement.

Example shows another way to accomplish the same behavior as Example .

// MyButton
Function square(value)

{
return value*value;

}
Alert (“The square of 3 equals “+ square(3))YourBut-
ton.square = square;

// YourButton
var retVal = square(3)
Alert (“The square of 3 equals “+ retVal)

In Example , a new method is dynamically added to the YourButton object.
Any scripts running in the context of this object will have access to the
dynamically created square function.

Taking this one step further, you could create a global variable that is
associated with the function as shown in Example .

// MyButton
Function square(value)

{
return value*value;
8-6 General Scripting Reference

}
Alert (“The square of 3 equals “+ square(3)) MyGlobalFunc-
tion = square;

// YourButton
var retVal = MyGlobalFunction(3)
Alert (“The square of 3 equals “+ retVal)

In Example , creating a variable named MyGlobalFunction without using the
var statement places that variable in the topmost scope. This makes it global.

Note Use caution when working with global variables. These are visible throughout Brio Intelligence,

including to computed column calculations and Report section expressions.

Using JavaScript Statements
This section explains how JavaScript uses conditional and loop statements to
allow the execution order of a script to change based on the state of objects or
the user selection. It also discusses how to use break statements to alter the
execution of these control structures.

Conditional Statements
A conditional statement is a set of commands that executes if a specified
condition is true. The conditional statements supported by JavaScript are:

■ if...else Statements

■ Inline if Statements

■ switch Statements

✏

Using JavaScript Statements 8-7

if...else Statements
If a logical condition is true, use the if statement to perform certain actions. If
a logical condition is false, use the optional else clause to perform other
action. Example shows a typical if statement.

if (condition) {
statements1

}
else {

statements2
}

The condition can be any JavaScript expression that evaluates to true or false.
The statements to be executed can be any JavaScript statements, including
deeper nested if statements. If you want to use more than one statement after
an if or else statement, you must enclose the statements in curly braces {}.

Do not confuse the primitive Boolean true and false values with the Boolean
object true and false values. Any object whose value is not undefined or null,
including a Boolean object whose value is false, evaluates to true when passed
to a conditional statement, for example:

var b = new Boolean(false);
if (b) // this condition evaluates to true

Note The words if and else must be in lowercase. If you type an uppercase “i” or “e”, you get a

“missing syntax” error. A then statement is implied for values enclosed in the curly braces “{ }”.
If you type the word “then” in a statement, an error message is returned.

✏

8-8 General Scripting Reference

Inline if Statements
The inline if statement is an alternative to the if...else statement. It uses the
conditional operator (?) to represent the “if” portion of the statement; the (:)
implies the “else” portion. It takes these three operands:

condition ? expr1 : expr2

where:

■ condition – An expression that evaluates to true or false

■ expr1, expr2d – Expressions with values of any type.

If condition is true, the operator returns the value of expr1; otherwise, it
returns the value of expr2.

You should place the condition in parentheses, with each expression in single
or double quotes:

((condition == value)?'expr1':'expr2')

Note You can eliminate the condition parentheses as shown below, but omitting the quotes for

strings may lead to problems:

(condition?'expr1':'expr2')

It is not necessary to place quotes around numbers.

(condition?2:10)

For example, to display a different message based on the true or false value of
the isMember variable, you could use this statement:

(isMember ? 'Member' : 'Not a member')

In this case, if the isMember variable evaluates to true, then the operator
returns the string Member. If isMember does not evaluate to true, then the
operator returns the string Not a Member.

You can also use the comparison operator:

((isMember == 'Yes') ? 'Member' : 'Not a member')

✏

Using JavaScript Statements 8-9

In this case, if the value of the variable isMember evaluates as equal to the string
Yes, then the operator returns the string Member. If isMember does not
evaluate as equal to the string Yes, then the operator returns the string Not a
Member.

If you want to nest inline if statements, (that is, use an inline if statement as an
expression for another inline if statement), enclose the nested inline if
statements in parentheses:

(1 != 1 ? 'Not Equal' : (1 < 1 ? 'Less Than': 'Equal'))

In this case, if 1 evaluates as not equal to 1, the second inline if statement is
evaluated as part of the first inline if statement’s else clause. If 1 evaluates as less
than 1, the operator returns the string Less Than. Since 1 is equal to 1, the
operator returns the string Equal from the else clause of the second inline if
statement.

Note When you open a version 5.5 document in the 6.2 version of Brio Intelligence and the
document contains computed columns with nested if...else statements, the Brio JavaScript
engine will convert the if...else syntax to the inline if statement syntax. The conversion process

will not alter the meaning or value of the original if...else statement.

switch Statements
A switch statement allows a program to evaluate an expression and attempts to
match the expression’s value to a case label. If a match is found, the program
executes the associated statement. Example shows an example of a switch
statement.

switch (expression){
case label :

statement;
break;

case label :
statement;
break;

...
default : statement;

}

✏

8-10 General Scripting Reference

The program first looks for a label matching the value of the expression and
then executes the associated statement. If no matching label is found, the
program looks for the optional default statement. If a matching label is found,
the program executes the associated statement. If no default statement is
found, the program continues execution at the statement following the end of
switch.

The optional break statement associated with each case label ensures that the
program breaks out of switch once the matched statement executes and
continues execution at the statement following switch. If break is omitted,
the program continues execution at the next statement in the switch statement.

In Example , if expr evaluates to “Bananas,” the program matches the value
with case Bananas and executes the associated statement. When break is
encountered, the program terminates switch and executes the statement
following switch. If break were omitted, the statement for case
Cherries would also be executed.

switch (expr) {
case "Oranges" :

Console.Writeln("Oranges are $0.59 a pound.");
break;

case "Apples" :
Console.Writeln("Apples are $0.32 a pound.");
break;

case "Bananas" :
Console.Writeln("Bananas are $0.48 a pound.");
break;

case "Cherries" :
Console.Writeln("Cherries are $3.00 a pound.");
break;

default :
Console.Writeln("Sorry, we are out of " + i + ".");

}
Console.Writeln("Is there anything else you'd like?");
Using JavaScript Statements 8-11

Loop Statements
A loop is a set of commands that repeatedly executes until a specified
condition is met. JavaScript supports the following Loop statements:

■ for Statements

■ do...while Statements

■ while Statements

■ label Statements

■ continue Statements

Note label is not itself a looping statement, but is frequently used with these statements. In
addition, you can use the break and continue statements within loop statements.

The for...in statement executes statements repeatedly but is used for object manipulation. For

more information, see “Manipulating Objects with JavaScript” on page 8-17.

for Statements
The for loop repeats until a specified condition evaluates to false. The
JavaScript for loop is similar to the Java and C for loop.

for ([initialExpression]; [condition];
[incrementExpression]) {
 statements
}

When a for loop executes, the following occurs:

1. The initializing expression initialExpression, if any, is executed. This
expression usually initializes one or more loop counters, but the syntax
allows an expression of any degree of complexity.

2. The condition expression is evaluated. If the value of condition is true, the
loop statements execute. If the value of condition is false, the for loop
terminates.

3. The statements execute.

4. The update expression incrementExpression executes and control
returns to Step 2.

✏

8-12 General Scripting Reference

do...while Statements
The do...while statement repeats until a specified condition evaluates to
false. A do...while statement looks as follows:

do {
statement

} while (condition)

The statement executes once before the condition is checked. If the condition
returns true, the statement executes again. At the end of every execution, the
condition is checked. When the condition returns false, execution stops and
control passes to the statement following do...while.

In the following example, the do...while loop iterates at least once and
reiterates until it is no longer less than five.

do {
i+=1;
Console.Writeln(i);

} while (i<5);

while Statements
A while statement executes as long as a specified condition evaluates to true,
for example:

while (condition) {
statements

}

If the condition becomes false, the statements within the loop stop executing
and control passes to the statement following the loop.

The condition test occurs before the statements in the loop are executed. If the
condition returns true, the statements are executed and the condition is tested
again. If the condition returns false, execution stops and control is passed to
the statement following while.

In Example , the while loop repeats as long as n < 3:

n = 0
x = 0
while(n < 3) {

n ++
x += n

}

Using JavaScript Statements 8-13

With each iteration, the loop increments n and adds that value to x. Therefore,
x and n take on the following values:

■ After the first pass: n = 1 and x = 1

■ After the second pass: n = 2 and x = 3

■ After the third pass: n = 3 and x = 6

After completing the third pass, the condition n < 3 is no longer true, so the
loop terminates.

In Example , the while loop is an infinite loop that never terminates; that is, it
executes forever because the condition never becomes false.

while (true) {
Alert("Hello, world") }

label Statements
A label provides a statement with an identifier that lets you refer to it elsewhere
in your program. For example, you can use a label to identify a loop, and then
use the break or continue statements to indicate whether a program should
interrupt the loop or continue its execution.

The syntax of the label statement looks like this:

label :
statement

The value of label may be any JavaScript identifier that is not a reserved word.
The statement that you identify with a label may be any type.

In Example , the label markLoop identifies a while loop.

markLoop:
while (theMark == true)

doSomething();
}

8-14 General Scripting Reference

continue Statements
The continue statement can be used to restart a while, do...while, for, or label
statement.

In a while or for statement, continue terminates the current loop and continues
execution of the loop with the next iteration. In contrast to the break
statement, continue does not entirely terminate the execution of the loop. In a
while loop, it jumps back to the condition. In a for loop, it jumps to the
increment expression.

In a label statement, continue is followed by a label that identifies a label
statement. This type of continue restarts a label statement or continues
execution of a labeled loop with the next iteration. The continue statement
must be in a looping statement identified by the label used by continue.

The syntax of the continue statement looks like this:

1. continue

2. continue [label]

Example shows a while loop with a continue statement that executes
when the value of I is three. Thus, n takes on the values one, three, seven, and
twelve.

i = 0
n = 0
while (i < 5) {

i++
if (i == 3)

continue
n += I

}

In Example , a statement labeled checkiandj contains a statement labeled checkj.
If continue is encountered, the program terminates the current iteration of
checkj and begins the next iteration. Whenever continue is encountered,
checkj reiterates until its condition returns false. When false is returned, the
remainder of the checkiandj statement is completed, and checkiandj reiterates
until its condition returns false. When false is returned, the program continues
at the statement following checkiandj.
Using JavaScript Statements 8-15

If continue had a label of checkiandj, the program would continue at the top
of the checkiandj statement.

checkiandj :
while (i<4) {

Console.Writeln(i + "");
i+=1;
checkj :

while (j>4) {
Console.Writeln(j + "");
j-=1;
if ((j%2)==0);

continue checkj;
Console.Writeln(j + " is odd.");

}
Console.Writeln("i = " + i + "");
Console.Writeln("j = " + j + "");

 }

break Statements
Use the break statement to terminate a loop, switch, or label statement.

When you use break with a while, do...while, for, or switch statement, break
terminates the innermost enclosing loop or switch immediately and transfers
control to the following statement.

When you use break within an enclosing label statement, it terminates the
statement and transfers control to the following statement. If you specify a
label when you issue the break, the break statement terminates the specified
statement.

The syntax of the break statement looks like this:

1. break

2. break [label]

The first form of the syntax terminates the innermost enclosing loop,
switch, or label; the second form of the syntax terminates the specified
enclosing label statement.

Example iterates through the elements in an array until it finds the index of an
element whose value is theValue.
8-16 General Scripting Reference

for (i = 0; i < a.length; i++) {
if (a[i] = theValue);

break;
}

Manipulating Objects with JavaScript
JavaScript uses for...in and with statements to manipulate objects.

for...in Statement
The for...in statement iterates a specified variable over all of the properties of an
object. For each distinct property, JavaScript executes the specified statements.
A for...in statement looks like this:

for (variable in object) {
statements }

The function in Example takes as its argument an object and the object’s
name. It then iterates over all the object’s properties and returns a string that
lists the property names and their values.

function dump_props(obj, obj_name) {
 var result = ""
 for (var i in obj) {
 result += obj_name + "." + i + " = " + obj[i] + ""
 }
 result += "<HR>"
 return result
}

For an object car with properties make and model, the result would be:

car.make = Ford
car.model = Mustang
Manipulating Objects with JavaScript 8-17

with Statement
The with statement establishes the default object for a set of statements.
JavaScript looks up any unqualified names within the set of statements to
determine if the names are properties of the default object. If an unqualified
name matches a property, then the property is used in the statement;
otherwise, a local or global variable is used.

A with statement looks like this:

with (object){
statements

}

In EXAMPLE, the with statement specifies that the Math object is the default
object. The statements following the with statement refer to the PI property
and the cos and sin methods without specifying an object. JavaScript assumes
the Math object for these references.

var a, x, y
var r=10
with (Math) {

a = PI * r * r
x = r * cos(PI)
y = r * sin(PI/2)

}

8-18 General Scripting Reference

Using JavaScript to Open Web and OnDemand Server Documents
You can use the Shell or OpenURL methods to open Web and ODS
documents since commands given through Insight to the OnDemand Server
are interpreted by the ODS administrator and are not made visible to the
object model. For example, you could create a separate command button for
each query document that you want to open. Or you could populate a
drop-down box or a list box with user-friendly document names. When a user
selects a document name from the control object, it could invoke the Shell or
OpenURL method.

In Brio Intelligence and Insight, you can download a document from a Web
site or the ODS with the Shell method. For Insight (but not for Brio
Intelligence), you can use the OpenURL method.

Shell() Method
The Shell method takes the form of Shell(App, Args) where App is the
application such as Netscape or MSIE, and Args is a document or URL for the
application. The Shell method always opens a new instance of the browser.
For example, you could open MS Internet Explorer to the Brio Web site with:

Shell("iexplore", "www.brio.com")

Note If you do not have the path fir the application specified in the Win 95/98 autoexec.bat
file, or Windows NT environment variables, then you must specify the full path to the

application, which limits the portability of the code. If the application path is specified in the
your autoexec.bat file or environment variables, you can just use the name of the
application’s executable file. It is recommended that you specify the browser executable path

in your autoexec.bat or environment variables.

✏

Using JavaScript to Open Web and OnDemand Server Documents 8-19

OpenURL() Method
To avoid specifying a browser path or to use the same browser window, you can
use the OpenURL method.

The syntax for OpenURL is OpenURL(url, type of window) where url is
your ODS document, and type of window is either the current browser window
or a new browser window.

The code in Example opens a new browser window.

Console.Writeln("Start OpenURL new script")
Application.OpenURL("http://www.brio.com", "_new")
Console.Writeln("End OpenURL new script")

The code in Example uses the browser window that is currently open.

Console.Writeln("Start OpenURL self script")
Application.OpenURL("http://www.brio.com", "_self")
Console.Writeln("Start OpenURL self script")

Note If you don’t fully qualify your URL with http://, the OpenURL method assumes you are
looking for something on your OnDemand Server and fills in
http://webservername/ods-isapi/ (or ods-nsapi or ods-cgi depending on how

your ODS is set up).

Normally, when the OnDemand Server returns the document list, the
Docname= parameter is a long string of what appears to be arbitrary
characters. This string is an encoded representation of the document name on
the server. The encoding is performed to support double-byte document
names for Asian languages. The OnDemand Server also supports an English
readable format in which to specify the document to load. The generic format
is:

http://webserverusername/ods-isapi/ods.ods?Method=getDocument&Docname=My+document
.bqyMy+document+display+name&JScript=enable

✏

8-20 General Scripting Reference

The format consists of the physical name of the document as stored in the
OnDemand Server documents directory, followed immediately by the display
name the document uses (with no space between these two names). Any spaces
in either name are replaced with plus (+) signs. In the example above, the
physical document name is My document.bqy and the name displayed in the
document list is My document display name. The names are case sensitive
and must exactly match exactly the name the OnDemand Server uses for the
documents to load. These names correspond to the File Name and Unique
Name fields given when registering the document for OnDemand Server
access.

To get the encoded document name, simply go into the ODS document list,
right-click a document, and select Copy Link Location. When you paste the
link, you see the actual name on the server. You can paste this name into the
Docname= part of your URL.

If you use the Shell method to move up an ODS document in the client
version of Brio Intelligence, Insight opens unless you have Quickview specified
in the plugins directory.

Bypassing the Userid and Password
You can bypass the user ID and password login by passing them in the URL as
follows:

http://webservername/ods-isapi/ods.ods?
Method=login&Username=username&Password=password&
Docname=document.bqydocumentdisplayname&JScript=enable
Using JavaScript to Open Web and OnDemand Server Documents 8-21

Including Limit Values in the URL Submitted to the ODS
The basic procedure for including limit values in the URL submitted to the
ODS is:

1. Include the column name in which the limit value will be applied in the
startup script. In this case, the column is “Store_ID.”

with (Application){passedStore_Id=Session.URL["Store_Id"]};

2. Make sure the URL incudes:

http://webservername/ods-isapi/ods.ods?
Method=getDocument&Docname=documentname.bqydocdisplayname&Store_Id=2&
JScript=enable

3. Make sure the EIS control button includes:

ActiveDocument.Sections["Query"].Limits[1].CustomValues.RemoveAll()
ActiveDocument.Sections["Query"].Limits[1].CustomValues.Add(passedStore_Id)
ActiveDocument.Sections["Query"].Limits[1].SelectedValues.Add(passedStore_Id)

4. The URL which sets multiple limits should include:

Ahttp://webservername/ods-isapi/ods.ods?
Method=getDocument&Docname=Odsarray.bqyODSArray&limit1=MN-NY-IA&
limit2=4/10/95-7/10/97&limit3=5-10-15&JScript=enable

Passing Parameters to OnDemand Server Documents Using
Browser Cookies or URL Parameters
OnDemand Server documents have powerful mechanisms in which to pass
values between the browser and the OnDemand Server. These mechanisms
include browser cookie values and URL parameters and may be accessed via
JavaScript inside a Brio document that has been served up from the
OnDemand Server. This capability allows expanded flexibility in designing
custom solutions that include the OnDemand Server.

The techniques described here are implemented in both HTML and in Brio
JavaScript inside a document registered to the OnDemand Server. The sample
documents used include a simple query, with a query limit on a column named
“Region.” This limit accepts the values “Americas,” “Asia Pacific,” or “Europe.”
One of these sample documents has been registered to the OnDemand Server
with a startup script that collects a value from a browser cookie, sets the value
of the “Region” limit to the value of that cookie, and then processes the query.
The second sample document was registered to the OnDemand Server with a
8-22 General Scripting Reference

document startup script that accesses a parameter passed on the URL string,
sets the value of the limit to the value of this parameter, and finally processes
the query.

Accessing Cookies
Cookies are a common way to store bits of information to be used across
browser sessions and across different browser pages. A cookie is set by defining
a name and value for that cookie. (For a complete discussion of cookies, and
how to set them, refer to the Netscape Web site or any of the numerous general
JavaScript books available at most bookstores.) The following sample HTML
code displays a text entry box on an HTML page, and when pressing the link it
sets a cookie named ‘Region’ to hold the value entered into the text box. The
href in the link sends a message to the OnDemand Server to load the named
Brio document.

<html>
<script>
function setCookie(cookieName, cookieValue) {
document.cookie = cookieName + "=" + cookieValue + "; path=/"
}
</script>
<body>
<form name=cookieForm>
Region = <input name=Region> (clicking the link will set the cookie to whatever
you type in)

<A href='http://djewett/ods-
isapi/ods.ods?Method=getDocument&Docname=Cookie+passing+sample.bqyCookie+passing+
sample&JScript=enable'
onClick="setCookie('Region', document.cookieForm.Region.value)">click here to
load the document
</form>
</body>
</html>

The Brio document loaded from the server has a document startup script that
reads the value from the cookie, sets the limit on the Region column to that
value, and processes the query.

with (ActiveDocument.Sections["Query"].Limits[1].SelectedValues) {
RemoveAll()
Add(Session.Cookies["Region"])
}
ActiveDocument.Sections["Query"].Process()
ActiveDocument.Sections["Results"].Activate()
Using JavaScript to Open Web and OnDemand Server Documents 8-23

Accessing URL Parameters
A URL may include optional parameters passed to the Web server for
processing. These parameters are passed as name=value pairs at the end of the
URL, and are convenient ways to pass values into OnDemand Server
documents. These values may be collected on HTML forms, built dynamically
using Active Server Pages, or as shown in this sample, simply hard-coded into
HTML links. The following sample HTML code displays a page with three
links, each of which directs a request to the OnDemand Server to retrieve the
same document but with a different parameter string to indicate the value of
the Region limit.

<html>
<body>
<A href='/ods-
isapi/ods.ods?Method=getDocument&Docname=Url+passing+sample.bqyurl+passing+sample
&JScript=enable&Region=Americas'>Get Americas Data

<A href='/ods-
isapi/ods.ods?Method=getDocument&Docname=Url+passing+sample.bqyurl+passing+sample
&JScript=enable&Region=Asia+Pacific'>Get Asia Pacific Data

<A href='/ods-
isapi/ods.ods?Method=getDocument&Docname=Url+passing+sample.bqyurl+passing+sample
&JScript=enable&Region=Europe'>Get Europe Data

</body>
</html>

The Brio document loaded from the server has a Document Startup Script that
reads the value from the URL parameter, sets the limit on the Region column
to that value, and processes the query.

with (ActiveDocument.Sections["Query"].Limits[1].SelectedValues) {
RemoveAll()
Add(Session.URL["Region"])
}
ActiveDocument.Sections["Query"].Process()
ActiveDocument.Sections["Results"].Activate()
8-24 General Scripting Reference

Microsoft Automation Interfaces and the Object Model
The object model is typically manipulated by the JavaScript language from
inside an EIS section to build self-contained analytical applications.

Because Brio Intelligence is an OLE Automation server, on Microsoft Windows
systems, the object model can be addressed by Microsoft Automation
Interfaces.

You can use Microsoft Automation Interfaces to control Brio Intelligence in
external applications such as Excel, Visual Basic, C++, or any application that
can make OLE Automation calls. The object model is exposed through the
BrioQuery.tbl file located in the system32 directory.
Microsoft Automation Interfaces and the Object Model 8-25

PRODUCTION NOTE: Text and art below commented out because need new graphic. See following production note.

An example of the Microsoft Automation Interface using the BrioQuery object
model from the Visual Basics for Applications editor within Excel 97 is shown
on the next page.

PRODUCTION NOTE: Above graphic needs replacing: VBdatamodel.tif (original) Current file created from original PDF
file - save as eps, scaled 72%. Scroll bars print badly in PDF and this eps art is CMYK. Can be
used as documentation of what art should contain....

OLE Automation Controller within JavaScript
Brio Intelligence is an OLE Automation controller. On Windows systems, Brio
Intelligence can control external applications that are OLE Automation servers.
By making OLE Automation calls, Brio Intelligence can access functionality
exposed by other OLE Automation Servers. Examples of OLE Automation
Servers include MS Excel and MS Visual Basic.

Tip You cannot embed OLE objects inside a Brio Intelligence document. Likewise,
Brio Intelligence is not an OLE Server that produces OLE objects you can
embed in OLE Containers.

Example shows you how to invoke a new Excel Worksheet from a command
button created in an EIS section and write “Hello World” to rows 2 and 3 in
column B.

oExcel = new JOOLEObject("Excel.Application");
oExcel.Visible = true;
oExcel.Workbooks.Add;
oExcel.Sheets.Item(1).Cells.Item(2).Item(2).Value = "Hello";
oExcel.Sheets.Item(1).Cells.Item(2).Item(3).Value = "World";
Print(oExcel.Sheets.Item(1).Cells.Item(2).Item(2).Value);

F igu re 8 -1 Using the BrioQuery object model from the Visual Basics for Applications editor within
Excel 97

✰

8-26 General Scripting Reference

Exporting Scripts to Text Files
Use the Export Scripts To Text File feature to export JavaScript code and
associated events contained in a BQY file into a text file (.txt). Brio
Intelligence categorizes the text file by object name and events, and includes
document and custom menu item scripts.

To export a script to a text file:

1 Choose File→Export→Scripts To Text File.

The Export Script dialog box appears.

2 Specify the file name and location, and then click Save.
Exporting Scripts to Text Files 8-27

Troubleshooting Scripts
When a script fails to execute due to a syntax or runtime error, you need to
debug the code. Finding errors may take time depending on the length and
complexity of the code. One way to prevent errors is by observing the protocols
that JavaScript requires. This section explains what you need to know to help
prevent and locate errors in your scripts.

Space-Saving Variables
One exception to the Code Entry rule is: If you plan to repeatedly use an object
model path, define it as a variable to save space and keep your script compact.

For example, instead of typing:

ActiveDocument.Sections["Query"].DataModel.Connection.Username = "brio"
ActiveDocument.Sections["Query"].DataModel.Connection.SetPassword("brio")ActiveDo
cument.Sections["Query"].DataModel.Connection.Connect

try this:

DMPath = ActiveDocument.Sections["Query"].DataModel.Connection
DMPath.Username = "brio"
DMPath.SetPassword("brio")
DMPath.Connect

You must remember to treat space-saving variables like the actual object model
paths. That is, insert periods between object model segments and do not add
unnecessary spaces.

Also, it is generally a good idea to only include objects as part of the path. That
is, make sure that your variable does not have any methods or properties
segments for the object with which you want to work. For example:

LPath = ActiveDocument.Sections["Query"].Limits
LPath.Activate()

is incorrect because ActiveDocument.Sections["Query"].Limits
does not have an Activate() method.

However, this script is correct:

LPath = ActiveDocument.Sections["Query"]
LPath.Activate()
8-28 General Scripting Reference

Case-Sensitive Code
JavaScript is case sensitive and distinguishes between uppercase (capital) and
lowercase (small) letters. Rules to remember include:

■ All JavaScript statements (for example, var, if…else, while, switch,
and so on) start with a lowercase letter. This script will fail because var is
capitalized:

Var StringName = "John Smith"

■ All JavaScript core operators start with an uppercase letter, for example
new Date(). This script fails because Date is in lowercase.

new date()

■ All object model Path segments start with a capital letter, for example
ActiveDocument.Sections["EIS"].Activate().

Both of these commands will cause the script to fail because the
ActiveDocument segment is not properly capitalized.

activeDocument.Sections["EIS"].Activate()

Activedocument.Sections["EIS"].Activate()

■ You must refer to variables exactly as you define them. If you define a
variable as:

var StringName

then you must always refer to it as StringName, not Stringname or
stringName or stringname.
Troubleshooting Scripts 8-29

Assignment Operators Versus Comparison Operators
JavaScript makes a distinction between Assignment and Comparison
Operators.

This is an assignment operator:

myvar = 5

This is a comparison operator:

if (myvar == 5)

A common error is to switch the two. Keep them separate. Be particularly
careful when you are assigning argument values to methods.

DMPath = ActiveDocument.Sections[”Query”].DataModel.Connection
//This works…
DMPath.SetPassword(“brio”)

//This does not!!!!
DMPath.SetPassword = "brio"

The last line of script assigns the value “brio” to DMPath.SetPassword,
which is probably not what you want to do.

Conditional Tests
When using if statements, avoid impossible conditional tests. For example, the
following script will always return “myvar is not 5!” even though myvar is 5.
This is because the condition will always evaluate to false. In this case, 5 is not
the same as “five.”

var myvar = 5
if (myvar == "five")

{
Alert("myvar = 5!")
}

else
{
Alert("myvar is not 5!")
}

It is especially important to know exactly how a variable reports in your
condition. The Console.Writeln() and Alert() methods are especially
useful in diagnosing problems like this. Note that the JavaScript core operator
String is used only to format myvar for the Console window:

var myvar = 5
Console.Writeln(String(myvar))
8-30 General Scripting Reference

if (myvar == "five")
{
Alert("myvar = 5!")
}

else
{
Alert("myvar is not 5!")
}

If you are comparing the value you selected in a list box or a drop-down box to
another value, make sure you know what value you are getting back before you
compare it to something else. You especially want to avoid mixing up the
placement of the item you selected in the control with the item’s actual value.

Sometimes it is a bit tricky to get the value you want back from one of these
control boxes. Remember that list boxes have selected lists that may contain
multiple values, while drop-down boxes have a selected that can contain only
one value.

For example, if you have values of 4, 9, 15, 25, and 36 in your drop-down box,
and you select 36, the script below returns myvar is 5!, which seems wrong.

This happens because the DropDown1.SelectedIndex returns the placement in
the drop-down box of the item you selected. Your choice of 36 is the fifth item
in the drop-down box. Note that the console window reports “5”.

var myvar = DropDown1.SelectedIndex
Console.Writeln(String(myvar))
if (myvar == 5)

{
Alert("myvar = 5!")
}

else
{
Alert("myvar is not 5!")
}

Now let’s say you have a drop-down box that contains the values of “one,”
“two,” “three,” “four” and “five.” The script below returns myvar = five!
when you select “five.” However this is only because your choice “five” is the
fifth choice in the drop-down box. However, the fifth choice is not necessarily
equal to five. You can end up comparing the wrong things.

DropDown1 = ActiveDocument.Sections["EIS"].Shapes.DropDown1
var myvar = DropDown1.SelectedIndex
Console.Writeln(String(myvar))
if (myvar == 5)

{
Alert("myvar = five!")
}

Troubleshooting Scripts 8-31

else
{
Alert("myvar is not five!")
}

The script below returns the actual value you see in the drop-down box. Let’s
assume again that you have a drop-down box that contains the values of “one,”
“two,” “three,” “four” and “five:”

DropDown1 = ActiveDocument.Sections["EIS"].Shapes.DropDown1
var myvar = DropDown1[DropDown1.SelectedIndex]
Console.Writeln(String(myvar))
if (myvar == "five")

{
Alert("myvar = 5!")
}

else
{
Alert("myvar is not 5!")
}

Syntax Reference
On the bottom left of the Script Editor, directly above the Help button, is the
Description pane. The Description pane shows you the necessary syntax for
any item you select in the Object browser.

For example, in the Object browser, navigate to
Application→ActiveDocument→Sections→Query→Methods, then select the
Activate(). The Description pane reads:

void Activate()

This indicates that the Activate() method does not take any arguments.

Now click on the Export() method. The Description pane reads:

void Export(String Filename, BqExportFileFormat FileFormat, [optional] Boolean
IncludeHeaders)

This indicates that the Export() takes three arguments, two required
arguments and an one optional.

For more detailed information, click Help to open the online help for the
Export() Method topic.
8-32 General Scripting Reference

Recalculating Results
A script that includes limits may execute slowly because it has to recalculate a
complete data set each time there is a modification. You can use the
SuspendRecalculate property to prevent a Results limit from recalculating
after each modification.

In the following example, limit values are dynamically selected at a list box, but
the recalculation occurs only after the last value is selected.

Sections[sect_name].Limits[limit_col].SuspendRecalculation = true;
Sections[sect_name].Limits[limit_col].SelectedValues.RemoveAll();
for(I = 1; I <= ListBox2.SelectedList.Count;I++)
{

NewLimitValue = ListBox2.SelectedList[I];
newname += ListBox2.SelectedList[I]
Sections[sect_name].Limits[limit_col].SelectedValues.Add(NewLimitValue);

}
Sections["Results"].Limits["1"].SuspendRecalculation = false;
Sections[sect_name].Limits[limit_col].Ignore=false; // Trigger recalculation now

Designing Your Script
JavaScript is an interpreted, not a compiled, language and it evaluates and runs
each line of code in sequence. If JavaScript finds a problem with a line of code
as it attempts to run it, it simply stops. Although the Brio Intelligence Script
Editor syntax checker catches some obvious syntax errors, many errors may go
unnoticed until run time.

You should identify whether each line of code will execute or fail. While it may
seem like a lot of work to identify each line of code in this fashion, it pays off in
time saved developing your scripts. It is also an essential technique for
identifying problems in your scripts. You can check the legitimacy of your
scripts using the Console window.

The Console window is used to display error messages and alert values
generated by the JavaScript interpreter. During a script debugging cycle, you
can write messages to the Console window to track the state of variables and
the progress of the script. If a syntax error is detected (and not a runtime
error), the error and the line number in which it has occurred appear in the
console window. Use the line number to move directly to the line where the
error has occurred in the Script Editor.

You can access the Console window from any section within the document; it
it remains open until you close it.
Troubleshooting Scripts 8-33

The Console window also displays the buffer of all error messages that occur
from when Brio Intelligence is started. Thus, the Console window may display
information that is no longer of value to you. You can choose Edit→Clear to
clear the buffer contents. When the Console window is closed, the buffer size is
1,000 bytes. When the Console window is open, the buffer size is 641 bytes.

There are two major techniques to write to the Console window: the
Console.Write()/ Console.Writeln() methods, and the Alert()
method.

The Console.Write() and Console.Writeln() methods are essentially
identical. Both write to the Console window, which you can open by choosing
View→Console Window. Console.Write() does not add a carriage return
at the end of a line, while Console.Writeln() does add a carriage return.

Note Console.Writeln() is spelled with a lowercase L and N, which is an abbreviation for Write Line.

Console.Writeln() is the preferred technique for most users. It allows the
script to run without user interaction, and the Console windows keeps a record
of each line as it is written to the Console.

In some cases, the Console.Writeln() method is less desirable. Quickview,
for example, does not have a Console window. Additionally, Insight’s Console
window must be closed when a script runs.

If you wish to step through a tricky section of code in your script, you should
use the Alert() method.

Whichever method you use, you need to identify the beginning and end of
each script as well as each line of code before it executes. In the following
example, the script moves to the Query section and removes any limits.

Console.Writeln("Start Query Script")
Console.Writeln("Step1")
ActiveDocument.Sections["Query"].Activate()
Console.Writeln("Step2")
ActiveDocument.Sections["Query"].Limits.RemoveAll()
Console.Writeln("Step3")
Console.Writeln("End Query Script")

Based on the above script, the Console window displays:

Start Query Script
Step1

✏

8-34 General Scripting Reference

Step2
Step3
End Query Script

Code Entry
Whenever possible, use the Object browser click to add code to the Script
Editor, rather than manually typing in the JavaScript. Sometimes errors occur
because you have typed an extra space or a period instead of a comma.

You can also use cut-and-paste to enter code. For example, if you define a
variable as EISName, and then later retype it as Eisname (see “Case-Sensitive
Code” on page 8-29 for more information), the difference in case will cause a
failure. Avoid such problems by carefully cutting and pasting whenever
possible.

Bypass Errors
The try-catch block is borrowed from Java and is used to bypass errors. general
syntax for a try-catch block is:

try
{do something}
catch(errorname)
{do something with the error}
finally
{do something else}

For example:

QPath = ActiveDocument.Sections["Query"].Limits
try
{QPath.Activate()}
catch(e)
{Alert(e.toString())}
finally
{Alert("We're Done!")}

The try-catch block generally does not catch definition errors, but shows an
error in the Console window at the lowercase “d” in “date()”:

try
{Alert(new date())}
catch(e)
{Alert(e.toString())}
finally
{Alert("We're Done!")}
Troubleshooting Scripts 8-35

Getting Help with a Problem Script
If you have followed all the practices described in this section and you are still
not able to get your script to do what you want it to do, consider opening a call
with Brio Customer Support at 1-800-TRY-BRIO or email support@brio.com.

Brio Technical Support engineers will need to see your actual BQY document
that contains the script at issue. This is necessary due to the possibility of
typos, and because of the relationship between a script and an individual BQY
document.

If your data is confidential, consider duplicating your BQY file using the
sample Brio script that ships with Brio Intelligence. Alternatively, you might
consider saving the file without results, or if results are necessary to the
function of the script, you may consider limiting your results sets to only a few
rows. To set this option, choose Query→Query Options.

The sooner you can locate the problem and the exact point of failure in your
script, the sooner Brio Technical Support can analyze the issue and suggest
solutions.

Be sure to specify in which section of the BQY document the problem script
resides, and within which control it can be found.

Remember that a problem in one script may be as a result of something
defined in a different script.

Brio Customer Support may need to evaluate your document start up scripts
and your EIS section scripts, as well as the script in the particular control that
is causing the problem. For this reason, we strongly recommend you use the
Console.Writeln() method to identify each of your lines of code in each of your
scripts to the Console window. This may make the problem self-evident.
8-36 General Scripting Reference

9 Objects

All elements in Brio Intelligence documents are seen as objects, each of which
can have certain properties and methods. Objects also can be organized into
collections.This chapter provides an alphabetical reference to the objects and
collections available in Brio Intelligence documents.
9-1

AggregateLimits (Collection)

Member of: QuerySection Object, DataModel Object, TableSection Object

Description: The AggregateLimits collection represents those items that allow you to set a
limit on a Request item that was computed using a data function in the Query
section. The AggregateLimits collection is identical to the Limits collection
except it is used only for aggregate limits and the AvailableValues Collection is
not available for use. For more information on regular limits and computed
item limits, see the Limits Collection.

Tip All collections have a method named “Item(NameOrIndex).” This is the
default method for all collections and returns an item in the collection at a
particular index or with a specific name. For simplicity, the “[]” can be used in
place of the call to the “Item()” method. For example, the following statements
are identical in behavior:

myItem = Documents[1]
myItem = Documents.Item(1)
myItem = Documents["StartUp.bqy"]
myItem = Documents.Item("StartUp.bqy")

Example: The following example shows you how to create a query aggregate item limit,
add values to the aggregate limit through custom values and selected values,
and then add the limit to the limit line.

//Note that the string argument for the CreateLimit method is a reference to the
//item’s DisplayName on the request line in the form of Request.DisplayName
myLimit=ActiveDocument.Sections["SalesQuery"].AggregateLimits.CreateLimit
("Request.Amount Sales")
myLimit.Operator=bqLimitOperatorEqual
myLimit.CustomValues.Add("50")
myLimit.SelectedValues.Add("50")
ActiveDocument.Sections["SalesQuery"].AggregateLimits.Add(myLimit)

Methods: Add(Limit As Limit), CreateLimit(LimitItem As String) As Limit,
Item(NameOrIndex) As Limit, RemoveAll()

Properties: Read-Only Properties: Property Count As Number

Collections: SelectedValues As LimitValues, CustomValues As LimitValues

✰

9-2 Objects

AppendQueries (Collection)

Member of: QuerySection Object

Description: The AppendQueries (Collection) represents those items that allow you to
merge multiple queries in a combined Results set.

Tip All collections have a method named “Item(NameOrIndex).” This is the
default method for all collections and returns an item in the collection at a
particular index or with a specific name. For simplicity, the “[]” can be used in
place of the call to the “Item()” method. For example, the following statements
are identical in behavior:

myItem = Documents[1]
myItem = Documents.Item(1)
myItem = Documents["StartUp.bqy"]
myItem = Documents.Item("StartUp.bqy")

Example 1: The following example shows you to how to append a query using the Union
operator.

ActiveDocument.Sections["Query"].AppendQueries.Add()
ActiveDocument.Sections ["Query"].AppendQueries[1].UnionController=bqUnion

Example 2: The following example shows you how to add "Periods" and "Quarters" to the
Request line, and how to remove the second request line item.

ActiveDocument.Sections["Query"].AppendQueries.Requests.Add("Periods","Quarters")
ActiveDocument.Sections["Query"].AppendQueries.Requests[2].Remove()

Example 3: The following example shows you how to place a limit on the "Periods" request
line item and how to add the value "Quarter 1" to the limit value.

MyLimit=ActiveDocument.Sections["Query"].AppendQueries.Limits.CreateLimit
("Periods")
ActiveDocument.Sections["Query"].AppendQueries.Limits[1].SelectedValues.Add("Q1")
ActiveDocument.Sections["Query"].AppendQueries.Limits.Add(MyLimit)

Methods: Add (), Item(NameOrIndex As Value) As AppendQueries

Properties: Count As Number

Collections: Requests As Requests, Limits As Limit

✰

AppendQueries (Collection) 9-3

Application (Object)

Description: This object represents the entire Brio Intelligence application. The Application
object contains:

■ Application-wide settings and options

■ Methods that return top level objects, such as ActiveDocument

■ Properties that return top level objects, such as ActiveDocument

Example: In this example, the quit method is called from the Application object.

Application.Quit()

Note The Application.Quit() method applies only to Brio Intelligence and not the Brio plug-ins.

Methods: Alert(Prompt As String, [Button1Text As String], [Title As String],
[Button2Text As String], [Button3Text As String]) As Number,
CreateConnection() As Connection, DoEvents(), ExecuteBScript(Script As
String), LoadSharedLibrary(Name As String) As SharedLibrary,
OpenURL(Location as String,Target as String), Quit([PromptBeforeQuitting
As Boolean]), SendSQL(OceName As String, Username As String, Password
As String, SQLString As String), Shell(Command As String) As Number

Properties: Read-Only Properties: Property Name As String, Property PathSeparator As
String, Property Version As String

Read-Write Properties: Property CurrentDir As String, Property
DisplayAlerts As BqAlertLevel, Property ShowMenuBar As Boolean, Property
ShowStatusBar As Boolean, Property StatusText As String, Property Visible As
Boolean, Property WindowState As BqWindowState

Collections: Documents as Documents, Toolbars as Toolbars, RecentFiles as RecentFiles

Objects: ActiveDocument as Document, Console as Console, ActiveSection As Section,
Session as Session

✏

9-4 Objects

AreaChart (Object)

Member of: ChartSection

Description: The AreaChart object represents all of the properties of an area chart.

Example: The following script shows you how to set an Area chart to fill the area under
the Ribbon. The example assumes that “Chart” is the name of Chart report in
the active document.

ActiveDocument.Sections["Chart"].AreaChart.FillUnderRibbon = true

Properties: Read-Write Properties: Property FillUnderRibbon As Boolean
AreaChart (Object) 9-5

AxisItems (Collection)

The AxisItems collection has been changed to the CategoryItems collection.
For more information, see CategoryItems (Collection).
9-6 Objects

AxisLabels (Collection)

Member of: ChartSection Object

Description: The AxisLabels collection is a collection of labels for a specific chart axis. It
maps directly to the Chart outliner.

The AxisLabels collection is instantiated three times for each Chart Section
Object in the form: XLabels, YLabels, and ZLabels.

Tip All collections have a method named “Item(NameOrIndex).” This is the
default method for all collections and returns an item in the collection at a
particular index or with a specific name. For simplicity, the “[]” can be used in
place of the call to the “Item()” method. For example, the following statements
are all identical in behavior:

myItem = Documents[1]
myItem = Documents.Item(1)
myItem = Documents["StartUp.bqy"]
myItem = Documents.Item("StartUp.bqy")

Example: The following example shows you how to determine the number of labels on
the X-axis.

ActiveDocument.Sections["AllChart"].XLabels.Count

Methods: DrillInto(ItemNameOrIndex, DrillName As String),
FocusSelection(ItemArray), HideSelection(ItemArray), UnhideAll()

Properties: Read-Only Properties: Property Count As Number

✰

AxisLabels (Collection) 9-7

BarChart (Object)

Member of: ChartSection Object

Description: The BarChart object represents all of the properties of a bar chart.

Example: This example shows you how to enable the bar values of a bar chart.

ActiveDocument.Sections["Chart"].BarChart.ShowBarValues = true

Properties: Read-Write Properties: Property ClusterBy As BqClusterBarType, Property
ShowBarValues As Boolean
9-8 Objects

BarLineChart (Object)

Member of: ChartSection Object

Description: The BarLineChart object represents all BarLineChart properties.

Example: The following example shows you how to change the properties of a barline
chart.

ActiveDocument.Sections["Chart"].BarLineChart.ShowBarValues = true
ActiveDocument.Sections["Chart"].BarLineChart.StackClusterType=bqBarLineCluster
ActiveDocument.Sections["Chart"].BarLineChart.ClusterBy = bqClusterByY
ActiveDocument.Sections["Chart"].BarLineChart.IgnoreNulls = false
ActiveDocument.Sections["Chart"].BarLineChart.ShiftPoints = bqShiftCenter

Properties: Read-Write Properties: Property ClusterBy As BqClusterBarType, Property
IgnoreNulls As Boolean, Property ShiftPoints As BqBarLineShift, Property
ShowBarValues As Boolean, Property StackClusterType As BqBarLineType
BarLineChart (Object) 9-9

9-10 Objects

CategoryItems (Collection)

Member of: ChartSection Object

Description: The CategoryItems collection is a collection of items for a specific Chart axis. It
maps directly to the Chart outliner.

The CategoryItems collection is instantiated three times in a Chart Section in
the form: XCategories, Facts, and ZCategories.

Tip All collections have a method named "Item(NameOrIndex)." This is the
default method for all collections and returns an item in the collection at a
particular index or with a specific name. For simplicity, the "[]" can be used in
place of the call to the "Item()" method. For example, the following statements
are all identical in behavior:

myItem = Documents[1]
myItem = Documents.Item(1)
myItem = Documents["StartUp.bqy"]
myItem = Documents.Item("StartUp.bqy")

Example: In this example, a chart is built from scratch using the request items specified
in the query. First, all the items in the outliner are removed, and then each
specific item is added to the outliner.

ActiveDocument.Sections["Chart"].XCategories.RemoveAll()
ActiveDocument.Sections["Chart"].Facts.RemoveAll()
ActiveDocument.Sections["Chart"].XCategories.Add("Year")
ActiveDocument.Sections["Chart"].Facts.Add("Unit Sales")

or

for (I=1;I< ActiveDocument.Sections["Chart"].XCategories.Count; I++)
ActiveDocument.Sections["Chart"].XCategories.Remove(I)

for (I=1;I< ActiveDocument.Sections["Chart"].Facts.Count; I++)
ActiveDocument.Sections["Chart"].Facts.Remove(I)
ActiveDocument.Sections["Chart"].XCategories.Add("Year")
ActiveDocument.Sections["Chart"].Facts.Add("Unit Sales")

Methods: Add(ItemName As String), AddComputedItem(Name As String, Expression
As String, [Index As Number]), Item(NameOrIndex) As AxisItem,
Remove(NameOrIndex), RemoveAll()

Properties: Read-Only Properties: Property Count As Number, Property AxisType As
BqChartAxisType

✰

ChartSection (Object) 9-11

ChartSection (Object)

Member of: Sections Collection, Document Object (ActiveSection)

Description: The ChartSection object represents a chart section.

Example: The following example activates the “Sales Chart” section, turns on the legend,
changes the title to “International Sales Report”, changes the chart type to a
horizontal bar chart, and then exports the chart to an HTML file named
“intlchrt.htm.”

myChart = ActiveDocument.Sections["Sales Chart"]
myChart.Activate()
myChart.ShowLegend = true
myChart.Title = "International Sales Report"
myChart.ChartType = bqChartTypeHorizontalBar
myChart.Export("c:\\html\\intlchrt.htm",bqExportFormatHTML,true)

Methods: Activate(), Copy(), Duplicate(), Export([Filename As String], [FileFormat As
BqExportFileFormat], [IncludeHeaders As Boolean], [Prompt as Boolean]),
PivotThisChart() As PivotSection,PrintOut([FromPage As Number], [ToPage
As Number], [Copies As Number], [Filename As String], [Prompt As
Boolean]), Recalculate(), RefreshDataNow(), Remove()

Properties: Read-Only Properties: Property Active As Boolean, Type As BqSectionType

Read-Write Properties: Property ChartType As BqChartType, Property
Name As String, Property RefreshData as BqRefreshData, Property
Show3DObjects As Boolean, Property ShowBackPlane as Boolean, Property
ShowBorder As Boolean, Property ShowHorizontalPlane As Boolean, Property
ShowLegend As Boolean, Property ShowOutliner As Boolean, Property
ShowSubTitle As Boolean, Property ShowTitle As Boolean, Property
ShowVerticalPlane As Boolean, Property SubTitle As String, Property Title As
String, Property Visible As Boolean

Collections: XCategories As CategoryItems, Facts As CategoryItems, ZCategories As
CategoryItems, XLabels As AxisLabels, YLabels As AxisLabels, ZLabels As
AxisLabels

Objects: AreaChart As AreaChart, BarChart As BarChart, BarLineChart As
BarLineChart, LabelsAxis As LabelsAxis, LineChart As LineChart, PieChart As
PieChart , ValuesAxis As ValuesAxis, Legend As Legend

Column (Object)

Member of: TableSection Object, ResultsSection Object

Description: The Column object represents an individual column within a Table or Results
section.

Example 1: The following example shows how to populate a Dropdown list control in an
EIS section with data from a Results column. This example assumes that you
have two controls in your EIS section, a button named “CommandButton”
and a dropdown list named “Dropdown.”

//Code behind the "CommandButton"
var NumRows = ActiveDocument.Sections["Results"].RowCount
for (I =1 ; I <= NumRows;I++)
DropDown.Add(ActiveDocument.Sections["Results"].Columns[1].GetCell(I))

Example 2: The following example shows how to change the number format of all
numeric columns in a Results section.

var NumColumns=ActiveDocument.Sections["SalesResults"].Columns.Count
for (I=1; I<=NumColumns;I++)
{
var MyCol=ActiveDocument.Sections["SalesResults"].Columns.Item(I)
MyCol.ResizeToBestFit()
 if (MyCol.DataType = bqDataTypeNumber)

MyCol.NumberFormat = "0.00"
}

Methods: CreateDateGroup(), GetCell(nRow as Number), Remove(), ResizeTo BestFit()

Properties: Read-Only Properties: Property ColumnType As BqColumnType, Property
DataType As BqDataType, Property Index As Number, Property Name As
String

Read-Write Properties: Property Alignment As BqHorizontalAlignment,
Property NumberFormat As String, Property SupressDuplicates As Boolean,
Property TextWrap As Boolean, Property Visible As Boolean
9-12 Objects

Columns (Collection)

Member of: TableSection Object, ResultSection Object

Description: The Columns collection is a collection of columns within a Table or Results
section.

Tip All collections have a method named “Item(NameOrIndex).” This is the
default method for all collections and returns an item in the collection at a
particular index or with a specific name. For simplicity, the “[]” can be used in
place of the call to the “Item()” method. For example, the following statements
are identical in behavior:

myItem = Documents[1]
myItem = Documents.Item(1)
myItem = Documents["StartUp.bqy"]
myItem = Documents.Item("StartUp.bqy")

Example: The following example shows how to add a computed column, named
“MyComputed,” in the Results section. This example includes both strings and
numeric calculations in the same computed columns.

var MyResults = ActiveDocument.Sections["Results"]
var NumColumns = MyResults.Columns.Count
var Expression = ("Number of Columns="+Number(NumColumns+1))
MyResults.Columns.AddComputed("MyComputed", Expression)

Methods: Add(Name As String) As Column, AddComputed(Name As String,
Expression As String) As Column, Item(NameOrIndex) As Column,
ModifyComputed(NameOrIndex, Expression As String) As String,
RemoveAll()

Properties: Read-Only Property: Property Count As Number

✰

Columns (Collection) 9-13

Connection (Object)

Member of: Global Object or Data Model Object

Description: The Connection object represents either a Connection File (OCE) or the
connection to a database. Each Data Model object has an associated
connection object that describes the Data Model’s connection to the database.
The connection object can also represent a Data Model’s MetaData connection
information. Lastly, a connection object can be a stand-alone object, which
represents an OCE. This object can be created by calling the CreateConnection
method.

Example 1 The following example shows you how to connect a Data Model to its
associated database and then process a query. This example assumes that a
connection file is already associated with the Data Model.

//Check to make sure the connection has an associated OCE
if(ActiveDocument.Sections["Query"].DataModel.Connection.Filename != "")
{
with(ActiveDocument.Sections["Query"].DataModel.Connection)
{
Username = "brio"
SetPassword("BrioBrio")
Connect()
}
ActiveDocument.Sections["Query"].Process()
}
else
{
Alert("Your DataModel does not have an OCE","Information")
}

Example 2 This example shows you how to create an OCE from scratch and save it to a
local file.

var myCon
myCon = Application.CreateConnection()
myCon.Api =bqApiSQLNet
myCon.Database = bqDatabaseSQLServer
myCon.HostName ="PlutoSQLSVR"
myCon.SaveAs("C:\\Program Files\\Brio\\BrioQuery\\Program\\Open Catalog
Extensions\\PlutoSQL.oce")
//Now use this connection in a datamodel
ActiveDocument.Sections["SalesQuery"].DataModel.Connection.Open("C:\\Program
Files\\Brio\\BrioQuery\\Program\\Open Catalog Extensions\\PlutoSQL.oce")
9-14 Objects

Method Connect(), Disconnect(), Open(Filename As String), Save(), SaveAs(Filename
As String), SetPassword(Password As String),
UseAlternateMetadataLocation(Value As Boolean, [MetadataOce As String])

Properties: Read-Only Properties: Property Connected As Boolean, Property Filename As
String

Read-Write Properties: Property AllowNonJoinedQueries As Boolean,
Property Api As BqApi, Property AutoCommit As Boolean, Property Database
As BqDatabase, Property DataBaseList As String, Property
DBLibAllowChangeDatabase As Boolean, Property DBLibApiSeverity As
Number, Property DBLibDatabaseCancel As BqDbLibCancelMode, Property
DBLibPacketSize As Number, Property DBLibServerSeverity As Number,
Property DBLibUseQuotedIdentifiers As Boolean, Property
DBLibUseSQLTable As Boolean, Property EnableAsyncProcess As Boolean,
Property EnableTransactionMode As Boolean, Property HostName As String,
Property MetadataPassword As String, Property MetadataUser As String,
Property MetaFileChoice As String, Property ODBCDatabasePrompt As
Boolean, Property ODBCEnableLargeBufferMode As Boolean, Property
SaveWithoutUsername As Boolean, Property ShowAdvanced As Boolean,
Property ShowBrioRepositoryTables As Boolean, Property ShowMetadata As
Boolean, Property SpecificMetadataLogin As Boolean, Property
SQLNetRetainDateFormats As Boolean, Property StringRetrieval As Boolean,
Property TimeLimit As Number, Property Username As String
Connection (Object) 9-15

Console (Object)

Member of: Application Object

Description: The Console object represents the console window.

Example 1 The following example shows you how to display the names of all the sections
in a document to the console window. Each section name can print on a new
line by using the Carriage Return “\r” and New Line “\n” characters. The
method used is Write.

for(I=1 ; I <= ActiveDocument.Sections.Count; I ++)
 Console.Write (ActiveDocument.Sections[I].Name+"\r\n")

Example 2 The following example shows you how to print the names of document
sections on individual lines. Each name is printed on a new line by using the
Writeln method.

Console.Writeln(ActiveDocument.Name +"'s sections are: ")
for (j=1 ; j < ActiveDocument.Sections.Count ; j++)
Console.Writeln("Section #"+j +" = " +ActiveDocument.Sections[j].Name)

Method Write(OutputData), Writeln (OutputData)
9-16 Objects

Control (Object)

Member of: Controls Collection

Description: The Control object represents an individual control. All controls are inherited
from this basic object. As a result, the Control object itself is not called.
Control (Object) 9-17

Controls (Collection)

Member of: EISSection Object

Description: The Controls collection contains all the control objects for a specific EIS
section. This collection is used to gain access to an EIS sections control. The
Controls collection returns a specific control object. Each control object has
generic methods and properties, which are the same for all controls, and
methods and properties that are specific to the type of control returned.

Tip All collections have a method named “Item(NameOrIndex).” This is the
default method for all collections and returns an Item in the collection at a
particular index or with a specific name. For simplicity, the “[]” can be used in
place of the call to the “Item()” method. For example, the following statements
are identical in behavior:

myItem = Documents[1]
myItem = Documents.Item(1)
myItem = Documents["StartUp.bqy"]
myItem = Documents.Item("StartUp.bqy")

Example: The following example shows you how to enable all disabled controls in a
particular EIS section:

var ControlCount = ActiveDocument.Sections["EIS"].Controls.Count
for (I = 1 ; I <= ControlCount; I++)
{
// if the control is disabled then enable it
 if (ActiveDocument.Sections["EIS"].Controls[I].Enabled != true)

ActiveDocument.Sections["EIS"].Controls[I].Enabled = true
}

Method Item(NameOrIndex) As Control

Properties: Read-Only Properties: Property Count As Number

✰

9-18 Objects

ControlsCheckBox (Object)

Member of: Controls Collection, EISSection Object

Description: The ControlsCheckBox object represents an EIS checkbox. A check box
control is a user-interface control that allows the end-user to make simple
yes/no type choices. It has two states: checked and unchecked.

Example: The following example shows you how to change the text associated with the
checkbox control and to determine if it is checked and visible. The following
script assumes that there is a checkbox control named “CheckBox” in an EIS
section.

CheckBox.Text = "Click here to change the value"
//if the CheckBox is not being shown, show it.
if (CheckBox.Visible != true)
 CheckBox.Visible = true
if(CheckBox.Checked == true)
 Alert("Checkbox is Checked","Info")
else
 Alert("Checkbox is Not Checked","Info")

Method OnClick()

Properties: Read-Only Properties: Property Name As String

Read-Write Properties: Property Alignment As BqHorizontalAlignment,
Property Checked As Boolean, Property Enabled As Boolean, Property Text As
String, Property Type As BqShapeType, Property VerticalAlignment As
BqVerticalAlignment, Property Visible As Boolean

Objects Fill As Fill, Font As Font
ControlsCheckBox (Object) 9-19

ControlsCommandButton (Object)

Member of: Controls Collection, EISSection Object

Description: The ControlsCommandButton object represents an EIS button.

Example: The following example shows you how to change the text, the font type, and
the font size of a Command button.

CommandButton.Text = "Click Here"
CommandButton.Font.Name = "Courier"
CommandButton.Font.Size = 12

Method OnClick()

Properties: Read-Only Properties: Property Name As String, Property Type As
BqShapeType

Read-Write Properties: Property Alignment As BqHorizontalAlignment,
Property Enabled As Boolean, Property Text As String, Property
VerticalAlignment As BqVerticalAlignment, Property Visible As Boolean

Object Font As Font
9-20 Objects

ControlsDropDown (Object)

Member of: Controls Collection, EISSection Object

Description: The ControlsDropDown object represents an EIS dropdown list object. The
Dropdown list control is a user-interface control that allows the user to select
one item from a list of items.

Example: The following example shows how to populate a dropdown list control from
an existing query limit.

// Connect to the database to ensure showvalues will work
ActiveDocument.Sections["Query"].DataModel.Connection.Username = "brio"
ActiveDocument.Sections["Query"].DataModel.Connection.SetPassword("Brio
Brio")
ActiveDocument.Sections["Query"].DataModel.Connection.Connect()
//Load the list of Available Values
ActiveDocument.Sections["Query"].Limits[1].RefreshAvailableValues()
var ValueCount =
ActiveDocument.Sections["Query"].Limits[1].AvailableValues.Count

//Remove All Items from the DropDown
DropDown.RemoveAll()
 for (I = 1; I <= ValueCount; I ++)
{
DropDown.Add(ActiveDocument.Sections["Query"].Limits[1].AvailableValues[I])
}

Method Add(Value As String), Item(Index As Number), OnClick(), OnSelection(),
Remove(Index As Number), RemoveAll(), Select(Index As Number)

Properties: Read-Only Properties: Property Name As String, Property Type As
BqShapeType

Read-Write Properties: Property Alignment As BqHorizontalAlignment,
Property Count As Number, Property Enabled As Boolean, Property
SelectedIndex As Number, Property Text As String, Property
VerticalAlignment As BqVerticalAlignment, Property Visible As Boolean

Object Font As Font
ControlsDropDown (Object) 9-21

ControlsListBox (Object)

Member of: Controls Collection, EISSection Object

Description: The ControlsListBox object represents an EIS list box. A list box is a user-
interface control that allows a user to select one or more items from a list.

Example: The following example shows you how to clear the values in a listbox and
repopulate it with values from a results column. This example uses JavaScript’s
built in sorting functions. This feature sorts the data before populating the
control.

Note JavaScript Arrays are 0 based; all Brio Collections are 1 based.

ListBox.RemoveAll()
MyArray = new Array()
RowCount = ActiveDocument.Sections["Results"].RowCount
//GetCell Returns the value of an individual cell in a Column
for (j = 1; j <= RowCount; j++)

MyArray[j] = ActiveDocument.Sections["Results"].Columns[1].GetCell(j)
//Use JavaScripts built in Array sorting to sort the values
SortedArray = MyArray.sort()
// Add all the sorted items to the listbox control
for (j = 0; j< MyArray.length;j++)
ListBox.Add(SortedArray[j])

Methods: Add(Value As String), Item(Index As Number) As String, OnClick(),
OnDoubleClick(), Remove(Index As Number), RemoveAll(), Select(Index As
Number), Unselect(Index As Number)

Properties: Read-Only Properties: Property Count As Number, Property Name As String,
Property Type As BqShapeType

Read-Write Properties: Property Alignment As BqHorizontalAlignment,
Property Enabled As Boolean, Property MultiSelect As Boolean, Property Text
As String, Property VerticalAlignment As BqVerticalAlignment, Property
Visible As Boolean

Objects Font As Font, SelectedList As SelectedList

✏

9-22 Objects

ControlsRadioButton (Object)

Member of: Controls Collection, EISSection Object

Description: The ControlsRadioButton object represents an EIS radio button. A radio
button is a user-interface control that allows the user to select one value from a
group of options. Radio buttons individually exhibit the same behavior as
checkboxes; however, when they are grouped, their behavior changes. When
radio buttons are grouped together, only one button may be selected at any
time.

Example: The next example shows you how to determine which Radio button has been
selected from a group of buttons.

NumControls = ActiveDocument.Sections["EIS2"].Shapes.Count
for (I = 1; I <= NumControls;I++)
{
if (ActiveDocument.Sections["EIS2"].Shapes[I].Group == "ButtonGroup")
if(ActiveDocument.Sections["EIS2"].Controls[I].Checked==true)
 Alert("Radio Button"+ ActiveDocument.Sections["EIS2"].Controls[I].Name
+" Is checked")
}

Methods: OnClick()

Properties: Read-Only Properties: Property Group As String, Property Name As String

Read-Write Properties: Property Alignment As BqHorizontalAlignment,
Property Checked As Boolean, Property Enabled As Boolean, Property Text As
String, Property VerticalAlignment As BqVerticalAlignment, Property Visible
As Boolean

Objects: Fill As Fill, Font as Font
ControlsRadioButton (Object) 9-23

ControlsTextBox (Object)

Member of: Controls Collection, EIS Section Object

Description: The ControlsTextBox represents an EIS textbox. Each text box in an EIS tab
has a unique name. Use this name to reference the object when scripting.

Example: The following example shows you how to change the text in a Textbox control
and how to enable a Textbox control. This script assumes that it is being run
from the same EIS section as the Textbox control named "TextBox."

TextBox.Text = "Hello World"
if (TextBox.Enabled == false)
 TextBox.Enabled = true

Methods: OnChange(), OnClick(), OnEnter(), OnExit()

Properties: Read-Only Properties: Property Name As String, Property Type As
BqShapeType

Read-Write Properties: Property Alignment As BqHorizontalAlignment,
Property Enabled As Boolean, Property Password As Boolean, Property
Scrollable As Boolean, Property Text As String, Property VerticalAlignment As
BqVerticalAlignment, Property Visible As Boolean
9-24 Objects

Cookies (Collection)

Member of: Session Object

Description: The cookies collection represents a list of key value pairs, stored as cookies, in
the current browser. Cookies are small nuggets of text (less than 4K) which are
stored in a Web browser to enable persistent data storage. The cookies
collection provides read-only access to the cookies stored in the current
browser. Since cookies are browsers based, this collection only applies to the
plug-in products. However, the cookies collection is exposed in the client
server products to assist in developing plug-in scripts.

Tip All collections have a method named “Item(NameOrIndex).” This is the
default method for all collections and returns an item in the collection at a
particular index or with a specific name. For simplicity, the “[]” can be used in
place of the call to the “Item()” method. For example, the following statements
are identical in behavior:

myItem = Documents[1]
myItem = Documents.Item(1)
myItem = Documents["StartUp.bqy"]
myItem = Documents.Item("StartUp.bqy")

Example 1 Shows how to display the value of the BRIOUSER cookie in an alert box.

var Username = Session.Cookies["BRIOUSER"]
Alert("The username entered on the OnDemand Server login is:
"+Username,"ODSUSername")

✰

Cookies (Collection) 9-25

Example 2 Shows how to test scripting in the client server version by creating temporary
values in the cookies collection.

Note Added key value pairs to the cookies collection does NOT write them back to the Web browser.

//Add some test cookies
Session.Cookies.Add("MyCookie","MyValue")
Session.Cookies.Add("ApplicationName",Application.Name)
//Write out the values to the console window
Console.Write (Session.Cookies["MyCookie"])
Console.Write (Session.Cookies["ApplicationName"])

Methods: Add(Key As String, Value As String), Item(Key As String) As String

✏

9-26 Objects

CornerLabels (Object)

Member of: PivotSection Object

Description: The CornerLabels object represents the Pivot report's corner labels feature.
Corner labels mirror the names of the values in the Pivot Outliner in the actual
pivot. Using the CornerLabels object you can include corner labels on your
pivot report and specify their position (none, top, side, or both).

Example 1: In the following example, corner labels are displayed on the side of the pivot
report.

LabelActiveDocument.Sections["Pivot"].CornerLabels.Display=
BqPivotLabelDisplaySide

Example 2: In the following example, corner labels are displayed on the top of the pivot
report.

ActiveDocument.Sections["Pivot"].CornerLabels.Display= BqPivotLabelDisplayTop

Example 3: In the following example, corner labels are displayed on both the top and side
of the pivot report.

ActiveDocument.Sections["Pivot"].CornerLabels.Display= BqPivotLabelDisplayBoth

Example 4: In the following example, corner labels are not displayed.

ActiveDocument.Sections["Pivot"].CornerLabels.Display= BqPivotLabelDisplayNone

Properties: Read-Write Properties: Property Display as BqPivotLabelDisplay
CornerLabels (Object) 9-27

DataLabels (Object)

Member of: PivotSection Object

Description: The DataLabels object represents the Pivot report's data labels feature. Data
labels are the column and row heading on the top and sides of the pivot report
and define the categories by which the numeric values are organized.Using the
DataLabels object you can include datalabels on your pivot report and specify
their position (none, top, side, or both).

Example 1: In the following example, data labels are displayed on the side of the pivot
report.

ActiveDocument.Sections["Pivot"].DataLabels.Display= BqPivotLabelDisplaySide

Example 2: In the following example, data labels are displayed across the top of the pivot
report.

ActiveDocument.Sections["Pivot"].DataLabels.Display= BqPivotLabelDisplayTop

Example 3: In the following example, data labels are displayed on both the top and side of
the report.

ActiveDocument.Sections["Pivot"].DataLabels.Display= BqPivotLabelDisplayBoth

Example 4: In the following example, data labels are not displayed.

ActiveDocument.Sections["Pivot"].DataLabels.Display= BqPivotLabelDisplayNone

Properties: Read-Write Properties: Property Display as BqPivotLabelDisplay
9-28 Objects

DataModelSection (Object)

Member of: QuerySection Object

Description: The Data Model object represents the underlying Data Model for a Query
Section or DataModelSection object. The Data Model object contains
information about the connection, table catalog, etc. It can be accessed from
either the Data Model or Query sections.

Example 1: The following example shows you how to set some basic properties of a Data
Model. It turns off AutoJoin and AutoAlias, limits queries to 20 minutes and
enables joins between iconized topics. Using the with statement enables you to
call methods and properties for an object without fully qualifying it.

with (ActiveDocument.Sections["Query"].DataModel)
{

AutoAlias = false
AutoJoin = false
TimeLimit = 20
ShowIconJoins = true

}

Example 2: The following example shows you how to build a Data Model using the Table
Catalog object. This example assumes that you are already connected to a
database.

with (ActiveDocument.Sections["Query"].DataModel)
{
Topics.RemoveAll()
AutoJoin = false
//Create two new topics from tables in table catalog
Catalog.Refresh()
Table1 =Catalog.CatalogItems["WINE"]
Table2 =Catalog.CatalogItems["WINE_SALES"]
Topics.Add(Table1)
Topics.Add(Table2)
Field1 = Topics[1].TopicItems["Wine Id"]
Field2 = Topics[2].TopicItems["Wine Id"]
//Create a new join by joining two TopicItems together
Joins.Add(Field1,Field2,bqJoinSimpleEqual)
// Now add topic items to the request line
for (I = 1; I <= Topics[1].TopicItems.Count; I++)
ActiveDocument.Sections["Query"].Requests.Add(Topics[1].Name,Topics[1].
TopicItems[I].DisplayName)
}

DataModelSection (Object) 9-29

Methods: AuditSQL(BqAuditEventType EventType, String SQLString)
SyncWithDatabase()

Properties: Read-Only Properties: TimeLimitActive as Boolean

Read-Write Properties: Property AutoAlias As Boolean, Property AutoJoin As
Boolean, Property RowLimit as Number, RowLimitActive as Boolean,
Property ShowIconJoins As Boolean, Property TimeLimit As LNumber,

Objects: Catalog As DMCatalog, Connection As Connection, MetaDataConnection As
Connection, JoinOptions as JoinOptions

Collections: Joins As Joins, Limits As Limits, Topics As Topics, Local Results as
LocalResults, LocalJoins as LocalJoins
9-30 Objects

Date Field (Object)

Member of: Fields collection

Description: Sets the current date in MM/DD/YY format.

Example: The following example shows you how to add a line border with a width of 3
points to the Date Field:

ActiveDocument.Sections["Sales Report"].ReportHeader.Fields["Date
Field"].Line.Color =10040166
ActiveDocument.Sections["Sales Report"].ReportHeader.Fields["Date
Field"].Line.Width =4

Methods: Layer(BqLayer value), Spring(String Name), UnSpring

Properties: Read-write: Formula as String, HorizontalAlignment as
BqHorizontalAlignment, Text as String, TextWrap as Boolean,
VerticalAlignment as BqVerticalAlignment

Read only: Name as String, Type as BqShapeType

Objects: LineFormat object, FillFormat object, FontFormat object
Date Field (Object) 9-31

DateNow Field (Object)

Member of: Fields collection

Description: Sets the current date MM/DD/YY format.

Note that this object represents the date when the Date Now field is first added
to the report and it will never change.

Example: The following example shows you how to concatenate the string: "Created on:
" and the date on which the DateNow field was added to the report.

ActiveDocument.Sections["Sales Report"].ReportHeader.Fields["DateNow
Field"].Formula = "Created on:" + ' ' + new Date()

Methods: Layer(BqLayer value), Spring(String Name), UnSpring

Properties: Read-write: Formula as String, HorizontalAlignment as
BqHorizontalAlignment, Text as String, TextWrap as Boolean,
VerticalAlignment as BqVerticalAlignment

Read only: Name as String, Type as BqShapeType

Objects: LineFormat object, FillFormat object, FontFormat object
9-32 Objects

DateTime Field (Object)

Member of: Fields collection

Description: Sets the current date in MM/DD/YY HH:MM: AM format.

Note that the DateTimeNow object represents the date and time when it is first
added and it will never change.

Example: The following example shows you how to change the font size of the characters
in the DateTime field to 12 points.

ActiveDocument.Sections["Sales Report"].ReportHeader.Fields["DateTime
Field"].Font.Size = 12

Methods: Layer(BqLayer value), Spring(String Name), UnSpring

Properties: Read-write: Formula as String, HorizontalAlignment as
BqHorizontalAlignment, Text as String, TextWrap as Boolean,
VerticalAlignment as BqVerticalAlignment

Read only: Name as String, Type as BqShapeType

Objects: LineFormat object, FillFormat object, FontFormat object
DateTime Field (Object) 9-33

DateTimeNow Field (Object)

Member of: Fields collection

Description: Sets the current date MM/DD/YY HH:MM: AM format.

Note that this object represents the date and time when this field is first added
to the report and it will never change.

Example: The following example shows you how to add a red fill color to the
DateTimeNow field in the report header band.

ActiveDocument.Sections["SalesReport"].ReportHeader.Fields["DateTimeNo
w Field"].Fill.Color = bqRed

Methods: Layer(BqLayer value), Spring(String Name), UnSpring

Properties: Read-write: Formula as String, HorizontalAlignment as
BqHorizontalAlignment, Text as String, TextWrap as Boolean,
VerticalAlignment as BqVerticalAlignment

Read only: Name as String, Type as BqShapeType

Objects: LineFormat object, FillFormat object, FontFormat object
9-34 Objects

DefinedJoinPaths (Collection)

Member of: DataModel Object

Description: Defined Join Paths are customized join preferences that enable Brio
Intelligence to include or exclude appropriate tables based on the items
referenced on the Request and Limit lines. The net effect limits the query to all
referenced tables based on available table groupings, generating the most
efficient SQL for queries of the Data Model. The features in this collection
correspond to the options available on the Define Join Paths dialog.

Tip All collections have a method named “Item(NameOrIndex).” This is the
default method for all collections and returns an item in the collection at a
particular index or with a specific name. For simplicity, the “[]” can be used in
place of the call to the “Item()” method. For example, the following statements
are identical in behavior:

myItem = Documents[1]
myItem = Documents.Item(1)
myItem = Documents["StartUp.bqy"]
myItem = Documents.Item("StartUp.bqy")

Example 1: The following example shows you how to select a user defined join path option
and delete the existing join path.

ActiveDocument.Sections["Query"].DataModel.JoinsOptions.Type=
bqDataModelJoinsOptionDefJoin
ActiveDocument.Sections["Query"].DataModel.JoinsOptions.DefinedJoinPath
["MyJoinPath"].Remove()

Example 2: The following example shows you how to select the user defined join path
option, and change an existing defined join path by adding a join path topic.

ActiveDocument.Sections["Query"].DataModel.JoinsOptions.Type=
bqDataModelJoinsOptionDefJoin
ActiveDocument.Sections["Query"].DataModel.JoinsOptions.DefinedJoinPath
["MyJoinPath"].AddTopic("Periods")

✰

DefinedJoinPaths (Collection) 9-35

Example 3: The following example shows you how to select the user defined join path
option, create a defined join path, and add all join path topics to the defined
join path.

ActiveDocument.Sections["Query"].DataModel.JoinsOptions.Type=
bqDataModelJoinsOptionDefJoin
ActiveDocument.Sections["Query"].DataModel.JoinsOptions.DefinedJoinPath.Add
("MyJoinPath")
ActiveDocument.Sections["Query"].DataModel.JoinsOptions.DefinedJoinPath
["MyJoinPath"].AddAllTopics()

Methods: Add(Name As String) As DefinedJoinPath, Item (NameOrIndex) As
DefinedJoinPath, Remove(NameOrIndex As String), RemoveAll()

Properties: Read-Write Properties: Count As Number
9-36 Objects

DefinedJoinPath (Object)

Member of: DefineJoinPaths Collection

Description: A defined join path object contains the customized join preferences that enable
Brio Intelligence to include or exclude appropriate tables based on the items
referenced on the Request and Limit lines.

Example 1: The following example shows you how to select the user defined join path
option, and change an existing defined join path by adding a join path topic.

ActiveDocument.Sections["Query"].DataModel.JoinsOptions.Type=
bqDataModelJoinsOptionDefJoin
ActiveDocument.Sections["Query"].DataModel.JoinsOptions.DefinedJoinPath
["MyJoinPath"].AddTopic("Periods")

Example 2: The following example shows you how to select the user defined join path
option, create a defined join path, and add all join path topics to the defined
join path.

ActiveDocument.Sections["Query"].DataModel.JoinsOptions.Type=
bqDataModelJoinsOptionDefJoin
ActiveDocument.Sections["Query"].DataModel.JoinsOptions.DefinedJoinPath.Add("MyJo
inPath")
ActiveDocument.Sections["Query"].DataModel.JoinsOptions.DefinedJoinPath["MyJoinPa
th"].AddAllTopics()

Methods: AddAllTopics(), AddTopic(DefinedJoinPathsName As String), Remove(),
RemoveAllTopics(), RemoveTopic(DefinedJoinPathName As String)

Properties: Read-Write Properties: Name As String
DefinedJoinPath (Object) 9-37

Dimension (Object)

Member of: Dimension collection

Description: The Dimension object represents a specific table dimension in the Report
section.

A dimension is typically a qualifiable and text value, such as a region, product
line, and includes date values. It defines the secondary headings or labels that
make up the body of the report. Each of the dimensions is repeated within
each group. Usually, you use items containing text values (for example, Year
or item type) for table dimensions. For example, if you select Item Type to be
your table dimension, Item Type is a dimension within each group header.
Under the dimension "Item Type," appears the name of each kind of item (for
example, CD ROM, or HARD Drive). and corresponds to the . A fact is an
quantifiable value, such amount of sales, budget or revenue.

Example 1: The following example shows you how to move the "City" dimension before
the "State Province" dimension.

ActiveDocument.Sections["Report"].Body.Tables["Table"].Dimensions["City"].Move("S
tate Province")

Example 2: The following example shows you how to suppress duplicate values on specific
columns in a report table.

ActiveDocument.Sections["Report"].Body.Tables["Table"].Dimensions["City"].Suppres
sDuplicates = true

ActiveDocument.Sections["Report"].Body.Tables["Table"].Dimensions["State
Province"].SuppressDuplicates = true

Example 3: The following example shows you how to set the background color of the
"City" dimension to light blue and the font style to bold.

ActiveDocument.Sections["Report"].Body.Tables["Table"].Dimensions["City"].Backgro
undColor = bqLightBlue
ActiveDocument.Sections["Report"].Body.Tables["Table"].Dimensions["City"].Font.St
yle = bqFontStyleBold
9-38 Objects

Methods: Move(LabelNameBefore as String), Remove()

Properties: BackgroundAlternateColor as BqColorType, BackgroundAlternateFrequency
as Number, BackgroundColor as BqColorType,
BackgroundShowAlternateColor as Boolean, HorizontalAlignment as
BqHorizontalAlignment, Name as String, NumberFormat as String,
SuppressDuplicates as Boolean, TextWrap as Boolean, VerticalAlignment as
BqVerticalAlignment

Objects: Font object
Dimension (Object) 9-39

Dimensions (Collection)

Member of: ReportTable collection

Description: The Dimensions collection represents all table dimension objects in the report
section.

A dimension is typically a qualifiable value, such as a region, date or product
line. A fact is an quantifiable value, such amount of sales, budget or revenue.

Example: The following example shows you how to add the "City" label as a new
dimension.

ActiveDocument.Sections["Report"].Body.Tables["Table"].Dimensions.Add
("City", "Results")

Methods: Add(New Dimension as String, [optional] MoveBeforeName as String
[optional String SectionDependancy), Item(NameOrIndex as Value),
RemoveAll()

Properties: Read only: Count as Number
9-40 Objects

DMCatalog (Object)

Member of: DataModelSection Object

Description: The DMCatalog object represents the Table Catalog. This object provides
access to the names of the database tables that are used when a Data Model is
built.

Example: The following example shows you how to create a Data Model by inserting
tables from the Table Catalog. It also shows you how to change the basic
display properties of the Table Catalog.

with (ActiveDocument.Sections["Query"].DataModel)
{
 Catalog.ShowFullName= true
//Updates the Table Catalog with the most current view of the tables
 Catalog.Refresh()
 Table1 =Catalog.CatalogItems["WINE"]
 Table2 =Catalog.CatalogItems["WINE_SALES"]
//Create two new topics from tables in table catalog
 Topics.Add(Table1)
 Topics.Add(Table2)
}

Methods: Refresh()

Properties: Read-Write Properties: Property ShowFullNames As Boolean, Property
ShowLocalResults As Boolean

Collections: CatalogItems As DMCatalogItems, Results As Results
DMCatalog (Object) 9-41

DMCatalogItem (Object)

Member of: DMCatalogItems Collection

Description: The DMCatalogItem object represents a table in the Table Catalog.

Example: The following example shows you how to write all the information about the
tables in the Table Catalog to the console window.

with (ActiveDocument.Sections["Query"].DataModel)
{
 var NumTables = Catalog.CatalogItems.Count
 for (I = 1; I <= NumTables;I++)
 {
 OutputString = "Database Name =" +
 Catalog.CatalogItems[I].DatabaseName
 OutputString = OutputString +":Database Owner=" +
 Catalog.CatalogItems[I].Owner
 OutputString = OutputString +":Table Name=" +
 Catalog.CatalogItems[I].Name
 Console.Write(OutputString+"\r\n")
 }
}

Methods: None

Properties: Read-Only Properties: DatabaseName As String, Property Name As String,
Property Owner As String
9-42 Objects

DMCatalogItems (Collection)

Member of: DMCatalog Object

Description: The DMCatalogItems collection represents a list of all the items in the Table
Catalog.

Tip All collections have a method named “Item(NameOrIndex).” This is the
default method for all collections and returns an item in the collection at a
particular index or with a specific name. For simplicity, the “[]” can be used in
place of the call to the “Item()” method. For example, the following statements
are identical in behavior:

myItem = Documents[1]
myItem = Documents.Item(1)
myItem = Documents["StartUp.bqy"]
myItem = Documents.Item("StartUp.bqy")

Example: The following example shows you how to write all the information about the
tables in the Table Catalog to the console window.

With (ActiveDocument.Sections["Query"].DataModel)
{
 var NumTables = Catalog.CatalogItems.Count
 for (I = 1; I <= NumTables;I++)
 {
 OutputString = "Database Name =" +
 Catalog.CatalogItems[I].DatabaseName
 OutputString = OutputString +":Database Owner=" +
 Catalog.CatalogItems[I].Owner
 OutputString = OutputString +":Table Name=" +
 Catalog.CatalogItems[I].Name
 Console.Write(OutputString+"\r\n")

 }
}

Methods: Item(NameOrIndex) As DMCatalogItem

Properties: Read-Only Properties: Property Count As Number

✰

DMCatalogItems (Collection) 9-43

Document (Object)

Member of: Documents Collection, Application Object

Description: The document object contains the content of the file (document) created by
Brio Intelligence that you store on your personal computer. Each Brio
Intelligence document consists of one or more sections.

Example 1: The following example shows how a document object can be referenced by
enumerating the documents collection object or by referring to the
ActiveDocument object. The following commands all set myDoc to the same
document object.

myDoc = Documents[1] or
myDoc = Documents["Testdoc.bqy"] or
if "Testdoc.bqy" is the current document then
myDoc = ActiveDocument

Example 2: In this example, the Section Title bar has been turned off in the
ActiveDocument, and the document is saved with a new filename.

ActiveDocument.ShowSectionTitlebar = false
ActiveDocument.SaveAs("d:\\Brio Docs\\Updated File.bqy")
ActiveDocument.Close()

Methods: Activate(), AddExportSection(SectionName As String), Close([SaveChanges
As Boolean]), Export([Filename As String], [FileFormat As
BqExportFileFormat], [Prompt As Boolean]), OnShutdown(), OnStartup(),
Save([bCompressed As Boolean]), SaveAs([Filename As String],
[bCompressed As Boolean],[Prompt As Boolean]),

Properties: Read-Only Properties: Property Active As Boolean, Property Name As String,
Property Path As String

Read-Write Properties: Property ShowCatalog As Boolean, Property
ShowSectionTitleBar As Boolean

Collections: Sections As Sections

Object: LastSaved As LastSaved
9-44 Objects

Documents (Collection)

Member of: Application Object

Description: This is a collection of all document collections objects within the application.

Tip All collections have a method named “Item(NameOrIndex).” This is the
default method for all collections and returns an item in the collection at a
particular index or with a specific name. For simplicity, the “[]” can be used in
place of the call to the “Item()” method. For example, the following statements
are all identical in behavior:

myItem = Documents[1]
myItem = Documents.Item(1)
myItem = Documents["StartUp.bqy"]
myItem = Documents.Item("StartUp.bqy")

Example: The following example shows you how to print the names of all open
documents to the console window. It also compares the names of the open
documents with the ActiveDocument (the document which has Focus) and
prints “Active” next to its name.

For (I= 1;I <= Documents.Count;I++)
 {
 if (Documents[I].Name == ActiveDocument.Name)
 Console.Writeln(ActiveDocument.Name + "- Active")
 else
 Console.Writeln (Documents[I].Name)
 }

Methods: Add([Name As String]) As Document, Item(NameOrIndex) As Document,
New([Name As String]) As Document, Open([Filename As String],
[DisplayName As String]) As Document

Properties: Read-Only Properties: Property Count As Number

✰

Documents (Collection) 9-45

EISSection (Object)

Member of: Sections Collection

Description: The EISSection object represents an EIS section.

Example: The following example shows how to access the list of controls in an EIS
section. It also shows you how to rename the section, and how to show or hide
the section.

MyEIS = ActiveDocument.Sections["EIS"]
Console.Write("Number of Controls = "+MyEIS.Controls.Count)
Console.Write("The First Control is Named: "+MyEIS.Controls[1].Name)
MyEIS.Name = "My Eis Section"
//If the section is hidden then show it
if (MyEIS.Visible == false)
 MyEIS.Visible = true

Methods: Activate(), Copy(), Duplicate(), Export([Filename As String],[FileFormat As
BqExportFileFormat[, [IncludeHeaders As Boolean], Prompt As Boolean]),
OnActivate(), OnDeactivate(), PrintOut([FromPage As Number], [ToPage As
Number], [Copies As Number], [Filename As String]), Recalculate(),
Remove()

Properties: Read-Write Properties: Property Active As Boolean, Property Name As
String, Property ShowOutliner As Boolean, Property Type As BqSectionType,
Property Visible As Boolean

Collections: Shapes As Shapes
9-46 Objects

Facts (Object)

Member of: CategoryItems (Collection)

Description: An object that represents a chart's Y-axis. The Facts object's properties affect
the display of the Y-axis and the Y-Facts categories in the Outliner.

Example: In this example, a chart is built from scratch using the request items specified
in the query. First, all the items in the outliner are removed, and then the
specific items are added to the outliner.

ActiveDocument.Sections["Chart"].Facts.RemoveAll()
ActiveDocument.Sections["Chart"].Facts.Add("Product")
ActiveDocument.Sections["Chart"].Facts.Add("State")

Methods: Add(ItemName As String), AddComputedItem(Name As String, Expression
As String, [Index As String] As AxisItem), Item (NameOrIndex) As AxisItem,
Remove(NameOrIndex), RemoveAll()

Properties: Read-Only Properties: Property Axis Type as BqChartAxisType, Property
Count As Number
Facts (Object) 9-47

Field (Object)

Member of: Fields collection

Description: Sets a computable field.

Example: The following example shows you how to display a field with the text message:
This is a text label.

try
{
ActiveDocument.Sections["Report"].PageHeader.Fields["Field"].Formula = "'This is
a text label'"

ActiveDocument.Sections["Report"].Recalculate()
}
catch(e)
{
Console.Writeln(e.toString())
}

Methods: Layer(BqLayer value), Spring(String Name), UnSpring

Properties: Read-write: Formula as String, HorizontalAlignment as
BqHorizontalAlignment, Text as String, TextWrap as Boolean,
VerticalAlignment as BqVerticalAlignment

Read only: Name as String, Type as BqShapeType

Objects: LineFormat object, FillFormat object, FontFormat object
9-48 Objects

Fields (Collection)

Member of: ReportHeader object, ReportFooter object, PageHeader object, PageFooter
object, Body object

Description: The Fields collection represents all field objects in the report section.

Example 1: The following example shows you how to count the number of fields that have
been inserted in the Body band of the report:

Alert(ActiveDocument.Sections["Report"].Body.Fields.Count + " Number of fields in
this band")

Methods: Item(NameOrIndex as Name)

Properties: Read Only: Count as Number

Objects: ReportName Field object, Path Field Object, FileName Field object, Date
TimeNow Field object, TimeNowField, DateNow Field object, Time Field
object, Last Printed Field object, Date Field, LastSaved Field object, Page XofY
Field object, PageCount Field object, PageNm Field, Query SQL field object,
Result Limit object, Query Limit object, Field object
Fields (Collection) 9-49

FileName Field (Object)

Member of: Fields collection

Description: Sets the full document name and file extension.

Example: The following example shows you how to spring the FileName field with the
ReportName field and PageXofY field objects.

ActiveDocument.Sections["Sales Report"].ReportHeader.Fields["FileName
Field"].Spring("ReportName Field")
ActiveDocument.Sections["Sales Report"].ReportHeader.Fields["FileName
Field"].Spring("PageXofY Field")

Methods: Layer(BqLayer value), Spring(String Name), UnSpring

Properties: Read-write: Formula as String, HorizontalAlignment as
BqHorizontalAlignment, Text as String, TextWrap as Boolean,
VerticalAlignment as BqVerticalAlignment

Read only: Name as String, Type as BqShapeType

Objects: LineFormat object, FillFormat object, FontFormat object
9-50 Objects

Fill (Object)

Member of: Shape Object, Control Object, LegendItem Object

Description: The Fill object contains all of the properties associated with object background
formatting.

Example: The following example shows you how to change the color of a rectangle.

MyRectangle = ActiveDocument.Sections["EIS"].Shapes["Rectangle"]
MyRectangle.Fill.Color = bqBlue

Methods: None

Properties: Read-Write Properties: Property Color As BqColorType, Property BrushStyle
As BqBrushStyle
Fill (Object) 9-51

Font (Object)

Member of: Shape Object, Control Object‘

Description: The Font object contains all of the methods and properties of fonts.

Example: The following example shows you how to change the size and color of a text
label control.

ActiveDocument.Sections["EIS"].Shapes["TextLabel1"].Font.Color=bqBlue
ActiveDocument.Sections["EIS"].Shapes["TextLabel1"].Font.Style=bqFontStyleItalic

Methods: None

Properties: Read-Write Properties: Property Color As BqColorType, Property Effect As
BqFontEffect, Property Name As String, Property Size As Number, Property
Style As BqFontStyle
9-52 Objects

Footer (Object)

Member of: ReportGroup object

Description: The footer object represents the attributes of the report group footer band.

In the user interface, when you drag an item from the Catalog pane into the
Report Group Outliner, Brio Intelligence automatically supplies a report
group header band and adds a label inside the band, which identifies the
group. A group header categorizes data into repeating collections of records in
a header band. To switch to a report group footer band, you select a column in
the outliner and select "Footer" on the shortcut menu.

Example: The following example shows you how to change the color page number field
footer to red.

ActiveDocument.Sections["Report"].Groups["Report Group2"].Footer.Fields["PageNm
Field"].Font.Color = 16711680

Methods: None

Properties: Read-Write Properties: KeepTogether as Boolean, KeepWithNext as Boolean,
PageBreak as BqPageBreak, Visible as Boolean

Objects: LineFormat object, FillFormat object, Tables collection, Fields collection,
Shapes collection, Shapes Collection, Pivots collection, Pivot collection, Chart
collection
Footer (Object) 9-53

Form (Collection)

Member of: Session Object

Description: The Form collection represents a list of key value pairs stored generated from a
POST method of an HTML form. Form elements are the controls, which allow
users to make selections on an HTML page. The Form collection provides
read-only access to the form elements values which as environment variables
in the current browser. Since HTML forms are browsers based this collection
only applies to the plug-in products. However, the Form collection is exposed
in the client server products to assist in developing plug-in scripts.

Tip All collections have a method named “Item(NameOrIndex).” This is the
default method for all collections and returns an item in the collection at a
particular index or with a specific name. For simplicity, the “[]” can be used in
place of the call to the “Item()” method. For example, the following statements
are identical in behavior:

myItem = Documents[1]
myItem = Documents.Item(1)
myItem = Documents["StartUp.bqy"]
myItem = Documents.Item("StartUp.bqy")

Example: Shows how to read the values of a Form elements and use them inside a plug-
in script.

Basic HTML Form:

<HTML>
<BODY>
<!"Note: The Action Key have a value which opens a document from the OnDemand
Server. You MUST include the "Jscript=enable" key-value pair to initialize the
plug-in scripting ->
<FORM METHOD = "post" ACTION = "http://your.server.com/ods-
cgi/odscgi.exe?Method=getDocument&Docname=-1835-83481598112-58541278350-125-8-1-
1387-9434&JScript=enable">
<P>Text Box <INPUT id=text1 name=text1></P>
 <P>Password <INPUT id=password1 name=password1 type=password></P>
<P>Text Area <TEXTAREA id=TEXTAREA1 name=TEXTAREA1></TEXTAREA></P>
<P>Check Box<INPUT id=checkbox1 name=checkbox1 type=checkbox></P>
<P>Radio <INPUT id=radio1 name=radio1 value = "1st" type=radio><INPUT
id=radio1 name=radio1 type=radio value = "2nd" CHECKED></P>
<P>DropDown<SELECT id=select1 name=select1 >
 <OPTION value=Value1>Display1

✰

9-54 Objects

 <OPTION value=Value4>Display4</SELECT></P>
<P>ListBox <SELECT id=select2 name=select2 size=4 multiple>
 <OPTION value=Value1>List1
 <OPTION value=Value4>List4</SELECT></P>
<P><INPUT id=submit1 name=submit1 type=submit value=Submit></P>
</FORM>
</BODY>
</HTML>

//Script running on plug-in
//Write all values to console window
Console.Writeln("Text1 Value = "+ Session.Form["text1"])
Console.Writeln("password1 Value = "+ Session.Form["password1"])
Console.Writeln("TEXTAREA1 Value = "+ Session.Form["TEXTAREA1"])
Console.Writeln("checkbox1 Value = "+ Session.Form["checkbox1"])
Console.Writeln("radio1 Value = "+ Session.Form["radio1"])
Console.Writeln("select1 Value = "+ Session.Form["select1"])
Console.Writeln("select2 Value = "+ Session.Form["select2"])

Methods: Add(Key As String, Value As String), Item(NameorIndex)
As Form
Form (Collection) 9-55

Group (Object)

Member of: ReportSection object

Description: The group header categorizes data into repeating collections of records in a
header band.

Example: The following example shows you how to remove all items in Report Group 1.

ActiveDocument.Sections["Report"].Groups["Report Group1"].Remove()

Methods: Move(LabelNameBefore String), Remove()

Properties: Read only: Name as String

Objects: Header object, Footer object, GroupItems collection, SortItems collection
9-56 Objects

Groups (Collection)

Member of: ReportSection object

Description: The Group collection represents the Report Groups (i.e.the user selects the
"Groups" portion of the outliner in the Reporter). It is treated like a header
band, but there are separate objects for the actual report page headers/footers
and report header/footer.

Tip When you use the Add, Move and/or Remove methods with this collection
and the SuspendCalculation property is set to true (which it is by default), then
you must use the Recalculate method to force the Report section to recalculate
itself.

Example: The following example shows you how to add the "Year" column member.

ActiveDocument.Sections["Report"].Groups.Add(Year)

Methods: Add(Column Member), Item (Value NameOrIndex), RemoveAll()

Properties: Count as Number (Read Only)

✰

Groups (Collection) 9-57

GroupItem (Object)

Member of: GroupItems Collection

Description: The GroupItem object represents an individual column that has been dragged
into the report group outliner, such as the "Store Id" column from the Results
section.

Example: The following example shows you how to write the name of the Amount Sales
group item to the console window:

Console.Writeln(ActiveDocument.Sections["Report"].Groups["Report
Group1"].GroupItems["Amount Sales"].Name)

Methods: Move(LabeLNameBefore as String), Remove()

Properties: Read only: Name As String
9-58 Objects

GroupItems (Collection)

Member of: ReportGroup object

Description: The GroupItems collection is a collection of items for a specific report group.

Example 1: The following example shows you how to remove all group items in the report
group band in Report Group 1.

ActiveDocument.Sections["Report"].Groups["Report Group1"].
GroupItems.RemoveAll()

Example 2: The following example shows you how to addl the "Year" and "Results" group
items to Report Group 1.

ActiveDocument.Sections["Report"].Groups["Report Group1"]. GroupItems.Add("Year",
"Results")

Methods: Add(String Member, [optional] StringSectionDependency),
Item(NameOrIndex as Value). RemoveAll()

Properties: Read only: Count as Number
GroupItems (Collection) 9-59

Header (Object)

Member of: ReportGroup object

Description: The Header object represents the attributes of the report group header band.
When you drag an item from the Catalog pane into the Report Group
Outliner, Brio Intelligence automatically supplies a group header band and
adds a label inside the band, which identifies the group. A group header
categorizes data into repeating collections of records in a header band.

For example, if you create a report to show purchases by state, each state would
serve a group header for the report. Other items can be added as sub-
categories, such as buyers.

Example: The following example shows you how to count and display the number of
tables in the Report Group 1 header.

ActiveDocument.Sections["Report"].Groups["Report
Group1"].Header.Tables.Count

Methods: None

Properties: Read-Write Properties: KeepTogether as Boolean, KeepWithNext as Boolean,
PageBreak as BqPageBreak, Visible as Boolean

Objects: LineFormat object, FillFormat object, Tables collection, Fields collection,
Shapes collection, Shapes Collection, Pivots collection, Pivot collection, Chart
collection

Read only: Count as Number
9-60 Objects

Join (Object)

Member of: DataModel Object

Description: The Join object represents an individual join between topics in a Data Model.

Example: The following example shows you how to change the type of join to a left join
and print the names of the joined topic items to the console window.

ActiveDocument.Sections["Query"].DataModel.Joins[1].Type = bqJoinLeft
Console.Writeln(ActiveDocument.Sections["Query"].DataModel.Joins[1].TopicItem1.Di
splayName="Sales")
Console.Writeln(ActiveDocument.Sections["Query"].DataModel.Joins[1].TopicItem2.Ph
ysicalName)

Methods: Add(), Item(), Remove()

Properties: Read-Write Properties: Property Count As Number

Objects: TopicItem1 As TopicItem, TopicItem2 As TopicItem
Join (Object) 9-61

Joins (Collection)

Member of: DataModel Object

Description: The Joins collection is a collection of joins between topics in a Data Model.

Tip All collections have a method named “Item(NameOrIndex).” This is the
default method for all collections and returns an item in the collection at a
particular index or with a specific name. For simplicity, the “[]” can be used in
place of the call to the “Item()” method. For example, the following statements
are identical in behavior:

myItem = Documents[1]
myItem = Documents.Item(1)
myItem = Documents["StartUp.bqy"]
myItem = Documents.Item("StartUp.bqy")

Example: The following example shows you how to remove all the joins in the current
Data Model and create a simple join between the Wine.Wine_Id and
Wine_Sales.Wine_Id topic items.

with(ActiveDocument.Sections["Query"].DataModel)
{
Joins.RemoveAll()
Field1 = Topics["WINE"].TopicItems["Wine Id"]
Field2 = Topics["WINE_SALES"].TopicItems["Wine Id"]
//Create a new join by joining two TopicItems together
Joins.Add(Field1,Field2,bqJoinSimpleEqual)
}

Methods: Add(TopicItem1 As TopicItem, TopicItem2 As TopicItem, Type As
BqJoinType) As Join, Item(NameOrIndex) As Join, RemoveAll()

Properties: Read-Only Properties: Property Count As Number

✰

9-62 Objects

JoinsOptions (Collection)

Member of: DataModel Object

Description: The JoinsOptions collection represents the available join usage preferences.
The features in this collection correspond to the options available on the Joins
tab of the Data Model Option dialog.

Tip All collections have a method named “Item(NameOrIndex).” This is the
default method for all collections and returns an item in the collection at a
particular index or with a specific name. For simplicity, the “[]” can be used in
place of the call to the “Item()” method. For example, the following statements
are identical in behavior:

myItem = Documents[1]
myItem = Documents.Item(1)
myItem = Documents["StartUp.bqy"]
myItem = Documents.Item("StartUp.bqy")

Example: The following example shows you how to specify to use only topics
represented by items on the Request line for joins.

ActiveDocument.Sections["Query"].DataModel.JoinsOptions.Type=
bqDataModelJoinsOptionMinTopics

Methods: None

Properties: Read-Write Properties: Property Type As BqDataModelJoinsOptions

Collections: DefinedJoinPaths As DefinedJoinedPaths

Note If you choose to programmatically define your own join paths by selecting the bqDataModel
JoinsOptionDefJoin constant, specify your join preferences using the DefinedJoinPath

(Collection).

✰

✏

JoinsOptions (Collection) 9-63

LabelsAxis (Object)

Member of: ChartSection Object

Description: The LabelsAxis object acts as a logical container for both of the labels axis
contained in a chart.

Example: The following example shows you how to set basic properties of the XAxis
label and the ZAxis label.

with(ActiveDocument.Sections["Chart"])
{
 LabelsAxis.XAxis.ShowValues = true
 LabelsAxis.XAxis.ShowTickmarks = true
 LabelsAxis.ZAxis.ShowValues = false
 LabelsAxis.ZAxis.ShowTickmarks = false
}

Methods: None

Properties: None

Objects: XAxis As XaxisLabel, ZAxis As ZAxisLabel
9-64 Objects

LabelValues (Object)

Member of: ChartSection Object, XLabels Object, YLabels Object and Zlabels Object

Description: The LabelValues object represents the values on the YLabel, XLabel, or ZLabel.

Tip For simplicity, the “[]” can be used in place of the call to the “Item()” method.
For example, the following statements are identical in behavior:

myItem = Documents[1]
myItem = Documents.Item(1)
myItem = Documents["StartUp.bqy"]
myItem = Documents.Item("StartUp.bqy")

Example: The following example shows you how to set up LabelValues items 1 and 2 in a
new array. The new array could then be used with the FocusSelection and
HideSelection methods.

var Xarray = new Array();
Xarray[0] = ActiveDocument.Sections["Chart"].XLabels.LabelValues.Item(1)
Xarray[1] = ActiveDocument.Sections["Chart"].XLabels.LabelValues.Item(2)

Methods: Item (Index As Number) As LabelValueItem

Properties: None

✰

LabelValues (Object) 9-65

LastPrinted Field (Object)

Member of: Fields collection

Description: Sets the date on which the report section was last printed in MM/DD/YY
format.

Example: The following example shows you how to reposition the LastPrinted Field
object behind another object (such as a shape object).

ActiveDocument.Sections["Sales Report"].PageFooter.Fields["LastPrinted
Field"].Layer(bqLayerBack)

Methods: Layer(BqLayer value), Spring(String Name), UnSpring()

Properties: Read-write: Formula as String, HorizontalAlignment as
BqHorizontalAlignment, Text as String, TextWrap as Boolean,
VerticalAlignment as BqVerticalAlignment

Read only: Name as String, Type as BqShapeType

Objects: LineFormat object, FillFormat object, FontFormat object
9-66 Objects

LastSaved Field (Object)

Member of: Fields collection

Description: Sets the date on which the document was last printed in MM/DD/YY format.

Example: The following example shows you how to change the font color to red in the
Last Saved field.

ActiveDocument.Sections["Sales Report"].PageFooter.Fields["LastSaved
Field"].Font.Color = 16711680

Methods: Layer(BqLayer value), Spring(String Name), UnSpring()

Properties: Read-write: Formula as String, HorizontalAlignment as
BqHorizontalAlignment, Text as String, TextWrap as Boolean,
VerticalAlignment as BqVerticalAlignment

Read only: Name as String, Type as BqShapeType

Objects: LineFormat object, FillFormat object, FontFormat object
LastSaved Field (Object) 9-67

Legend (Object)

Member of: ChartSection Object

Description: The Legend object represents all of the methods and properties of a chart
legend.

Example: The following example shows you how to change the chart axis type to the X-
axis category.

ActiveDocument.Sections["Chart"].Legend.Focus=bqChartXAxis

Methods: None

Properties: Property Focus as BqChartAxisType

Collections Items As LegendItems
9-68 Objects

Legend (Collection)

Member of: ChartSection Object

Description: The Legend collection allows you to set and get legend item attributes of a
chart. You might use this collection to set and retrieve the line width of a line
chart; or to modify the foreground color of a Bar chart.

Tip All collections have a method named “Item(NameOrIndex).” This is the
default method for all collections and returns an item in the collection at a
particular index or with a specific name. For simplicity, the “[]” can be used in
place of the call to the “Item()” method. For example, the following statements
are identical in behavior:

myItem = Documents[1]
myItem = Documents.Item(1)
myItem = Documents["StartUp.bqy"]
myItem = Documents.Item("StartUp.bqy")

Example 1: The following example shows you how to change the color, the fill pattern, the
line color, and the line width of a legend item.

ActiveDocument.Sections["Chart"].Legend.Items[1].Fill.Color=bqBlue
ActiveDocument.Sections["Chart"].Legend.Items[1].Fill.BrushStyle =
bqBrushStyleCross
ActiveDocument.Sections["Chart"].Legend.Items[1].Line.Color= bqBlue
ActiveDocument.Sections["Chart"].Legend.Items["Q1"].Line.Width= 6

Example 2: The following example shows you how to set the marker style, the marker size,
the marker border color, and the marker fill color of a legend item.

ActiveDocument.Sections["Chart"].Legend.Items["Q1"].Line.MarkerStyle = bqSquare
ActiveDocument.Sections["Chart"].Legend.Items[1].Line.MarkerSize = bq6pt
ActiveDocument.Sections["Chart"].Legend.Items[1].Line.MarkerBorderColor= bqRed
ActiveDocument.Sections["Chart"].Legend.Items["Q1"].Line.MarkerFillColor= bqGreen

Methods: LegendItems.Item(NameOrIndex)

Properties: Read only: Property Count as Number

✰

Legend (Collection) 9-69

LeftAxis (Object)

Member of: ValuesAxis Object

Description: The LeftAxis object represents all the left values axis properties contained in a
chart.

Example: The following example shows you how to set some basic properties of the left
axis.

with(ActiveDocument.Sections["Chart"].ValuesAxis)
{
 LeftAxis.AutoScale = true
 LeftAxis.AutoInterval = true
 LeftAxis.ShowLabel = false
}

Methods: None

Properties: Read-Write Properties: Property AutoInterval As Boolean, Property
AutoScale As Boolean, Property IntervalFrequency As Number, Property
LabelText As String, Property ScaleMax As Number, Property ScaleMin As
Number, Property ShowLabel As Boolean
9-70 Objects

Limit (Object)

Member of: Limit Collection

Description: The Limit object represents an individual limit. The limit object applies to
Results, Data Model and Query Limits.

Example 1 The following example shows you how to modify values of an existing Results
limit.

MyLimit = ActiveDocument.Sections["Results"].Limits[1]
//Clear all the values which are currently set
MyLimit.SelectedValues.RemoveAll()
// add new values to the selectedvalues collection
MyLimit.SelectedValues.Add(2000)
//Change the limit criteria
MyLimit.Operator = bqLimitOperatorLessThan

Example 2 The following example shows you how to create a new query limit from an
existing topic.

//Create an empty Limit object from the "Wine.Cost" Topic Item.
MyLimit = ActiveDocument.Sections["Query"].Limits.CreateLimit("Wine.Cost")
MyLimit.Operator = bqLimitOperatorGreaterThan
MyLimit.SelectedValues.Add(10)
MyLimit.Name = "Costly Wine"
//Adds the limit to the Limit Line -
ActiveDocument.Sections["Query"].Limits.Add(MyLimit)

Example 3 The following example shows you how to populate a list box control with the
list of available values for an existing results limit.

LimitCount = ActiveDocument.Sections["Results"].Limits[1].AvailableValues.Count
for (i=1;I<=LimitCount;i++)
ListBox.Add(ActiveDocument.Sections["Results"].Limits[1].AvailableValues[i])

Methods LoadFromFile(Filename As String) As Boolean, RefreshAvailableValues(),
Remove()
Limit (Object) 9-71

Properties Read-Only Properties Property ValueSource As BqLimitValueSource

Read-Write Properties: Property CustomSQL As String, Property
DisplayName As String, Property FullName As String, Property Ignore As
Boolean, Property IncludeNulls As Boolean, Property LimitValueType As
BqLimitType, Property LogicalOperator As BqLogical Operator, Property
Negate As Boolean, Property Operator As BqLimitOperator, Property Prompt
As String, Property SuspendRecalculation As boolean, Property VariableLimit
As Boolean

Collections: AvailableValues As LimitValues, CustomValues As LimitValues,
SelectedValues As LimitValues
9-72 Objects

Limits (Collection)

Member of: QuerySection Object, DataModel Object, TableSection Object

Description: The Limits collection is the collection of limits within a Results, Query or Data
Model section. The Limits collection is analogous to the Limit line in Brio
Intelligence.

Tip All collections have a method named “Item(NameOrIndex).” This is the
default method for all collections and returns an item in the collection at a
particular index or with a specific name. For simplicity, the “[]” can be used in
place of the call to the “Item()” method. For example, the following statements
are identical in behavior:

myItem = Documents[1]
myItem = Documents.Item(1)
myItem = Documents["StartUp.bqy"]
myItem = Documents.Item("StartUp.bqy")

Example 1: The following example shows you how to remove all existing limits and create
a new query limit from an existing topic.

ActiveDocument.Sections["SalesQuery"].Limits.RemoveAll()
MyLimit = ActiveDocument.Sections["SalesQuery"].Limits.CreateLimit
("Sales_Fact.Unit_Sales")
MyLimit.Operator = bqLimitOperatorGreaterThan
MyLimit.CustomValues.Add(50)
MyLimit.SelectedValues.Add(50)
//Adds the limit to the Limit Line -
ActiveDocument.Sections["SalesQuery"].Limits.Add(MyLimit)

Example 2: The following example shows you how to remove all existing limits and create
a new query computed item limit.

ActiveDocument.Sections["SalesQuery"].Limits.RemoveAll()
MyLimit = ActiveDocument.Sections["SalesQuery"].Limits.CreateLimit
("Requests.Sales_Per_Unit")
MyLimit.Operator = bqLimitOperatorLessThan
MyLimit.CustomValues.Add(20)
MyLimit.SelectedValues.Add(20)
//Adds the limit to the Limit Line -
ActiveDocument.Sections["SalesQuery"].Limits.Add(MyLimit)

✰

Limits (Collection) 9-73

Methods: Add(Limit As Limit), CreateLimit(LimitItem As String) As Limit,
Item(NameOrIndex) As Limit, RemoveAll()

Note The argument for CreateLimit method is different for regular limits, computed item limits, and

aggregate limits. For regular limits the argument is a reference to the table topic and the topic
item, for example, CreateLimit(“Sales_Facts.Amount_Sales”). For both computed item limits
and aggregate limits the argument is a reference to the item’s Display Name on the request

line, for example, CreateLimit(“Request.Amount Sales”).

Properties: Read-Only Properties: Property Count As Number

✏

9-74 Objects

LimitValues (Collection)

Member of: Limit Object

Description: The LimitValues collection is a collection of all the values associated with the
different types of limits—regular, computed, and aggregate. Each limit object
has three LimitValues collections: AvailableValues, SelectedValues, and
CustomValues. The AvailableValues collection is used for regular limits only.

Tip All collections have a method named “Item(NameOrIndex).” This is the
default method for all collections and returns an item in the collection at a
particular index or with a specific name. For simplicity, the “[]” can be used in
place of the call to the “Item()” method. For example, the following statements
are identical in behavior:

myItem = Documents[1]
myItem = Documents.Item(1)
myItem = Documents["StartUp.bqy"]
myItem = Documents.Item("StartUp.bqy")

Example 1: The following example shows you how to add all the values in the
AvailableValues collection to the SelectedValues collection. This is essentially
the same as performing a select all values and transferring the selection in the
Limit User Interface.

LimitCount =
ActiveDocument.Sections["Results"].Limits[1]. AvailableValues.Count
for (i=1;i<=LimitCount;i++)
{
MyVal =
Add(ActiveDocument.Sections["Results"].Limits[1]. AvailableValues[i]
ActiveDocument.Sections["Results"].Limits[1]. SelectedValues.Add(MyVal)
}

Example 2: The following example adds a CustomValue to the computed item limit.

ActiveDocument.Sections["Query"].Limits[2]. CustomValues.Add(‘2’)

Methods: Add(ValueItem), AddAll(), Item(Index As Number), RemoveAll()

✰

LimitValues (Collection) 9-75

Note For the AvailableValues collection, the Add() method does nothing since the values are
obtained from the database.

Properties: Read-Only Properties: Property Count As Number

✏

9-76 Objects

LineChart (Object)

Member of: ChartSection Object

Description: The Line Chart object represents all the methods and properties specific to
Line Charts.

Methods: None

Properties: Read-Write Properties: Property IgnoreNulls As Boolean
LineChart (Object) 9-77

Line (Object)

Member of: Shape Object, Control Object, LegendItem Object

Description: The Line object contains all of the properties assocated with border formating.

Example 1: The following example shows you how to change the border color, width and
DashStyle of a rectangle.

MyRectangle = ActiveDocument.Sections["EIS"].Shapes["Rectangle"]
MyRectangle.Line.Color = bqRed
MyRectangle.Line.Width = 4
MyRectangle.Line.DashStyle = bqDashStyleDotDotDash

Example 2: The following example shows you how to change the marker color and style
for a line chart.

ActiveDocument.Sections["AllChart"].Legend.Items["Unit Sales"].Line.
MarkerBorderColor=bqRed
ActiveDocument.Sections["AllChart"].Legend.Items["Unit Sales"].Line.
MarkerStyle=bqMarkerStyleTriangle

Methods: None

Properties: Read-Write Properties: Property Color As BqColorType, Property DashStyle
as BqDashStyle, Property MarkerBorderColor as BqColorType, Property
MarkerFillColor as BqColorType, Property MarkerSize as Number, Property
MarkerStyle as BqMarkerStyle, Property Width as Number
9-78 Objects

LocalJoins (Collection)

Member of: DataModel Object

Description: The LocalJoins collection provides you with the ability to derive the Topic
Name of a topic item contained in a join or local join. You can also retrieve the
Topic Item Name for joins (but not for a local join).

Tip All collections have a method named “Item(NameOrIndex).” This is the
default method for all collections and returns an item in the collection at a
particular index or with a specific name. For simplicity, the “[]” can be used in
place of the call to the “Item()” method. For example, the following statements
are identical in behavior:

myItem = Documents[1]
myItem = Documents.Item(1)
myItem = Documents["StartUp.bqy"]
myItem = Documents.Item("StartUp.bqy")

Example 1: The following example shows you how to use a simple equal join.

Topic1=ActiveDocument.Sections["Query"].DataModel.Topics["Sales Fact"].
TopicItems.Item(2)
Topic2=ActiveDocument.Sections["Query"].DataModel.Topics["Products"].
TopicItems.Item(1)
ActiveDocument.Sections["Query"].DataModel.Joins.Add
(Topic1,Topic2,bqJoinSimpleEqual)

Example 2: The following example shows you how to use a simple equal join to join topics
1 and 2 in a local results set.

LRTopic1=ActiveDocument.Sections["Query2"].DataModel.LocalResults["1"].
LocalResultTopicItems.Item(7)
LRTopic2=ActiveDocument.Sections["Query2"].DataModel.LocalResults["2"].
LocalResultTopicItems.Item(7)
ActiveDocument.Sections["Query2"].DataModel.LocalJoins.Add(LRTopic1,LRTopic2,
bqJoinSimpleEqual)

Methods: Add([TopicItem1 As BaseTopicItem], [TopicItem2 As BaseTopicItem], [Type
As BqJoinType] As LocalJoin), Item(NameOrIndex) As LocalJoin,
RemoveAll()

Properties: Read-Only Properties: Property Count As Number

✰

LocalJoins (Collection) 9-79

LocalResults (Collection)

Member of: DataModel Object

Description: The LocalResults collection provides you with the ability to use local results in
joins and the Request line for processing results sets.

Tip All collections have a method named “Item(NameOrIndex).” This is the
default method for all collections and returns an item in the collection at a
particular index or with a specific name. For simplicity, the “[]” can be used in
place of the call to the “Item()” method. For example, the following statements
are identical in behavior:

myItem = Documents[1]
myItem = Documents.Item(1)
myItem = Documents["StartUp.bqy"]
myItem = Documents.Item("StartUp.bqy")

Example 1: The following example adds a local results topic to a query section.

vDM=
ActiveDocument.Sections["Query"].DataModel.Catalog.Results.Item("sales_fact")
ActiveDocument.Sections["Query"].DataModel.LocalResults.Add(vDM)

Example 2: The following example shows how to remove all local results topics and how to
count the local results topics in a query section.

ActiveDocument.Sections["Query"].DataModel.LocalResults.RemoveAll()
ActiveDocument.Sections["Query"].DataModel.LocalResults.Count

Example 3: The following example removes a single local results topic and gets the topic
item count of the “Results2” local topic.

ActiveDocument.Sections["Query"].DataModel.LocalResults["Results2"].Remove()
ActiveDocument.Sections["Query"].DataModel.LocalResults["Results2"].
LocalResultsTopicItems.Count

Example 4: The following example adds a join between a topic and a local results topic.

Topic1=ActiveDocument.Sections["Query"].DataModel.LocalResults["Sales Fact"].
LocalResultTopicItems.Item("Store Id")
Topic2=ActiveDocument.Sections["Query"].DataModel.Results["Results2"].TopicItems.
Item("Store Id")
ActiveDocument.Sections["Query"].DataModel.LocalJoins.Add(Topic1,Topic2,
bqJoinLeft)

✰

9-80 Objects

Example 5: The following example adds a topic from a local results to the request line.

ActiveDocument.Sections["Query"].Requests.Add("Results2","Quarter")

Methods: Add(LocalResultObject As DMResult) As LocalResult, Item(NameOrIndex)
As LocalResult, RemoveAll()

Properties: Read-Only Properties: Count as Number
LocalResults (Collection) 9-81

LocalResultsTopicItems (Collection)

Member of: LocalResults Object

Description: The LocalResultsTopicItems collection provides you with the ability to use
local results topic items in joins and in the Request line for processing results
sets.

Example 1: The following example removes a single local results topic and gets the topic
item count of the “Results2” local topic.

ActiveDocument.Sections["Query"].DataModel.LocalResults["Results2"].Remove()
ActiveDocument.Sections["Query"].DataModel.LocalResults["Results2"].
LocalResultsTopicItems.Count

Example 2: The following example adds a join between a topic and a local results topic.

Topic1=ActiveDocument.Sections["Query"].DataModel.LocalResults["Sales Fact"].
LocalResultTopicItems.Item("Store Id")
Topic2=ActiveDocument.Sections["Query"].DataModel.Results["Results2"].TopicItems.
Item("Store Id")
ActiveDocument.Sections["Query"].DataModel.LocalJoins.Add(Topic1,Topic2,
bqJoinLeft)

Methods: Item()

Properties: Read-Only Properties: Count as Number
9-82 Objects

OLAPConnection (Object)

Member of: OLAPQuery Object

Description: The OLAPConnection object represents either an OLAP Query connection file
(OCE) or the connection to a database. The OLAPQuery connection file is
used to capture and store connection information such as the connection
software, the database software, and the address of your database server and
your database user name for a multi-dimensional database.

Example: The following example shows you how to connect an OLAP database using an
OCE saved locally.

//Connecting to OLAP
MyConnection=ActiveDocument.Sections["OLAPQuery"].Connection
MyConnection.Open("c:\\Program Files\\Brio\\BrioQuery\\Program\\Open Catalog
Extensions\\essbase.oce")
MyConnection.Username="essbase"
MyConnection.SetPassword("essbase")
MyConnection.Connect()

Method Connect(), Disconnect(), Open(Filename As String), Save(), SaveAs(Filename
As String), SetPassword(Password As String)

Properties: Read-Only Properties: Property Connected As Boolean

Read-Write Properties: Property Username As String
OLAPConnection (Object) 9-83

OLAPLabel (Object)

Member of: OLAPLabels Collection

Description: The OLAPLabel object represents an individual (either a top or side) label
within an OLAP report.

Methods: AddFilterValue(MemberName As String, Operator As BqOperator),
Remove()

Properties: Read-Only Properties: Property Name As String
9-84 Objects

OLPLabels (Collection)

Member of: OLAPQuerySection Object

Description: The OLAPLabels collection consists of the OLAP Query TopLabels and
SideLabels collections. These collections correspond to the labels within a
OLAP Query section. These are columns added to the side and top labels
groups in the outliner.

Brio Intelligence supports different OLAP datasources, including OLEDB for
DB, Essbase, and MetaCube. Depending on the datasource, different filter
operators are supported. If you use an operator that is not applicable for the
datasource, an exception is thrown.

OLEDB for OLAP only allows users to add filter values by selecting them from
the Show Values pane on the Filter dialog box. Otherwise, use the
FilterOperator property and Add FilterValue() method.

Tip All collections have a method named “Item(NameOrIndex).” This is the
default method for all collections and returns an item in the collection at a
particular index or with a specific name. For simplicity, the “[]” can be used in
place of the call to the “Item()” method. For example, the following statements
are identical in behavior:

myItem = Documents[1]
myItem = Documents.Item(1)
myItem = Documents["StartUp.bqy"]
myItem = Documents.Item("StartUp.bqy")

Examples: The sample scripts below use a simple OLAPQuery with a value of “State (All)”
as a side label, a value of “Year (All)” as a top label and a value “Amount” as a
measure in the user interface.

When creating a script that includes OLAP objects, methods and properties, it
is important to observe the hierarchy of dimensions and levels. For example,
levels from the same dimension must be grouped together in both the Side and
Top labels.

In addition, the hierarchy of a dimension cannot be broken. For example,
“Year” must come before “Quarter,” which must come before “Month.”

✰

OLPLabels (Collection) 9-85

Example 1: The following script shows you how to add the value “State” as the side label.
Notice how “Location” (a dimension) appears before “State” (a level) in the
script.

OQPath = ActiveDocument.Sections["OLAPQuery"]
OQPath.SideLabels.Add('Location.State')
OQPath.Process()

Example 2: In the following script the Arizona state abbreviation code is added as a filter
value. Note that the “State” side label must exist before you can execute this
script properly.

OQPath = ActiveDocument.Sections["OLAPQuery"]
OQPath.SideLabels[1].AddFilterValue{"AZ",bqOperatorEqual)
OQPath.Process()
OQPath.Activate()

Example 3: When you do not want to use the Show Value method of filtering, use the Add
method as shown below.

ActiveDocument.Sections["OLAPQuery"]
TopLabels.Add(‘Time.{hierarchy}.Year’,’1999’)

Example 4: When you want to use the Show Value method of filtering, use the
AddFilterValue method as in the following example.

//When using Show Value method of filtering
ActiveDocument.Sections["OLAPQuery"].TopLabels.Add(‘Time.{hierarchy}.Year')
ActiveDocument.Sections["OLAPQuery"].TopLabels[‘Time.{hierarchy}.Year'].
SetFilterOperator= bqOperatorEqual
ActiveDocument.Sections["OLAPQuery"].TopLabels[‘Time.{hierarchy}.Year'].
AddFilterValue((‘Time.{hierarchy}.Year’,’1999’)
ActiveDocument.Sections["OLAPQuery"].TopLabels.Add(‘Time.{hierarchy}.Quarter’)
ActiveDocument.Sections["OLAPQuery"].TopLabels[‘Time.{hierarchy}.Quarter’].
SetFilterOperator= bqOperatorNotEqual
ActiveDocument.Sections["OLAPQuery"].TopLabels[‘LabelName’].AddFilterValue
((‘Time.{hierarchy}.Year’),’Q1’)
ActiveDocument.Sections["OLAPQuery"].SideLabels.Add(‘Country.{hierarchy}.Region’)

Methods: Add(LevelName As Sting) As OLAPLabel, Item(NameOrIndex) As
OLAPLabel, RemoveAll()

Properties: Read-Only Properties: Property Count As Number
9-86 Objects

OLAPMeasure (Object)

Member of: OLAPMeasures Collection

Description: The OLAPMeasure object represents an individual measure within an OLAP
Query report.

Methods: AddFilterValues (MemberName As String, Operator As BqOperator),
Remove()

Properties: Read-Only Properties: Property Name As String
OLAPMeasure (Object) 9-87

OLAPMeasures (Collection)

Member of: OLAPQuerySection Object

Description: The OLAPMeasures collection consists of the OLAP Query Measures
collections. These collections correspond to the measures within an OLAP
Query section. These are columns added to the side and top labels groups in
the outliner.

Tip All collections have a method named “Item(NameOrIndex).” This is the
default method for all collections and returns an item in the collection at a
particular index or with a specific name. For simplicity, the “[]” can be used in
place of the call to the “Item()” method. For example, the following statements
are identical in behavior:

myItem = Documents[1]
myItem = Documents.Item(1)
myItem = Documents["StartUp.bqy"]
myItem = Documents.Item("StartUp.bqy")

Example: The following example shows you how to add a measure limit called “Units
Plan.”

ActiveDocument.Sections["OLAPQuery"].Measures.Add(‘Measure.Units Plan’)

Methods: Add(Measure As String), Item(NameOrIndex) As OLAPLabel, RemoveAll()

Properties: Read-Only Properties: Property Count As Number

✰

9-88 Objects

OLAPQuerySection (Object)

Member of: Sections Collection

Description: The OLAPQuerySection object represents an OLAP Query Section.

Note With this object you can process OLAP queries, but not build them.

Example: The following example shows you how to activate and process an OLAP
Query.

ActiveDocument.Sections["OLAPQuery"].Activate()
ActiveDocument.Sections["OLAPQuery"].Process()

Methods: Activate(), Copy(), Duplicate(), Export([Filename As String], [FileFormat As
BqExportFileFormat], [IncludeHeaders As Boolean],[Prompt As Boolean]),
PrintOut([FromPage As Number], [ToPage As Number], [Copies As
Number], [Filename As String], Prompt As Boolean]), Process(),
Recalculate(), Remove()

Properties: Read-Only Properties: Property Active As Boolean, Property Type As
BqSectionType

Read-Write Properties: Property ExportWithoutQuotes As Boolean, Property
HTMLExportBreakRowCount As Number, Property Name As String,
Property ShowOutliner As Boolean, Property Visible As Boolean

✏

OLAPQuerySection (Object) 9-89

OLAPSlicer (Object)

Member of: OLAPSlicer (Object)

Description: The OLAPSlicer object represents an individual slicer within an OLAP Query
report.

Methods: Remove()

Properties: Read-Only Properties: Property Name As String
9-90 Objects

OLAPSlicers (Collection)

Member of: OLAPQuerySection Object

Description: The OLAPSlicers collection consists of the OLAP Query Slicers collections.
These collections correspond to the slicer within a OLAP Query section. This is
the column added to the slicer in the outliner.

Tip All collections have a method named “Item(NameOrIndex).” This is the
default method for all collections and returns an item in the collection at a
particular index or with a specific name. For simplicity, the “[]” can be used in
place of the call to the “Item()” method. For example, the following statements
are identical in behavior:

myItem = Documents[1]
myItem = Documents.Item(1)
myItem = Documents["StartUp.bqy"]
myItem = Documents.Item("StartUp.bqy")

Example: The following example shows you how to add a slicer that limits the scope to
Oakland, California.

ActiveDocument.Sections["OLAPQuery"].Slicers.Add(‘ProductLocation.{hierachy}.
Store Type’,’USA.California.Oakland’)

Methods: Add(LevelName As String, MemberName As String, Variable As Boolean) As
OLAPSlicer, Item(NameOrIndex) As OLAPSlicer, RemoveAll()

Properties: Read-Only Properties: Property Count As Number

✰

OLAPSlicers (Collection) 9-91

PageCount Field (Object)

Member of: Fields collection

Description: Sets the current page of the total number of pages.

Example: The following example shows you how to change the font color of the
PageCount field to red.

ActiveDocument.Sections["Report"].ReportHeader.Fields["PageCount
Field"].Font.Color = bqRed

Methods: Layer(BqLayer value), Spring(String Name), UnSpring()

Properties: Read-write: Formula as String, HorizontalAlignment as
BqHorizontalAlignment, Text as String, TextWrap as Boolean,
VerticalAlignment as BqVerticalAlignment

Read only: Name as String, Type as BqShapeType

Objects: LineFormat object, FillFormat object, FontFormat object
9-92 Objects

PageFooter (Object)

Member of: ReportSection object

Description: The PageFooter object represents the attributes of the page footer group.

Example: The following example shows you how to suppress the display of the page
footer.

ActiveDocument.Sections["Report"].PageFooter.Visible = false

Methods: None

Properties: Read-Write Properties: KeepTogether as Boolean, KeepWithNext as Boolean,
PageBreak as BqPageBreak, Visible as Boolean

Objects: LineFormat object, FillFormat object, Tables collection, Fields collection,
Shapes collection, Shapes Collection, Pivots collection, Pivot collection, Chart
collection
PageFooter (Object) 9-93

PageHeader (Object)

Member of: ReportSection object

Description: The PageHeader object represents the attributes of the page header group.

Example: The following example shows you how to set the line color of the page header
to red.

Documents["Salesreport.bqy"].Sections["Report"].PageHeader.Line.Color = bqRed

Methods: None

Properties: Read-Write Properties: KeepTogether as Boolean, KeepWithNext as Boolean,
PageBreak as BqPageBreak, Visible as Boolean

Objects: LineFormat object, FillFormat object, Tables collection, Fields collection,
Shapes collection, Shapes Collection, Pivots collection, Pivot collection, Chart
collection
9-94 Objects

PageNm (Object)

Member of: Fields collection

Description: Sets the current page number..

Example: The following example shows you how to align vertically the text in PageNum
field at the top of the field.

ActiveDocument.Sections["Report"].PageHeader.Fields["PageNm
Field"].VerticalAlignment = bqAlignTop

Methods: Layer(BqLayer value), Spring(String Name), UnSpring()

Properties: Read-write: Formula as String, HorizontalAlignment as
BqHorizontalAlignment, Text as String, TextWrap as Boolean,
VerticalAlignment as BqVerticalAlignment

Read only: Name as String, Type as BqShapeType

Objects: LineFormat object, FillFormat object, FontFormat object
PageNm (Object) 9-95

PageXofY Field (Object)

Member of: Fields collection

Description: Sets the current page of the total number of pages.

Example: The following example shows you how to add a green, 2 point, dash style to the
PageXofY field object.

ActiveDocument.Sections["Sales Report"].PageFooter.Fields["PageXofY
Field"].Line.DashStyle = 4
ActiveDocument.Sections["Sales Report"].PageFooter.Fields["PageXofY
Field"].Line.Color = bqGreen
ActiveDocument.Sections["Sales Report"].PageFooter.Fields["PageXofY
Field"].Line.Width = 2

Methods: Layer(BqLayer value), Spring(String Name), UnSpring()

Properties: Read-write: Formula as String, HorizontalAlignment as
BqHorizontalAlignment, Text as String, TextWrap as Boolean,
VerticalAlignment as BqVerticalAlignment

Read only: Name as String, Type as BqShapeType

Objects: LineFormat object, FillFormat object, FontFormat object
9-96 Objects

Parentheses (Collection)

Member of: Limits collection

Description: The Parentheses collection allows you to programmatically set and get
parentheses attributes of a limit value. You might use this collection to set and
retrieve the line width of a line chart; or to modify the foreground color of a
Bar chart.

If you intend to nest parentheses between limit items, you must first add
parentheses around the largest range of limit objects before nesting additional
parentheses.

For example, suppose there are three items on the limit line: "State", "Amount
Sales" and "City".

Type:

ActiveDocument.Sections["Query"].Limits.Parentheses.Add("State", "City")
before typing:

ActiveDocument.Sections["Query"].Limits.Parentheses.Add("State", "Amount Sales")

Tip All collections have a method named “Item(NameOrIndex).” This is the
default method for all collections and returns an item in the collection at a
particular index or with a specific name. For simplicity, the “[]” can be used in
place of the call to the “Item()” method. For example, the following statements
are identical in behavior:

myItem = Documents[1]
myItem = Documents.Item(1)
myItem = Documents["StartUp.bqy"]
myItem = Documents.Item("StartUp.bqy")

Example 1: The following example shows you how to remove all parentheses attributes set
on the values of the limit line.

ActiveDocument.Sections["Query"].Limits.Parentheses.RemoveAll()

Example 2: The following example shows you how to add parentheses

ActiveDocument.Sections["Query"].Limits.Parentheses.Add("State
Province", "City")

✰

Parentheses (Collection) 9-97

Methods: Add(), Item(NameOrIndex as Value), RemoveAll()

Properties: Read only: Count as Number
9-98 Objects

Parentheses (Object)

Member of: Limits collection

Description: Returns or sets parentheses around values on the limit line. In
Brio.Intelligence, enclosed sub-operations are represented by parentheses.
Sub-operations allow you to override the default evaluation order, and may be
required for certain operations involving both AND and OR operators.

Example 1: The following example shows you how to remove all parentheses on the Limit
line.

ActiveDocument.Sections["Query"].Limits.Parentheses.RemoveAll()

Example 2: The following example shows you how to remove the first parenthetical
expression.

ActiveDocument.Sections["Query"].Limits.Parentheses[1].Remove();

Example 3: The following example shows you how to count the number of parenthetical
expressions on the Limit line

Alert(ActiveDocument.Sections["Query"].Limits.Parentheses.Count);

Methods: Remove

Properties: Read only: BeginLimitName as String, EndLimitName as String, Name as
String
Parentheses (Object) 9-99

Path Field (Object)

Member of: Fields collection

Description: Returns the full path name of the document.

Example: The following example shows you how to wrap the entire file path name
within the path field.

ActiveDocument.Sections["Sales Report"].Body.Fields["Path Field"].TextWrap = true

Methods: Layer(BqLayer value), Spring(String Name), UnSpring()

Properties: Read-write: Formula as String, HorizontalAlignment as
BqHorizontalAlignment, Text as String, TextWrap as Boolean,
VerticalAlignment as BqVerticalAlignment

Read only: Name as String, Type as BqShapeType
9-100 Objects

PieChart (Object)

Member of: ChartSection Object

Description: The PieChart object represents pie chart settings.

Example: The following example shows you how to set the formatting for a specific pie
chart.

with(ActiveDocument.Sections["Chart"])
{
 PieChart.ShowLabels = true
 PieChart.ShowValues = true
 PieChart.ShowPercentages = false
 PieChart.ShowAllPositive = False
}

Methods: None

Properties: Read-Write Properties: Property Height As Number, Property Rotation As
Number, Property ShowAllPositive As Boolean, Property ShowLabels As
Boolean, Property ShowPercentages As Boolean, Property ShowValues As
Boolean
PieChart (Object) 9-101

PivotFact (Object)

Member of: PivotFacts Collection

Description: The PivotFact object represents an individual fact within a pivot.

Methods: AutoSizeHeight(), AutoSizeWidth(), Hide(), Remove()

Properties: Read-Write Properties: Property DataFunction As BqDataFunction, Property
Index As Long, Property NumberFormat As String

Read-Only Properties: Property Name as String
9-102 Objects

PivotFacts (Collection)

Member of: PivotSection Object

Description: The PivotFacts collection is a set of facts within a pivot section. These columns
are added to the facts groups in the outliner.

Tip All collections have a method named “Item(NameOrIndex).” This is the
default method for all collections and returns an item in the collection at a
particular index or with a specific name. For simplicity, the “[]” can be used in
place of the call to the “Item()” method. For example, the following statements
are identical in behavior:

myItem = Documents[1]
myItem = Documents.Item(1)
myItem = Documents["StartUp.bqy"]
myItem = Documents.Item("StartUp.bqy")

Example: The following example shows you how to add a number of request items to the
facts collections.

ActiveDocument.Sections["Pivot"].Facts.RemoveAll()
ActiveDocument.Sections["Pivot"].Facts.Add("Year")
ActiveDocument.Sections["Pivot"].Facts.Add("Region")

Methods: Add(RequestItemName As String, [Index as Number]) As PivotFact,
AddComputedItems(Name As String, [Index As Number]) As PivotFact,
Item(NameOrIndex) As PivotFact, RemoveAll()

Properties: Read-Only Properties: Property Count As Number

✰

PivotFacts (Collection) 9-103

PivotLabel (Object)

Member of: Pivot Labels Collection

Description: The PivotLabel object represents an individual (either a top or side) label
within a Pivot report.

Methods: AddTotals(), AutoSizeHeight(), AutoSizeWeight(), PivotTo([Index As
Number]), Remove(), SortByFact(FactName As String, SortFunction As
BqSortFunction, [SortOrder As BqSortOrder]), SortByLabel([SortOrder As
BqSortOrder])

Properties: Read-Only Properties: Property SortFactName As String, Property
SortFunction As BqSortFunction, Property SortOrder As BqSortOrder

Read-Write Properties: Property Index as Number, Property Name as String
9-104 Objects

PivotLabels (Collection)

Member of: PivotSection Object

Description: The PivotLabels collection consists of the pivot TopLabels and SideLabels
collections. These collections correspond to the labels within a pivot section.
These are columns added to the side and top labels groups in the outliner.

Tip All collections have a method named “Item(NameOrIndex).” This is the
default method for all collections and returns an item in the collection at a
particular index or with a specific name. For simplicity, the “[]” can be used in
place of the call to the “Item()” method. For example, the following statements
are identical in behavior:

myItem = Documents[1]
myItem = Documents.Item(1)
myItem = Documents["StartUp.bqy"]
myItem = Documents.Item("StartUp.bqy")

Example: The following example shows you how to add a number of request items to the
side and top labels collections.

ActiveDocument.Sections["SalesPivot"].TopLabels.RemoveAll()
ActiveDocument.Sections["SalesPivot"].SideLabels.RemoveAll()
ActiveDocument.Sections["SalesPivot"].TopLabels.Add("Year")

Methods: Add(RequestItemName As String, [Index as Number] As PivotLabel),
Item(NameOrIndex) As PivotLabel, RemoveAll()

Properties: Read-Only Properties: Property Count As Number

✰

PivotLabels (Collection) 9-105

PivotLabelTotals (Object)

Member of: SideLabel Object, TopLabel Object

Description: The PivotLabelTotals collection returns an additional row or column
containing the total for a top label or side label object. This feature
corresponds to selecting a pivot side label column or top label row and
invoking the Add Totals option from the Pivot menu.

Tip All collections have a method named "Item(NameOrIndex)." This is the
default method for all collections and returns an item in the collection at a
particular index or with a specific name. For simplicity, the "[]" can be used in
place of the call to the "Item()" method. For example, the following statements
are identical in behavior:

myItem = Documents[1]
myItem = Documents.Item(1)
myItem = Documents["StartUp.bqy"]
myItem = Documents.Item("StartUp.bqy")

Example 1: The following example shows you how to add a Totals column (using the
default data function of “sum”) for the “Product Line” from the Totals
collection or from the Toplabels collection.

ActiveDocument.Sections["SalesPivot"].TopLabels["Product Line"].Totals.Add()
or
ActiveDocument.Sections["SalesPivot"].TopLabels["Product Line"].AddTotals()

Example 2: The following example shows you how to determine the average using the data
function property and the totals collection.

ActiveDocument.Sections["SalesPivot"].TopLabels["Product Line"].Totals[1].
DataFunction=bqDataFunctionAverage
ActiveDocument.Sections["SalesPivot"].TopLabels["Product Line"].Totals.Add()

Methods: Add(), Item(NameOrIndex) As PivotLabelTotals,
RemoveAll()

Properties: Read-Only Properties: Property Count As Number

✰

9-106 Objects

PivotSection (Object)

Member of: Sections Collection

Description: The PivotSection object represents a pivot section.

Example: The following example shows you how to modify the top and side labels on a
pivot, and create a chart based on the new pivot.

with(ActiveDocument.Sections["Pivot"])
{
 TopLabels.Add("Year")
 SideLabels.Add("Winery")
 ChartThisPivot()
}

Methods: Activate(), ChartThisPivot() As ChartSection, Copy(), Duplicate(),
Export([Filename As String], [FileFormat As BqExportFileFormat],
[IncludeHeaders As Boolean], [Prompt As Boolean]), PrintOut([FromPage As
Number], [ToPage As Number], [Copies As Number], [Filename As String],
[Prompt As Boolean]), Recalculate(), RefreshDataNow(), Remove()

Properties: Read-Only Properties: Property Active As Boolean, Property Type As
BqSectionType

Read-Write Properties: Property Name As String, Property RefreshData As
BqRefreshData, Property ShowOutliner As Boolean, Property SurfaceValues
As Boolean, Property Visible As Boolean

Collections: SideLabels As PivotLabels, TopLabels As PivotLabels, Facts As PivotFacts,
DataLabels As DataLabels, CornerLabels As CornerLabels
PivotSection (Object) 9-107

Query Limit (Object)

Member of: Fields collection

Description: Sets a Query section limit field definition.

Example: The following example shows you how to add a second Query section limit
field to an existing Query section limit field programtically.

ActiveDocument.Sections["Report"].Body.Fields["Query Limit"].Formula=" \"State\"
+ ServerLimitValues(\"Query\", \"State\",\"\",\",\") + \" \"+ \"City \" +
ServerLimitValues(\"Query\", \"City\",\"\",\",\")"

Methods: Layer(BqLayer value), Spring(String Name), UnSpring()

Properties: Read-write: Formula as String, HorizontalAlignment as
BqHorizontalAlignment, Text as String, TextWrap as Boolean,
VerticalAlignment as BqVerticalAlignment

Read only: Name as String, Type as BqShapeType

Objects: LineFormat object, FillFormat object, FontFormat object
9-108 Objects

Query SQL (Object)

Member of: Fields collection

Description: Sets the last SQL (Structured Query Language) sent to the database when the
Process button (in Query) was used.

Example: The following example shows you how to identify the Query SQL field in an
Alert box.

Alert(ActiveDocument.Sections["Report"].Body.Fields["Query SQL"].Name)
Methods:Layer(BqLayer value), Spring(String Name), UnSpring()

Properties: Read-write: Formula as String, HorizontalAlignment as
BqHorizontalAlignment, Text as String, TextWrap as Boolean,
VerticalAlignment as BqVerticalAlignment

Read only: Name as String, Type as BqShapeType

Objects: LineFormat object, FillFormat object, FontFormat object
Query SQL (Object) 9-109

QuerySection (Object)

Member of: Sections Collection

Description: The QuerySection object represents a query section.

Example 1 The following example shows you how to build a Data Model using the Table
Catalog object. This example assumes that you are already connected to a
database.

with (ActiveDocument.Sections["Query"].DataModel)
{
 Topics.RemoveAll()
 AutoJoin = false
//Create two new topics from tables in table catalog
 Catalog.Refresh()
 Table1 =Catalog.CatalogItems["WINE"]
 Table2 =Catalog.CatalogItems["WINE_SALES"]
 Topics.Add(Table1)
 Topics.Add(Table2)
 Field1 = Topics[1].TopicItems["Wine Id"]
 Field2 = Topics[2].TopicItems["Wine Id"]
//Create a new join by joining two TopicItems together
 Joins.Add(Field1,Field2,bqJoinSimpleEqual)
// Now add topic items to the request line
 for (I = 1; I <= Topics[1].TopicItems.Count; I++)
 ActiveDocument.Sections["Query"].Requests.Add(
 Topics[1].Name, Topics[1].TopicItems[I].DisplayName)
}

Example 2 The following example shows you how to connect to an existing connection,
remove all the limits and process a query.

MyQuery = ActiveDocument.Sections["Query"]
MyQuery.DataModel.Connection.Username = "brio"
MyQuery.DataModel.Connection.SetPassword("brio")
MyQuery.DataModel.Connection.Connect()
MyQuery.Limits.RemoveAll()
MyQuery.Process()
RowReturned = ActiveDocument.Sections["Results"].RowReturned
Console.Writeln("Returned "+ RowReturned+" Rows!")
9-110 Objects

Methods: Activate(), Copy(), CustomSQLFrom(CustomSQLStr As String),
CustomSQLWhere([CustomSQLStr As String]), Duplicate(),
Export([Filename As String], [FileFormat As BqExportFileFormat],
[IncludeHeaders As Boolean], [Prompt As Boolean]),
ImportSQLFile(Filename As String, numColumns As Number),
PrintOut([FromPage As Number], [ToPage As Number], [Copies As
Number], [Filename As String], [Prompt As Boolean]), Process(),
ProcessStoredProc(), ProcessToTable(Tablename As String, ProcessType As
BqProcessType, [Grantee As String]), Recalculate(), Remove(),
ResetCustomSQL(), SetStoredProcProgram(Parameter As Value,
[ParamIndex As Number])

Properties: Read-Only Properties: Property Active As Boolean, Property
LastSQLStatement As String, Property QuerySize As Number, Property Type
As BqSectionType

Read-Write Properties: Property AutoProcess As Boolean, Property Name As
String, Property RowLimit As Number, Property RowLimitActive As Boolean,
Property SaveResults As Boolean, Property ShowOutliner As Boolean,
Property TimeLimit As Number, Property TimeLimitActive As Boolean,
Property UniqueRows As Boolean, Property Visible As Boolean

Objects: DataModel As DataModel

Collections: Requests As Requests, Limits As Limits, AggregateLimits As AggregateLimits,
SortItems as SortItems, AppendQueries As AppendQueries
QuerySection (Object) 9-111

RecentFiles (Collection)

Member of: Application Object

Description: The Recent Files collection is a collection of strings, which represent the list of
currently, opened Brio Intelligence documents.

Tip All collections have a method named “Item(NameOrIndex).” This is the
default method for all collections and returns an item in the collection at a
particular index or with a specific name. For simplicity, the “[]” can be used in
place of the call to the “Item()” method. For example, the following statements
are all identical in behavior:

myItem = Documents[1]
myItem = Documents.Item(1)
myItem = Documents["StartUp.bqy"]
myItem = Documents.Item("StartUp.bqy")

Example: The following example prints the list of recent files to the console window.

for (j = 1; j <= RecentFiles.Count; j++)
 Console.Writeln("File #" + j + "=" + RecentFiles[j])

Methods: Item(NameOrIndex) As String

Properties: Read-Only Properties: Property Count As Number

✰

9-112 Objects

ReportChart (Object)

Member of: ReportChart collection

Description: The ReportChart object represents a chart object in the Charts collection of the
Report section.

This object corresponds to inserting a Smart Chart in the Report section,
When you insert a chart object in the report section, a proportional copy is
placed in every band instance. Any chart dropped into a header/footer that is
"owned" by data will be focused by that piece of data. Smart Charts are smart
because only the corresponding section of the embedded report appears in
each band instance.

Example: The following example shows you how to spring a Chart report and a Pivot
report in the Body band.

ActiveDocument.Sections["Report"].Body.Charts["Chart"].Spring("Pivot")

Methods: Layer(Value as BqLayer), String(Name as String), UnSpring()

Properties: Read Only: Name as String
ReportChart (Object) 9-113

ReportCharts (Collection)

Member of: ReportHeader object, ReportFooter object, PageHeader object, PageFooter
object, Body object

Description: The Report Chart collection represents all "smart" chart objects in the report
section.

When you insert a chart object in the report section, a proportional copy is
placed in every band instance. Any chart dropped into a header/footer that is
"owned" by data will be focused by that piece of data. Smart Charts are smart
because only the corresponding section of the embedded report appears in
each band instance.

Example: The following example shows you how to count and display in an Alert box the
number of smart Chart reports.

Alert(ActiveDocument.Sections["Report"].Body.Charts.Count)

Methods: Item(NameOrIndex as Name)

Properties: Read Only: Count as Number

Objects: ReportChart object
9-114 Objects

ReportFooter (Object)

Member of: ReportSection object

Description: The ReportFooter object represents the attributes of the report footer group.
Typically, the report footer is a summarizing band of information and prints
only on the very last page of the report.

Example: The following example shows you how to add a rose fill color to the report
footer.

ActiveDocument.Sections["Report"].ReportFooter.Fill.Color = 16751052

Methods: None

Properties: Read-Write Properties: KeepTogether as Boolean, KeepWithNext as Boolean,
PageBreak as BqPageBreak, Visible as Boolean

Objects: LineFormat object, FillFormat object, Tables collection, Fields collection,
Shapes collection, Shapes Collection, Pivots collection, Pivot collection, Chart
collection
ReportFooter (Object) 9-115

ReportGroup (Object)

Member of: ReportSection object

Description: The ReportGroup object represents the attributes of the topmost level from
which to structure data in a report. When you drag an item from the Catalog
pane into the Report Group Outliner, Brio Intelligence automatically supplies
a group header band and adds a label inside the band, which identifies the
group. A group header categorizes data into repeating collections of records in
a header band. A ReportGroup object can also be added to a group footer
band in addition to or instead of the group header band.

Example: The following example shows you how to remove the objects in the
ReportGroup.

ActiveDocument.Sections["Report"].Groups["Report Group1"].Remove()

Methods: Move(LabelNameBefore as String), Remove()

Properties: Read only: Name as String

Objects: ReportGroup Header, ReportGroup Footer, LineFormat object, FillFormat
object, Tables collection, Fields collection, Shapes collection, Pivots collection,
Pivot collection, Chart collection
9-116 Objects

ReportHeader (Object)

Member of: ReportSection object

Description: The ReportHeader object represents the attributes of the report header group.
Typically, the report headers is a summarizing band of information. The
report header prints on the very first page of the report only.

Example: The following example shows you how to instruct Brio Intelligence not to split
the report header band when a break is encountered. If Brio Intelligence does
encounter a break, the entire report header will be moved to the next page.

Documents["Salesreport.bqy"].Sections["Report"].ReportHeader.KeepTogether

Methods: None

Properties: Read-Write Properties: KeepTogether as Boolean, KeepWithNext as Boolean,
PageBreak as BqPageBreak, Visible as Boolean

Objects: LineFormat object, FillFormat object, Tables collection, Fields collection,
Shapes collection, Pivots collection, Chart collection
ReportHeader (Object) 9-117

ReportName Field (Object)

Member of: Fields collection

Description: Returns or sets the report name field.

Tip Be sure to include the Recalculate() method when using this object.

Example : The following example shows you how to concatenate the name of the report
and the current date:

ActiveDocument.Sections["Sales Report"].ReportHeader.Fields["ReportName
Field"].Formula = "ReportName() + ' ' + new Date()"
ActiveDocument.Sections["Sales Report"].Recalculate()

Methods: Layer(BqLayer value), Spring(String Name), UnSpring()

Properties: Read-write: Formula as String, HorizontalAlignment as
BqHorizontalAlignment, Text as String, TextWrap as Boolean, Vertical
Alignment as BqVerticalAlignment

Read Only: Name as String, Type as BqShapeType

✰

9-118 Objects

ReportPivot (Object)

Member of: ReportPivot collection

Description: The ReportPivot object represents a pivot object in the Pivot collection of the
Report section.

This object corresponds to inserting a Smart Pivot report in the Report
section, When you insert a pivot object in the report section, a proportional
copy is placed in every band instance. Any pivot dropped into a header/footer
that is "owned" by data will be focused by that piece of data. Smart pivots are
smart because only the corresponding section of the embedded report appears
in each band instance.

Example: The following example shows you how to layer a Smart Pivot report to the
front of a stack.

ActiveDocument.Sections["Report"].Body.Pivots["Pivot"].Layer(bqLayerFront)

Methods: Layer(Value as BqLayer), Spring(Name as String), UnSpring()

Properties: Read Only: Name as String
ReportPivot (Object) 9-119

ReportPivot (Collection)

Member of: ReportHeader object, ReportFooter object, PageHeader object, PageFooter
object, Body object

Description: The Report Pivot collection represents all "smart" pivot objects in the report
section.

When you insert a pivot object in the report section, a proportional copy is
placed in every band instance. Any pivot dropped into a header/footer that is
"owned" by data will be focused by that piece of data. Smart Pivot reports are
smart because only the corresponding section of the embedded report appears
in each band instance.

Example: The following example shows you how to count the number of pivot reports
that have been inserted in the Body band of the report:

Alert(ActiveDocument.Sections["Report"].Body.Pivots.Count)

Methods: Item(NameOrIndex as Name)

Properties: Read Only: Count as Number

Objects: ReportPivot object
9-120 Objects

ReportTable (Object)

Member of: ReportTable collection

Description: The ReportTable object represents a specific table object contained within a
specific report section object

In the user interface, tables are created with dimension columns and fact
columns, where the distinction is typically text versus numeric content. These
tables are quite flexible structures in that several tables may be introduced into
each band; each originating from the same or different result sets in the
document.

Example: The following example shows you how to simulate the look of a green bar
report by alternating the color scheme of every other row between green and
white.

ActiveDocument.Sections["Report"].Body.Tables["Table"].BackgroundColor =
bqLightGreen

ActiveDocument.Sections["Report"].Body.Tables["Table"].BackgroundAlternateColor =
bqWhite

ActiveDocument.Sections["Report"].Body.Tables["Table"].BackgroundAlternateFrequen
cy = 1
ReportTable (Object) 9-121

ReportTables (Collection)

Member of: Body object, PageHeader object, PageFooter object, ReportHeader object,
ReportFooter object,

Description: The ReportTable collection represents all the table objects contained in a
specific report section object.

Example: The following example uses the Count property to determine the number of
tables in the Body band of the report and write it to the Console window.

Console.Write(ActiveDocument.Sections["Report"].Body.Tables.Count)

Methods: Spring as Sting Name, UnSpring

Properties: Read-Write: Property BackgroundAlternateColor as BqColorType,
BackgroundAlternateFrequency as Number, BackgroundColor as BqColor
Type, BackgroundShowAlternate Color as Boolean, BorderColor as
BqColorType, BorderWidth as Number,

Read only: Property Name as String
9-122 Objects

Request (Object)

Member of: Requests Collection

Description: The Request object represents an individual, request line item.

Example: The following example prints out the display name and data type of each item
on the request line.

var count = ActiveDocument.Sections["Query"].Requests.Count
for(i=1;i<=count;i++)
{
 myRequest = ActiveDocument.Sections["Query"].Requests[i]
 switch(myRequest.DataType)
{
 case 1:
 myType = "String"
 break;
 case 2:
 myType = "Integer"
 break;
 case 3:
 myType = "Number"
 break;
 case 4:
 myType = "Date"
 break;
 default:
 myType = "Unknown"
}
Console.Write(myRequest.DisplayName +" DataType ="+myType+"\r\n")
}

Methods: Remove()

Properties: Read-Only Properties: Property SQLName As String

Read-Write Properties: Property DataType As BqDataType, Property
DisplayName As String, Property Visible As Boolean
Request (Object) 9-123

Requests (Collection)

Member of: QuerySection Object

Description: The Requests collection is a collection of items on the request line.

Tip All collections have a method named “Item(NameOrIndex).” This is the
default method for all collections and returns an item in the collection at a
particular index or with a specific name. For simplicity, the “[]” can be used in
place of the call to the “Item()” method. For example, the following statements
are all identical in behavior:

myItem = Documents[1]
myItem = Documents.Item(1)
myItem = Documents["StartUp.bqy"]
myItem = Documents.Item("StartUp.bqy")

Example: The following example shows you how to remove all the request line items and
add new items based on the topics in the query.

with(ActiveDocument.Sections["Query"])
 {
 Requests.RemoveAll()
 for (I = 1; I <= DataModel.Topics[1].TopicItems.Count; I++)
 {
 TopicName = Topics[1].Name
 TopicItemName = Topics[1].TopicItems[I].DisplayName
 Requests.Add(TopicName,TopicItemName)
 }
 }

Methods: Add(TopicName As String, TopicItemName As String) As Request,
AddComputedItem(Name As String, Expression As String, Type As
BqDataType) As Request, Item(NameOrIndex) As Request, RemoveAll()

Properties: Read-Only Properties: Property Count As Number

✰

9-124 Objects

Results (Object)

Member of: Results Collection

Description: The Results object represents an individual results set in a table catalog.

Methods: None

Properties: Read-Only Properties: Property Name As String
Results (Object) 9-125

Results (Collection)

Member of: DMCatalog Object

Description: The Results collection is a collection of local results sets in a table catalog.

Tip All collections have a method named “Item(NameOrIndex).” This is the
default method for all collections and returns an item in the collection at a
particular index or with a specific name. For simplicity, the “[]” can be used in
place of the call to the “Item()” method. For example, the following statements
are all identical in behavior:

myItem = Documents[1]
myItem = Documents.Item(1)
myItem = Documents["StartUp.bqy"]
myItem = Documents.Item("StartUp.bqy")

Example: The following example shows you how to get a count of the LocalResults in the
Table Catalog.

ResultSetCount=ActiveDocument.Sections["Query2"].DataModel.Catalog.Results.Count

Methods: Item(NameOrIndex) As DMResult

Properties: Read-Only Properties: Property Count As Number

✰

9-126 Objects

Result Limit (Object)

Member of: Fields collection

Description: Sets a Results limit field definition.

Example: The following example shows you how to add a second Results section limit
field to an existing Results section limit field programtically.

ActiveDocument.Sections["Report"].Body.Fields["Result Limit"].Formula=" \"State\"
+ LocalLimitValues(\"Results\", \"State Province\",\"\",\",\") + \" \"+ \"City
\" + LocalLimitValues(\"Results\", \"City\",\"\",\",\")"

Methods: Layer(BqLayer value), Spring(String Name), UnSpring()

Properties: Read-write: Formula as String, HorizontalAlignment as
BqHorizontalAlignment, Text as String, TextWrap as Boolean,
VerticalAlignment as BqVerticalAlignment

Read only: Name as String, Type as BqShapeType

Objects: LineFormat object, FillFormat object, FontFormat object
Result Limit (Object) 9-127

RightAxis (Object)

Member of: ValuesAxis Object

Example: The following example shows you how to set basic properties for the right axis.

with(ActiveDocument.Sections["Chart"].ValuesAxis)
{
RightAxis.AutoScale = true
RightAxis.ShowLabel = false
RightAxis.LabelText = "Right Axis"
}

Methods: None

Properties: Read-Write Properties: Property AutoScale As Boolean, Property LabelText
As String, Property ScaleMax As Number, Property ScaleMin As Number,
Property ShowLabel As Boolean
9-128 Objects

Section (Object)

Member of: Sections Collection

Description: The Section object represents the base object from which all section objects are
derived.

Methods: Activate(), Copy(), Duplicate(), Export(Filename As String, FileFormat As
BqExportFileFormat, [IncludeHeaders As Boolean]), Paste(),
PrintOut([FromPage As Long], [ToPage As Long], [Copies As Long],
[Filename As String]), PrintPreview(), Recalculate(), Remove()

Properties: Read-Only Properties: Property Active As Boolean, Property LastPrinted As
Date, Property Type As BqSectionType

Read-Write Properties: Property Index As Long, Property Name As String,
Property Visible As Boolean
Section (Object) 9-129

Sections (Collection)

Member of: Document Object

Description: The Sections collection represents all the sections, contained within a single
document.

Tip All collections have a method named “Item(NameOrIndex).” This is the
default method for all collections and returns an item in the collection at a
particular index or with a specific name. For simplicity, the “[]” can be used in
place of the call to the “Item()” method. For example, the following statements
are identical in behavior:

myItem = Documents[1]
myItem = Documents.Item(1)
myItem = Documents["StartUp.bqy"]
myItem = Documents.Item("StartUp.bqy")

Example: The following example shows how to create new report and query sections.

In the case of report sections (Chart and Pivot) the “SectionDependency”
parameter must be set or this method will fail. This is because all Charts and
Pivots must be associated with a query or results set.

MySection = ActiveDocument.Sections.Add(bqChart,"Query")
or
MySection = ActiveDocument.Sections.Add(bqPivot,"Results")
MySection.Name = "New Chart"
//Adding Queries does not require a section dependence
MySection = ActiveDocument.Sections.Add(bqQuery)

Methods: Add(SectionType As BqSectionType, [SectionDependency as String]) As
Section, ImportDataFile(FileName As String, Format As
BqImportDataFileFormat), Item(NameOrIndex) As Section

Properties: Read-Only Properties: Property Count As Number

✰

9-130 Objects

SelectedList (Object)

Member of: ListBoxControl Object

Description: The SelectedList object represents all of the selected items within a list box.

Example: The following example shows you how to add the selected items from a listbox
control to a preexisting results limit.

ActiveDocument.Sections["Results"].Limits[1].SelectedValues.RemoveAll()
for(I = 1; I <= ListBox.SelectedList.Count;I++)
{
 NewLimitValue = ListBox.SelectedList[I]

ActiveDocument.Sections["Results"].Limits[1].SelectedValues.Add(NewLimitValue)
}

Methods: Item(Index As Number) As String, ItemIndex(Index As Number) As Number

Properties: Read-Only Properties: Property Count As Number
SelectedList (Object) 9-131

Session (Object)

Member of: Application Object

Description: The session object refers to the current Web browser’s session variables. The
Session object contains 3 collections, which logically group a browser’s
different type of data variables. The session object applies to the Web plug-ins
but is visible in the client server product to support script testing. To activate
the session object you must include the key value pair JScript=enable in the
URL. Please refer to the “URL (Collection)” on page 9-150 and “Form
(Collection)” on page 9-54 for more information.

Example: The following script shows how to determine if a session is active and process
the session variables.

//Session.Active = true if the script is running in the plug-in and JScript=enable
if (Session.Active)
 Alert("Your web username is ="+ Session.Cookies["BRIOUSER"], "Web
Username")
else
 Alert("You are not running a plug-in or you have not added the
JScript=enable key value pair to your URL")

Methods: None

Properties: Read-Only Properties: Property Active As Boolean

Collections Form as Form, Cookies as Cookies, URL as URL
9-132 Objects

Shape (Object)

Member of: Shapes Collection

Description: The Shape object represents an individual EIS graphic item contained in a
Shapes collection. Certain properties only apply to specific shape objects. For
example, PictureEffect property applies to a picture object and does NOT
apply to a line object. If you refer to a property that does not apply to the
object, no action occurs.

Example: The following example shows you how to change the properties of drawing
objects contained in an EIS section. The example assumes that the script is
running from the same EIS section. This allows the direct access to the drawing
objects by name.

Line1.DashStyle=bqDashStyleDotDash
Line1.LineWidth = 3
//note you may use Hex values instead of enumerated types for any color property
Rect1.BorderColor = bqBlue
Rect1.Line.DashStyle=bqDashStyleDotDash
TextLabel.Text = "Welcome to Brio Enterprise Scripting"
TextLabel.Font.Style = bqFontStyleBoldItalic

Methods: OnClick()

Properties: Read-Only Properties: Property Active As Boolean, Property Group As String,
Property Name As String, Property RowCount As Number, Property
RowNumber As Number, Property Type As BqShapeType

Read-Write Properties: Property Alignment As BqHorizontalAlignment,
Property Checked As Boolean, Property Enabled As String, Property
ScrollbarsAlswaysShown As Boolean, Property ShowOutliner As Boolean,
Property ShowRowNumber As Boolean, Property Text As String, Property
VerticalAlignment As BqVerticalAlignment, Property Visible As Boolean

Objects Fill As Fill, Line As Line
Shape (Object) 9-133

Shapes (Collection)

Member of: EISSection Object

Description: The Shapes collection represents all the graphic objects contained in a specific
EIS tab.

Tip All collections have a method named “Item(NameOrIndex).” This is the
default method for all collections and returns an item in the collection at a
particular index or with a specific name. For simplicity, the “[]” can be used in
place of the call to the “Item()” method. For example: The following
statements are identical in behavior:

myItem = Documents[1]
myItem = Documents.Item(1)
myItem = Documents["StartUp.bqy"]
myItem = Documents.Item("StartUp.bqy")

Methods: Item(NameOrIndex) As Shape

Properties: Read-Only Properties: Property Count As Number

✰

9-134 Objects

SharedLibrary (Object)

Member of: Application Object

Description: The SharedLibrary object represents an external, dynamically linked library.

Example: The following example shows how to call a function from a local dll.

MyLibrary = Application.LoadSharedLibrary("c:\\temp\mydll.dll")
MyLibrary.Call("SetTransaction","String",Value1)

Methods: Call(sFunctionName As String, sArgumentType As String, [arg1], [arg2],
[arg3], [arg4], [arg5], [arg6], [arg7], [arg8])
SharedLibrary (Object) 9-135

SortItems (Collection)

Member of: QuerySection Object, ResultsSectionObject, TableSection Object

Description: The SortItems collection is the collection of sorts within a Query, Results or
Table section.

In the Query section, sort line objects must be columns that are on the Request
line since theses are the only objects that can be placed on the Sort line. In the
Results and Table section, sort line objects have to be columns in the Results
set.

The SortItems collection provides you with the ability to create Sort Line
objects (column names), add them to the Sort Line, specify a sort order, and
force an immediate sort (for Results and Table).

When you use the Add, Move and/or Remove methods with this collection
and the SuspendCalculation property is set to true (which it is by default), then
you must use the Recalculate method to force the Report section to recalculate
itself.

Tip All collections have a method named “Item(NameOrIndex).” This is the
default method for all collections and returns an item in the collection at a
particular index or with a specific name. For simplicity, the “[]” can be used in
place of the call to the “Item()” method. For example: The following
statements are identical in behavior:

myItem = Documents[1]
myItem = Documents.Item(1)
myItem = Documents["StartUp.bqy"]
myItem = Documents.Item("StartUp.bqy")

Example 1: The following example shows you how to remove all sort line objects
(columns) and then how to add a sort line item in the Results section.

ActiveDocument.Sections["SalesResults"].SortItems.RemoveAll()
ActiveDocument.Sections["SalesResults"].SortItems.Add("Quarter")
ActiveDocument.Sections["SalesResults"].SortItems.SortNow()

✰

9-136 Objects

Example 2: The following example shows you how to establish an ascending sort order in
the Query section.

ActiveDocument.Sections["SalesQuery"].SortItems[1].SortOrder=bqSortAscend

Example 3: The following example shows you how to remove a sort “Product Id” sort
from the Sort line in the Results section.

ActiveDocument.Sections["Results"].SortItems["Product Id"].Remove()

Methods: Add(Request As String), Item(NameOrIndex) As SortItem, RemoveAll(),
SortNow()

Properties: Read-Only Properties: Property Count As Number

Collections AppendQueries As AppendQueries
SortItems (Collection) 9-137

TableFact (Object)

Member of: TableFact collection

Description:

Sets the measurable or quantifiable fact objects that makes up the body of the
report. Brio Intelligence quantifies values by group header and dimension. If
you have a descriptive numeric value that should not be calculated, such as
Retail Price or Target Sales, use the table dimension object instead of a fact
object.

Example 1: The following example shows you how to remove the "Unit Sales" object from
table facts.

ActiveDocument.Sections["Report"].Body.Tables["Table"].Facts["Unit
Sales"].Remove()

Example 2: The following example shows you how to align left horizontal text within a fact
column.

ActiveDocument.Sections["Report"].Body.Tables["Table"].Facts["Amount
Sales"].HorizontalAlignment = bqAlignLeft

Example 3: The following example shows you how not to display the column total for the
"Unit Sales" fact object.

ActiveDocument.Sections["Report"].Body.Tables
["Table"].Facts["Unit Sales"].ShowColumnTotal = false

Methods: Move(LabelNameBefore as String), Remove()

Properties: Read-write: BackgroundAlternateColor as BqColorType,
BackgroundAlternateFrequency as Number, BackgroundColor as
BqColorType, BackgroundAlternateColor as Boolean, DataFunction as
BqDataFunction, HorizontalAlignment as BqHorizontalAlignment,
NumberFormat as String, ShowColumnTotal as Boolean, SuppressDuplicates
as Boolean, TextWrap as Boolean, VerticalAlignment

Read Only: Name as String
9-138 Objects

TableFacts (Collection)

Member of: ReportTable object

Description: The TableFacts collection represents all table fact objects in the report section.

Tip When you use the Add, Move and/or Remove methods with this collection
and the SuspendCalculation property is set to true (which it is by default), then
you must use the Recalculate method to force the Report section to recalculate
itself.

Example 1: The following example shows you how add the "Unit Sales" column to the
table:

ActiveDocument.Sections["Report"].Body.Tables["Table"].Facts.Add("Unit Sales")
ActiveDocument.Sections["Report"].Recalculate()

Example 2: The following example shows you how to use the AddComputed method to
divide the "Amount Sales" column by the "Unit Sales" column and display the
results in a new computed column called "My Computed":

var myStr ="Tables(\"Results\").Columns(\"Amount_Sales\").Sum(currBreak) /
Tables(\"Results\").Columns(\"Unit_Sales\").Sum(currBreak)";
ActiveDocument.Sections["Report"].Body.Tables["Table"].Facts.AddComputed("MyCompu
ted", myStr,bqDataTypeNumber)
ActiveDocument.Sections["Report"].Recalculate()

Example 3: The following example shows you to how to count the number of tables in the
body of the report section:

Alert(ActiveDocument.Sections["Report"].Body.Tables["Table"].Facts.Count," Number
of Tables")
ActiveDocument.Sections["Report"].Recalculate()

Methods: Add(NewFact as String, [optional] MoveBeforeName as String),
AddComputed(Name as String, Expression as String), Item(NameOrIndex as
Value), ModifyComputed(OldName as String, NewName as String,
Expression as String), RemoveAll()

Properties: Read Only: Count as Number

✰

TableFacts (Collection) 9-139

TableSection (Object)

Member of: Sections Collection

Description: The TableSection object represents a results or table section, contained within
a document.

Example: The following example shows you how to print the names of all the columns to
the console window.

MyResults = ActiveDocument.Sections["Results"]
ColumnCount = MyResults.Columns.Count
for (I=1;I<= ColumnCount;I++)
Console.Write("Column#"+I+":"+MyResults.Columns[I].Name+"\r\n")

Methods: Activate(), Copy(), Duplicate(), Export([Filename As String], [FileFormat As
BqExportFileFormat], [IncludeHeaders As Boolean], [Prompt As Boolean]),
GetCell(nRow As Number, nCol As Number) As Value, PrintOut([FromPage
As Number], [ToPage As Number], [Copies As Number], [Filename As
String], [Prompt As Boolean]), Recalculate(), Remove()

Properties: Read-Only Properties: Property Active As Boolean, Property RowCount As
Number, Property Type As BqSectionType

Read-Write Properties: Property Name As String, Property ShowOutliner As
Boolean, Property ShowRowNumbers As Boolean, Property Visible As
Boolean

Collections: Limits As Limits, Columns As Columns, SortItems as SortItems
9-140 Objects

Time Field (Object)

Member of: Fields collection

Description: Sets the current time in HH:MM AM/PM format.

Example: The following example shows you how to reposition the Time Field object
behind another object (such as a shape object).

ActiveDocument.Sections["Sales Report"].PageFooter.Fields["Time
Field"].Layer(bqLayerBack)

Methods:
Layer(BqLayer value), Spring(String Name), UnSpring()

Properties: Read-write: Formula as String, HorizontalAlignment as
BqHorizontalAlignment, Text as String, TextWrap as Boolean,
VerticalAlignment as BqVerticalAlignment

Read only: Name as String, Type as BqShapeType

Objects: LineFormat object, FillFormat object, FontFormat object
Time Field (Object) 9-141

TimeNow Field (Object)

Member of: Fields collection

Description: Sets the current time HH:MM:SS format.

Note that this object represents the time when the TimeNow field is first added
to the report and it will never change.

Example: The following example shows you how to concatenate the string: "Last
Updated on: " and the date on which the TimeNow field was added to the
report.

ActiveDocument.Sections["Sales Report"].ReportHeader.Fields["TimeNow
Field"].Formula = "Last Updated:" + ' ' + new Date()

Methods: Layer(BqLayer value), Spring(String Name), UnSpring

Properties: Read-write: Formula as String, HorizontalAlignment as
BqHorizontalAlignment, Text as String, TextWrap as Boolean,
VerticalAlignment as BqVerticalAlignment

Read only: Name as String, Type as BqShapeType

Objects: LineFormat object, FillFormat object, FontFormat object
9-142 Objects

Toolbar (Object)

Member of: Toolbars Collection

Description: The Toolbar object represents an individual toolbar, contained in the
application.

Example: The following example shows you how to hide all the toolbars in the
application.

for(I = 1; I <= Application.Toolbars.Count;I++)
{
 MyToolbar = Application.Toolbars[I]
 MyToolbar.Visible = false
}

Methods: None

Properties: Read-Only Properties: Property Name As String, Property Type As
BqToolbars

Read-Write Properties: Property Visible As Boolean

TimeNow Field (Object)

Member of:Fields collection

Description: Sets the current time HH:MM:SS format.

Note that this object represents the time when the TimeNow field is first added
to the report and it will never change.

Example:The following example shows you how to concatenate the string:
"Last Updated on: " and the date on which the TimeNow field was added to the
report.

ActiveDocument.Sections["Sales Report"].ReportHeader.Fields["TimeNow
Field"].Formula = "Last Updated:" + ' ' + new Date()

Methods:Layer(BqLayer value), Spring(String Name), UnSpring
Toolbar (Object) 9-143

Properties:Read-write: Formula as String, HorizontalAlignment as
BqHorizontalAlignment, Text as String, TextWrap as Boolean,
VerticalAlignment as BqVerticalAlignment

Read only: Name as String, Type as BqShapeType

Objects:LineFormat object, FillFormat object, FontFormat object
9-144 Objects

Toolbars (Collection)

Member of: Application Object

Description: The Toolbars collection represents all the toolbars, contained within the
application.

Tip All collections have a method named “Item(NameOrIndex).” This is the
default method for all collections and returns an item in the collection at a
particular index or with a specific name. For simplicity, the “[]” can be used in
place of the call to the “Item()” method. For example: The following
statements are identical in behavior:

myItem = Documents[1]
myItem = Documents.Item(1)
myItem = Documents["StartUp.bqy"]
myItem = Documents.Item("StartUp.bqy")

Example: The following example shows you how to hide all the toolbars in the
application.

for(I = 1; I <= Application.Toolbars.Count;I++)
Application.Toolbars[I].Visible = false

Methods: Item(NameOrIndex) As Toolbar

Properties: Read-Only Properties: Property Count As Number

✰

Toolbars (Collection) 9-145

Topic (Object)

Member of: DataModel Object

Description: The Topic object represents a topic in a data model or query section.

Example: The following example shows you how to print the names of all the topics in a
Data Model to the console window.

with(ActiveDocument.Sections["Query"].DataModel)
{
 TopicsCount = Topics.Count
 for(I=1;I<= TopicsCount;I++)
 Console.Write(Topics[I].DisplayName+"\r\n")
}

Methods: Remove()

Properties: Read-Only Properties: Property PhysicalName As String, Property Type As
BqTopicType

Read-Write Properties: Property DisplayName As String, Property View As
BqTopicView

Collections: TopicItems As TopicItems,
9-146 Objects

TopicItem (Object)

Member of: Topic Object

Description: The TopicItem object represents an individual field within a topic.

Example: The following example shows you how to print the names of all the topics and
topic items in a Data Model to the console window.

with(ActiveDocument.Sections["Query"].DataModel)
{
TopicsCount = Topics.Count
for(I=1;I<= TopicsCount;I++)
{
 Console.Write(Topics[I].DisplayName+"\r\n")
 TopicItemsCount = Topics[I].TopicItems.Count
 for(j=1;j<= TopicItemsCount;j++)
 Console.Write(Topics[I].TopicItems[j].DisplayName)
 }
}

Methods: None

Properties: Read-Only Properties: Property PhysicalName As String

Read-Write Properties: Property DisplayName As String, Property Visible As
Boolean
TopicItem (Object) 9-147

TopicItems (Collection)

Member of: Topic Object

Description: The TopicItems collection represents all of the fields, contained within an
individual topic.

Tip All collections have a method named “Item(NameOrIndex).” This is the
default method for all collections and returns an item in the collection at a
particular index or with a specific name. For simplicity, the “[]” can be used in
place of the call to the “Item()” method. For example, the following statements
are identical in behavior:

myItem = Documents[1]
myItem = Documents.Item(1)
myItem = Documents["StartUp.bqy"]
myItem = Documents.Item("StartUp.bqy")

Example: The following example shows you how to print the names of all the topics and
topic items in a Data Model to the console window.

with(ActiveDocument.Sections["Query"].DataModel)
{
TopicsCount = Topics.Count
for(I=1;I<= TopicsCount;I++)
{
Console.Write("\r\nTopic - "+Topics[I].DisplayName+"\r\n")
TopicItemsCount = Topics[I].TopicItems.Count
for(j=1;j<= TopicItemsCount;j++)
Console.Write(Topics[I].TopicItems[j].DisplayName)
}
}

Methods: Item(NameOrIndex) As TopicItem

Properties Read-Only Properties: Property Count As Number

✰

9-148 Objects

Topics (Collection)

Member of: DataModel Object

Description: The Topics collection is a collection of all topics in the Data Model.

Tip All collections have a method named “Item(NameOrIndex).” This is the
default method for all collections and returns an item in the collection at a
particular index or with a specific name. For simplicity, the “[]” can be used in
place of the call to the “Item()” method. For example, the following statements
are identical in behavior:

myItem = Documents[1]
myItem = Documents.Item(1)
myItem = Documents["StartUp.bqy"]
myItem = Documents.Item("StartUp.bqy")

Example: The following example shows you how to print the names of all the topics and
topic items in a Data Model to the console window.

with(ActiveDocument.Sections["Query"].DataModel)
{
TopicsCount = Topics.Count
for(I=1;I<= TopicsCount;I++)
{
Console.Write(Topics[I].DisplayName)
TopicItemsCount = Topics[I].TopicItems.Count
for(j=1;j<= TopicItemsCount;j++)
Console.Write(Topics[I].TopicItems[j].DisplayName)
}
}

Methods: Add(TableObject As DMCatalogItem) As Topic, Item(NameOrIndex) As
Topic, RemoveAll()

Properties: Read-Only Properties: Property Count As Number

✰

Topics (Collection) 9-149

URL (Collection)

Member of: Session Object

Description: The URL collection represents a list of key value pairs generated from a GET
method invocation in the current browser. URL key value pairs are variables,
which are appended to the end of a URL in a Web browser.

For example:

http://www.yourserver.com&name=test&version=6.0&jscript=enable

has two key value pairs, Name and Version. The URL collection provides read-
only access to these variables. Since URLs are browser based this collection
only applies to the plug-in products. However, the URL collection is exposed
in the client server products to assist in developing plug-in scripts.

Tip All collections have a method named “Item(NameOrIndex).” This is the
default method for all collections and returns an item in the collection at a
particular index or with a specific name. For simplicity, the “[]” can be used in
place of the call to the “Item()” method. For example, the following statements
are identical in behavior:

myItem = Documents[1]
myItem = Documents.Item(1)
myItem = Documents["StartUp.bqy"]
myItem = Documents.Item("StartUp.bqy")

Example: The following example shows how to read the values from a URL and use them
inside a script running on the plug-in.

http://www.yourserver.com&app=brioquery&group=pm&userid=2020&jscript=enable/
// Write the URL information to the console window.
BaseURL = Application.URL
Console.Write ("The URL of my server is = "+BaseURL)
Console.Write ("The value App variable is = " + Session.URL["App"])
Console.Write ("The value Group variable is = " + Session.URL["Group"])
Console.Write ("The value UserID variable is = " + Session.URL["UserID"])

Methods: Add(Key As String, Value As String), Item (Key As String) As String

✰

9-150 Objects

ValuesAxis (Object)

Member of: ChartSection Object

Description: The ValuesAxis object logically represents all the properties of a charts values
axis.

Example: The following example shows you how to set some basic properties for the left
axis.

with(ActiveDocument.Sections["Chart"])
{
ValuesAxis.LeftAxis.AutoScale = true
ValuesAxis.LeftAxis.ShowLabel = false
ValuesAxis.RightAxis.AutoScale = true
ValuesAxis.RightAxis.ShowLabel = false
ValuesAxis.RightAxis.LabelText = "Right Axis"
}

Methods: None

Properties: Read-Write Properties: Property ShowIntervalTickmarks As Boolean,
Property ShowIntervalValues As Boolean, Property ShowValuesAtRight As
Boolean

Objects LeftAxis As LeftAxis, RightAxis As RightAxis
ValuesAxis (Object) 9-151

WebClientDocument (Object)

Member of: Documents Collection, Application Object

Applies to Insight and Quickview only

Description: The WebClientDocument object represents a document that has been opened
inside a Brio Web application. This object, which is based on a document
object, has similar methods and properties. A WebClientDocument also has
methods and properties which are specific to Web environments.

Example: The document object may be referenced by enumerating the documents
collection object or by referring to the ActiveDocument object. For example,
the following commands all set myDoc to the same document object.

myDoc = Documents[1]
or
myDoc = Documents["Testdoc.bqy"]
or if "Testdoc.bqy" is the current document then
myDoc = ActiveDocument
In the following example all of the Web specific properties and methods are shown.
//ReConnect to the OnDemand Server from a local saved insight document
//and process a query. Note: Example assumes document is using
//passthrough mode.
ActiveDocument.ODSUsername = "brio"
ActiveDocument.SetODSPassword("briobrio")
ActiveDocument.Sections["Query"].Process()
//Prints the Adaptive State and the URL of the document
isODSDocument = true
switch (ActiveDocument.AdaptiveState)
{
 case bqStateNormal:
 Message = "Document not registered with Ondemand Server."
 isODSDocument = false
 break;
 case bqStateViewOnly:
 Message = "Adaptive state =View Only."
 break;
 case bqStateViewProcess:
 Message = "Adaptive state =View and Process."
 break;
 case bqStateAnalyzeOnly:
 Message = "Adaptive state = Analyze Only."
 break;
 case bqStateAnalyzeProcess:
 Message = "Adaptive state =
Analyze and Process."
9-152 Objects

 break;
 case bqStateQueryAnalyze:
 Message = "Adaptive state = Query and Analyze."
 break;
 default:
 Message = "Not a web based document."
 isODSDocument = false
}
if(isODSDocument)
 URLString = "OnDemand Server URL = "+ActiveDocument.URL
else
 URLString = "Web Server URL = "+ActiveDocument.URL
Console.Write(Message)
Console.Write(URLString)

Methods: Activate(),Close([SaveChanges As Boolean]), Import(Filename As String,
FileType As Number), ImportSQLFile(Filename As String),
Save([bCompressed As Boolean]), SaveAs([Filename As String],
[bCompressed As Boolean]), [CC As String], [Subject As String], [Message As
String], [SaveResults As Boolean], [Compressed As Boolean]) As Number,
SetODSPassword(Password as String)

Properties: Read-Only Properties: Property AdaptiveState as BqAdaptiveState, Property
Active As Boolean, Property LastSaved As Date, Property Name As String,
Property Path As String, Property Url as String

Read-Write Properties: Property ShowCatalog As Boolean, Property
ShowSectionTitleBar As Boolean, Property Username as String

Collections: Sections As Sections
WebClientDocument (Object) 9-153

XAxisLabel (Object)

Member of: LabelsAxis Object

Description: An object that represents a chart X-axis label. This object’s properties directly
affect the display of the X axis and corresponds to the options provided on the
Label Axis tab of the Properties dialog box.

Example: The following example shows how to modify the properties of the X Axis label.

ActiveDocument.Sections["Chart1"].LabelsAxis.Xaxis.AutoFrequency = true
ActiveDocument.Sections["Chart1"].LabelsAxis.Xaxis.LabelFrequency = 3
ActiveDocument.Sections["Chart1"].LabelsAxis.Xaxis.LabelText = "X Axis"
ActiveDocument.Sections["Chart1"].LabelsAxis.Xaxis.ShowLabel = true
ActiveDocument.Sections["Chart1"].LabelsAxis.Xaxis.ShowTickmarks = false
ActiveDocument.Sections["Chart1"].LabelsAxis.Xaxis.ShowValues = true
ActiveDocument.Sections["Chart1"].LabelsAxis.XAxis.TickmarkFrequency = 4

Methods: None

Properties: Read-Write Properties: Property AutoFrequency As Boolean, Property
LabelFrequency As Number, Property LabelText As String, Property
ShowLabel As Boolean, Property ShowTickmarks As Boolean, Property
ShowValues As Boolean, Property TickmarkFrequency As Number
9-154 Objects

XCategory (Object)

Member of: CategoryItems (Collection)

Description: An object that represents a chart's X-axis. This object's properties directly
affect the display of the X-axis and the X-Categories in the Outliner.

Example: In this example, a chart is built from scratch using the request items specified
in the query. First, all the items in the outliner are removed, and then the
specific items are added to the outliner.

ActiveDocument.Sections["Chart"].XCategories.RemoveAll()
ActiveDocument.Sections["Chart"].XCategories.Add("Product")
ActiveDocument.Sections["Chart"].XCategories.Add("State")

Methods: Add(ItemName As String), AddComputedItem(Name As String, Expression
As String, [Index As String] As AxisItem), Item (NameOrIndex) As AxisItem,
Remove(NameOrIndex), RemoveAll()

Properties: Read-Only Properties: Property Axis Type as BqChartAxisType, Property
Count As Number
XCategory (Object) 9-155

XLabels (Object)

Member of: Chart Object

Description: An object that represents a label value on the X-axis. This object’s properties
directly affect the display of the label value on the X-axis and correspond to the
options provided on the Chart menu or shortcut menu.

Note You must specify the label value(s) in an array before using the FocusSelection, HideSelection
and UnhideAll methods.

Example: The following example shows how to modify the label value on the X-axis.

var OArray = new Array()
OArray[0]= ActiveDocument.Sections["Chart"].XLabels.LabelValues.Item(1)
OArray[1]= ActiveDocument.Sections["Chart"].XLabels.LabelValues.Item(3)
var ZArray = new Array()
ZArray[0]= ActiveDocument.Sections["Chart"].XLabels.LabelValues.Item(2)
ZArray[1]= ActiveDocument.Sections["Chart"].XLabels.LabelValues.Item(4)
ActiveDocument.Sections["Chart"].XLabels.FocusSelection(OArray)
ActiveDocument.Sections["Chart"].XLabels.HideSelection(ZArray)
ActiveDocument.Sections["Chart"].XLabels.UnhideAll(ZArray)

Methods: DrillInto(NameOrIndex As Value, DrillName As String),
FocusSelection(ItemArray As Value), HideSelection(ItemArray As Value),
UnhideAll()

Properties: Read Only: Property Count as Number

Objects: LabelValues As LabelValues

✏

9-156 Objects

YLabels (Object)

Member of: Chart Object

Description: An object that represents a label value on the Y-axis. This object’s properties
directly affect the display of the label on the Z-axis and correspond to the
options provided on the Chart menu or shortcut menu.

Note You must specify the label value(s) in an array before using the FocusSelection, HideSelection
and UnhideAll methods.

Example: The following example shows how to modify the label value on the Y-axis.

var OArray = new Array()
OArray[0]= ActiveDocument.Sections["Chart"].YLabels.LabelValues.Item(1)
OArray[1]= ActiveDocument.Sections["Chart"].YLabels.LabelValues.Item(3)

var ZArray = new Array()
ZArray[0]= ActiveDocument.Sections["Chart"].YLabels.LabelValues.Item(2)
ZArray[1]= ActiveDocument.Sections["Chart"].YLabels.LabelValues.Item(4)

ActiveDocument.Sections["Chart"].YLabels.FocusSelection(OArray)
ActiveDocument.Sections["Chart"].YLabels.HideSelection(ZArray)
ActiveDocument.Sections["Chart"].YLabels.UnhideAll(ZArray)

Methods: DrillInto(NameOrIndex As Value, DrillName As String),
FocusSelection(ItemArray As Value), HideSelection(ItemArray As Value),
UnhideAll()

Properties: Read Only: Property Count as Number

Objects: LabelValues As LabelValues

✏

YLabels (Object) 9-157

ZAxisLabel (Object)

Member of: LabelsAxis Object

Description: An object that represents a charts Z-axis. This object’s properties directly affect
the display of the Z-axis label.

Example: The following example shows how to modify the properties of the Z-axis label.

ActiveDocument.Sections["Chart1"].LabelsAxis.ZAxis.AutoFrequency = true
ActiveDocument.Sections["Chart1"].LabelsAxis.ZAxis.LabelFrequency = 3
ActiveDocument.Sections["Chart1"].LabelsAxis.ZAxis.LabelText = "X Axix"
ActiveDocument.Sections["Chart1"].LabelsAxis.ZAxis.ShowLabel = true
ActiveDocument.Sections["Chart1"].LabelsAxis.ZAxis.ShowTickmarks = false
ActiveDocument.Sections["Chart1"].LabelsAxis.ZAxis.ShowValues = true
ActiveDocument.Sections["Chart1"].LabelsAxis.ZAxis.TickmarkFrequency = 4

Methods: None

Properties: Read-Write Properties: Property LabelText As String, Property ShowLabel As
Boolean, Property ShowTickmarks As Boolean, Property ShowValues As
Boolean
9-158 Objects

ZCategory (Object)

Member of: CategoryItems (Collection)

Description: An object that represents a chart's Z-axis. This object's properties directly
affect the display of the Z-axis and the Z-Categories in the Outliner.

Example: In this example, a chart is built from scratch using the request items specified
in the query. First, all the items in the outliner are removed, and then the
specific items are added to the outliner.

ActiveDocument.Sections["Chart"].ZCategories.RemoveAll()
ActiveDocument.Sections["Chart"].ZCategories.Add("Product")
ActiveDocument.Sections["Chart"].ZCategories.Add("State")

Methods: Add(ItemName As String), AddComputedItem(Name As String, Expression
As String, [Index As String] As AxisItem), Item (NameOrIndex) As AxisItem,
Remove(NameOrIndex), RemoveAll()

Properties: Read-Only Properties: Property Axis Type as BqChartAxisType, Property
Count As Number
ZCategory (Object) 9-159

ZLabels (Object)

Member of: Chart Object

Description: An object that represents a label value on the Z-axis. This object’s properties
directly affect the display of the label on the Z-axis and correspond to the
options provided on the Chart menu or shortcut menu.

Note You must specify the label value(s) in an array before using the FocusSelection, HideSelection
and UnHideAll methods.

Example: The following example shows how to modify the label value on the Z-axis.

var OArray = new Array()
OArray[0]= ActiveDocument.Sections["Chart"].ZLabels.LabelValues.Item(1)
OArray[1]= ActiveDocument.Sections["Chart"].ZLabels.LabelValues.Item(3)

var ZArray = new Array()
ZArray[0]= ActiveDocument.Sections["Chart"].ZLabels.LabelValues.Item(2)
ZArray[1]= ActiveDocument.Sections["Chart"].ZLabels.LabelValues.Item(4)

ActiveDocument.Sections["Chart"].Zlabels.FocusSelection(OArray)
ActiveDocument.Sections["Chart"].Zlabels.HideSelection(ZArray)
ActiveDocument.Sections["Chart"].Zlabels.UnhideAll(ZArray)

Methods: DrillInto(NameOrIndex As Value, DrillName As String),
FocusSelection(ItemArray As Value), HideSelection(ItemArray As Value),
UnhideAll()

Properties: Read Only: Property Count as Number

Objects: LabelValues As LabelValues

✏

9-160 Objects

10 Methods

A function associated with an object is called a method. The methods for an
object represent the actions that a script can request from that element.

For example, the document section object has a method called Activate()
which can be used to activate the section. This method corresponds to the user
clicking on the section in the Section/Catalog pane. The method performs all
the background operations needed to hide the current section and causes the
selected section to display and initialize itself appropriately.

This chapter provides an alphabetical reference to the methods available for
Brio Intelligence objects.
10-1

Activate (Method)

Applies To: ChartSection, DataModelSection, Document, EISSection,
OLAPQuerySection, PivotSection, QuerySection, ReportSection,
ResultsSection, Sections, TableSection, WebClientDocument

Description: The activate method is used to switch the focus of a document or section.

Syntax: Expression.Activate()

Expression Required: An expression that returns an object for any of the following:

ChartSection

DataModelSection

Document

EISSection

OLAPQuerySection

PivotSection

QuerySection

ReportSection

ResultsSection

Sections

TableSection

WebClientDocument

Example: The following example shows you how to unhide and activate a section.

var MySection = ActiveDocument.Sections["Results"]
MySection.Visible = true
MySection.Activate()
10-2 Methods

Add (Method)

Applies To: CategoryItems, ChartSection, Columns, ControlsDropDown,
ControlsListBox, Documents, Joins, Limits, LimitValues, LocalJoins,
LocalResults, OLAPLabels, OLAPMeasures, OLAPSlicers, PivotLabels,
Requests, Sections, Topics

Description: The Add() method is a common method for most collections. It adds an object
to a collection and returns a reference to the newly added object.

Note The Add() method works differently for the LimitValues (AvailableValues, CustomValues, and

SelectedValues) Collections. For the AvailableValues collection, the Add() does nothing since
the values are obtained from the database. For the CustomValues collection, Add() adds an
additional value to the list. For the SelectedValues collection, Add() adds a value to the

selected list.

Syntax: Expression.Add(ItemName As String)

Expression Required: An expression that returns an object for any of the following:

CategoryItems

ChartSection

Columns

ControlsDropDown

ControlsListBox

Documents

Joins

Limits

LimitValues

LocalJoints

✏

Add (Method) 10-3

LocalResults

OLAPLabels

OLAPMeasures

OLAPSlicers

PivotLabels

Requests

Sections

Topics

Example 1: The following example shows you how to create a new limit, add values to the
limit, and then add the limit to the limit line.

var MyLimit =
ActiveDocument.Sections["Query"].Limits.CreateLimit("Stores.Store_Id")
MyLimit.SelectedValues.Add(2)
ActiveDocument.Sections["Query"].Limits.Add(MyLimit)

Example 2: The following example shows you how to add values to a list box and
dropdown.

ActiveDocument.Sections["EIS2"].Shapes["DropDown1"].Add(20)
ActiveDocument.Sections["EIS2"].Shapes["ListBox1"].Add(1)

Example 3: The following example shows you how to add two new topics to a Data Model
and how to add a join between the topics.

var Topic1 =
ActiveDocument.Sections["Query"].DataModel.Catalog.CatalogItems["sales_fact"]
ActiveDocument.Sections["Query"].DataModel.Topics.Add(Topic1)
var Topic2 =
ActiveDocument.Sections["Query"].DataModel.Catalog.CatalogItems["Store_ID"]
ActiveDocument.Sections["Query"].DataModel.Topics.Add(Topic2)
var TopicItem1 =
ActiveDocument.Sections["Query"].DataModel.Topics
["SalesFact"].TopicItems["Store_Id"]
var TopicItem2 =
ActiveDocument.Sections["Query"].DataModel.Topics
["Stores"].TopicItems["Store_Id"]
ActiveDocument.Sections["Query"].DataModel.Joins.Add(TopicItem1,TopicItem2,
bqJoinSimpleEqual)
10-4 Methods

Example 4: The following example shows you how to add a Pivot section type to the
Results section.

Note A Chart, Pivot, and Table section type must be associated with a parent section, such as

Results. A Query, EIS, or Report section type does not have to be associated with a parent
section.

ActiveDocument.Sections.Add(bqPivot,"Results")

✏

Add (Method) 10-5

AddAll (Method)

Applies To: SelectedValues Collections (instantiated from the LimitValues Collection)

Description: The AddAll() method of the SelectedValues collection allows you to select all
values from either the AvailableValues or CustomValues collection depending
on what is selected. Use this method in conjunction with the LimitValueType
property so that you can determine in advance which limit value set is selected.
The value associated with this property is a member of the constant group
called BqLimitValueType. Two possible values of BqLimitValueType:
bqLimitValueTypeAvailable and bqLimitValueTypeCustom.

Note You can select a single value at a time using the Add() method of the SelectedValues
collection, however, you must know all the values in advance. This way of selecting a value can

become very tedious when there are a lot of values.

Syntax: Expression.SelectedValues.AddAll();

Expression Required: An expression that returns a limit object.

Example: In the following example, a "Quarter" limit is created and added to the limit
line in the Query section. Then, all available values in the Limit dialog box are
added.

//Adds a limit to the limit line of the Query section
mylimit =ActiveDocument.Sections["Query"].Limits.CreateLimit("Periods.Quarter")
mylimit.Operator=bqLimitOperatorEqual
ActiveDocument.Sections["Query"].Limits.Add(mylimit)
//Selects ALL Available values in the Limits dialog
ActiveDocument.Sections["Query"].Limits[1].SelectedValues.AddAll()

✏

10-6 Methods

AddComputed (Method)

Applies To: Columns

Description: Creates a new computed column in a Table or Results section.

Syntax: Expression.AddComputed(Name As String,
Expression As String) As Column

Expression Required: An expression that returns an object for Columns.

Example: The following example shows you how to create a computed column that
concatenates the string “Manager =” with the value in the Store_Manager
column.

var ComputedExpression = " \"Manager =\" + Store_Manager"
ActiveDocument.Sections["Results"].Columns.AddComputed("MyComputed",
ComputedExpression)
AddComputed (Method) 10-7

AddComputedItem (Method)

Applies To: Chart, PivotLabels, Requests. Results, Tables

Description: Creates a computed item and returns an object that represents the new item.

This method allows you to specify the name, expression, and index for the
computed item.

Calculated items created in the Chart section are always facts and are placed in
the Y-Facts pane of the chart outliner.

The “name” is the name of the computed item and appears in the Y-Fact pane
of the Chart or Pivot Outliner and the Chart legend.

The expression you specify must be a valid Brio Intelligence expression that
appears in the Computed Items dialog box.

The optional index determines the computed item’s position in a particular
pane. For example, an index of “2” places it as the second item in the Y-Fact
pane.

Syntax: Chart: Expression.AddComputedItem(Name As String,
Expression As String,[optional Index As Number])

PivotLabels: Expression.AddComputedItem(Name As String, Expression
As String, [optional Index As Number]) As PivotLabel

Results and Tables: Expression.AddComputedItem(Name As
String, Expression As String)

Requests: Expression.AddComputedItem(Name As String, Expression As
String, Type As BqDataType) As Request

Expression Required: An expression that returns a Chart, PivotLabels or Requests object.

Example: The following example shows you how to create a computed column titled
“Double Sales”, which doubles the amount in the Unit Sales column.

ActiveDocument.Sections["Chart"].Facts.AddComputedItem
(‘Double_Sales’, ‘Unit_Sales *2’,2)
10-8 Methods

AddExportSection (Method)

Applies To: ChartSection, Document, PivotSection, QuerySection, Section, TableSection

Description: Exports documents to HTML format, making it easy to distribute data to
many users through corporate intranets or Web sites. Using this scripting
method executes a high-fidelity series of XHTML pages that match the original
Brio Intelligence reports as closely as HTML can; creates a set of.htm, .css and
.gif files; and if charts or EIS sections are included in the export set, creates.jpg
files. The resulting file set is a frame-based HTML display that includes a
report navigation frame, a report display area, and hyperlinks to move between
the multiple pages of a specific report.

When exporting selected sections, specify the section name in the
AddExportSection() method. A single call to AddExportSection() must be
specified for each section to be exported. After specifying all sections to be
exported the Document level Export() method is called. This method allows
you to specify the export file format.

Regardless of the order of the AddExportSection() calls, the exported
document preserves the original fixed section ordering of a .bqy document,
minus sections not selected for export. Invalid AddExportSection() calls,
either as a result of invalid section type or invalid section name, are ignored.

When sections are exported successfully, the Export() method clears the
export buffer. If sections are not exported successfully, use the
RemoveExportSections() method to flush the export buffer of sections. That
is, all sections set for export are cleared from the export buffer. For instance, if
you specify a Report, Pivot, and Chart section to be exported via the
AddExportSection() method, a call to RemoveExportSections() would nullify
the section set up for export. Consequently a call to Export() would assume
that you did not want to select individual sections for export, but instead
prefer that all sections be exported.
AddExportSection (Method) 10-9

The exported document resides in the default export directory wherever the
brioqry.exe file is located. The export directory can be modified by explicitly
specifying a path for the filename argument in the Export() method. For
example, "c:\\temp\\myfile.htm" and "myfile.htm" are valid arguments for
filename. Please note that the .htm extension is used to denote the HTML file
type. A .htm extension is used, even if .htm is specified as in the following
example:

Documents["MyDocument.bqy"].Export(‘C:\\Temp\\MyExportFile.htm’,BqExportFileHTML)

Note You cannot export the Query, OLAPQuery, and DataModel sections.

Syntax: Expression.AddExportSection(SectionName As String)

Expression Required: An expression that returns an object for any of the following: ChartSection,
PivotSection, TableSection, and Section.

Example 1: The following example shows you how to export selected sections of a .bqy
document.

//Export SELECTED Sections of .bqy document
ActiveDocument.AddExportSection(‘Report’)
ActiveDocument.AddExportSection(‘Report2’)
ActiveDocument.AddExportSection(‘Results’)
ActiveDocument.AddExportSection(‘Table’)
ActiveDocument.AddExportSection(‘Pivot’)
ActiveDocument.AddExportSection(‘Pivot2’)
ActiveDocument.AddExportSection(‘Pivot3’)
ActiveDocument.AddExportSection(‘Chart’)
ActiveDocument.AddExportSection(’Chart2’)
ActiveDocument.AddExportSection(’OLAPQuery’)
ActiveDocument.Export(‘C;\\Temp\\MyExportFile.htm’, bqExportFormatHTML)

✏

10-10 Methods

Example 2: In the following example, selected sections are set to be exported and then later
cleared from the export buffer. The Export method in the last part of the script
allows all sections in the document to be exported.

//Export SELECTED Sections of .bqy document
Documents["MyDocument.bqy"].AddExportSection(‘Report’)
Documents["MyDocument.bqy"].AddExportSection(‘Report2’)
Documents["MyDocument.bqy"].AddExportSection(‘Results’)
Documents["MyDocument.bqy"].AddExportSection(‘Table’)
Documents["MyDocument.bqy"].AddExportSection(‘Pivot’)
Documents["MyDocument.bqy"].AddExportSection(‘Pivot2’)
Documents["MyDocument.bqy"].AddExportSection(‘Pivot3’)
Documents["MyDocument.bqy"].AddExportSection(‘Chart’)
Documents["MyDocument.bqy"].AddExportSection(‘Chart2’)
Documents["MyDocument.bqy"].AddExportSection(’OLAPQuery’)
Documents["MyDocument.bqy"].Export(‘C;\\Temp\\MyExportFile.htm’,
bqExportFormatHTML)
ActiveDocument.RemoveExportSections();
//Export ALL sections of .bqy document since Export buffer was flushed
ActiveDocument.Export(‘C;\\Temp\\MyExportFile.htm’, bqExportFormatHTML)
AddExportSection (Method) 10-11

AddFilterValue (Method)

Applies To: OLAPLabel, OLAPMeasures

Description: Adds a new filter value and returns an object that represents the new item.

Note If you are using this method to apply a filter to a measure value, this method can only be used
against an Essbase database. In addition, you cannot use an alias.

Syntax: OLAPLabel.AddFilterValue(MemberName As String,
Operator As BqOperator)

OLAPMeasure.AddFilterValue(ColumnIndex As String,
Operator As BqOperator, MeasureValue As String)

Expression Required An expression that returns an OLAPLabel or OLAPMeasure object.

Constants BqOperator

bqOperatorEqual

bqOperatorGreaterThan

bqOperatorGreaterThanOrEqual

bqOperatorLessThan

bqOperatorLessThanOrEqual

bqOperatorNotEqual

Example 1 The following example shows you how to add the new filter “AZ” item to the
side label.

OQPath = ActiveDocument.Sections["OLAPQuery"]
OQPath.SideLabels[1].AddFilterValue(‘AZ’,bqOperatorEqual)
OQPath.Process()
OQPath.Activate()

✏

10-12 Methods

Example 2 The following example shows you how to add a filter value to a “Profit”
measure. In this example, the operator used equals 13,438.

ActiveDocument.Sections["OLAPQuery"].Measures["Profit"].AddFilterValue
('1',bqOperatorEqual,'13438')
AddFilterValue (Method) 10-13

AddTotals (Method)

Applies To: PivotLabels (TopLabels and SideLabels collections)

Description: Creates an additional row or column containing the totals for all columns or
rows of the pivot.

Syntax: Expression.AddTotals()

Expression Required: An expression that returns a PivotLabel object.

Example 1: The following example shows you how to total the top label columns called
“Product ID.”

ActiveDocument.Sections["Pivot"].TopLabels["Product Id"].AddTotals()

Example 2: The following example shows you how to a total to the side label rows called
“Quarter.”

ActiveDocument.Sections["Pivot"].SideLabels["Quarter"].AddTotals()
10-14 Methods

Alert (Method)

Applies To: Application

Description: Displays a simple dialog box. Up to three buttons can be displayed on the
dialog with custom names. When the user selects a button, an integer is
returned corresponding to the number of the button. If the user selects button
#1, the number 1 is returned and so on.

Syntax: Expression.Alert(Prompt As String, [Title As String],
[Button1Text As String], [Button2Text As String],
[Button3Text As String]) As Integer.

Expression Required: An expression that returns an object for Application.

Example: The following example shows you how to display an Alert dialog and process
the user’s response.

var ReturnVal =0
ReturnVal = Alert("Please press a button","Alert Title","One","Two","Three")
switch (ReturnVal)
{
 case 1:
 Alert("The user pressed the One button")
 break;
case 2:
 Alert("The user pressed the Two button")
 break;
case 3:
 Alert("The user pressed the Three button")
 break;
default:
 Alert("An error occurred!")
}

Alert (Method) 10-15

AuditSQL (Method)

Applies To: Query Object

Description: Allows you to define a SQL Statement that is executed when the audit event is
triggered. That is, you record how Brio Intelligence, a database server, or
network resources are being used. When triggered, the SQL statements update
an audit log table, which the administrator can query independently to track
and analyze usage data.

Syntax: Expression.AuditSQL(EventType As BqAuditEventType,
SQLStatement As String)

Expression Required An expression that returns a Query Object.

Constants: The BqAuditEventType constant group consists of the following values:

bqAuditDataModelRefresh

bqAuditDetail View

bqAuditLimitShowValues

bqAuditLogoff

bqAuditLogon

bqAuditNewDataModel

bqAuditPostProcess

bqAuditPreProcess

Example 1: In this example, an audit event is triggered when the user logs ons.

ActiveDocument.Sections["Query"].DataModel.AuditSQl(bqAuditLogon,"Select username
from all_users")

Example 2: In this example, an audit event is triggered when the user logs off.

ActiveDocument.Sections["Query"].DataModel.AuditSQl(bqAuditLogoff,"Select
username from all_users")
10-16 Methods

Example 3: In this example, an audit event is triggered when “Process” is selected, but
before the SQL query statement is executed.

ActiveDocument.Sections["Query"].DataModel.AuditSQl(bqAuditPreProcess,"Select
username from all_users")

Example 4: In this example, an audit event is triggered when the final row in the result set
is retrieved to the client workstation.

ActiveDocument.Sections["Query"].DataModel.AuditSQl(bqAuditPostProcess,"Select
username from all_users")
AuditSQL (Method) 10-17

AutoSizeHeight (Method)

Applies To: Pivot Fact

Description: By default, Brio Intelligence truncates Pivot fact columns evenly and without
regard to the length or height of data values. Numeric data that does not fit
within the height or length of the cell is replaced with pound signs (#).To size
the height of a Pivot fact column automatically so that all values are displayed
within the column, use the AutoSizeHeight method.

Syntax: Expression.AutoSizeHeight()

Expression Required: An expression that autosizes the height of a Pivot Fact column.

Example: The following example shows you how auto size the height and the width of
the "Unit Sales" fact column.

ActiveDocument.Sections["Pivot"].Facts["Unit Sales"].AutoSizeHeight()
ActiveDocument.Sections["Pivot"].Facts["Unit Sales"].AutoSizeWidth()
10-18 Methods

AutoSizeWidth (Method)

Applies To: Pivot Fact

Description: By default, Brio Intelligence truncates Pivot fact columns evenly and without
regard to the length or height of data values. Numeric data that does not fit
within the height or length of the cell is replaced with pound signs (#).To size
the width of a Pivot fact column automatically so that all values are displayed
within the column, use the AutoSizeWidth method.

Syntax: Expression.AutoSizeWidth()

Expression Required: An expression that autosizes the width of a Pivot Fact column.

Example: The following example shows you how auto size the height and the width of
the "Unit Sales" fact column.

ActiveDocument.Sections["Pivot"].Facts["Unit Sales"].AutoSizeWidth()
ActiveDocument.Sections["Pivot"].Facts["Unit Sales"].AutoSizeHeight()
AutoSizeWidth (Method) 10-19

Call (Method)

Applies To: SharedLibrary

Description: Use the call method to invoke functions in external dlls.

Syntax: Expression.Call(sFunctionName As String, sArgumentType
As String, [arg1], [arg2], [arg3], [arg4], [arg5],
[arg6], [arg7], [arg8])

Expression Required: An expression that returns a SharedLibrary object.

Example: The following example calls the Beep function of the Kernal32.dll for 4
seconds with 5000Hz:

var oLibrary;
oLibrary = LoadSharedLibrary("kernel32.dll");
oLibrary.Call("Beep", "UI,UI", 5000, 4000);
10-20 Methods

ChartThisPivot (Method)

Applies To: PivotSection

Description: Creates a new chart section using the criteria defined in a Pivot section.

Syntax: Expression.ChartThisPivot()

Expression Required: An expression that returns an object for the ChartSection.

Example: The following example shows you how to chart a pivot and then change the
display characteristics of the chart.

MyChart = ActiveDocument.Sections["Pivot"].ChartThisPivot()
MyChart.Title = "Chart Created from Pivot"
ChartThisPivot (Method) 10-21

Close (Method)

Applies To: Document, WebClientDocument

Description: Closes the document. This method is equivalent to selecting Close from the
File menu.

Syntax: Expression.Close([SaveChanges As Boolean])

Expression Required: An expression that returns a Document or WebClientDocument object.

Example: The following example shows you how to close all the open documents in the
application.

var OpenDocs = Documents.Count
for (j = 1 ; j <= OpenDocs ; j++)
 Documents[j].Close()
10-22 Methods

Connect (Method)

Applies To: Connection

Description: Tries to establish a connection to the database using the criteria set in the
connection object.

Syntax: Expression.Connect()

Expression Required: An expression that returns a Connection object.

Example: The following example shows you how to establish a connection with a
database using the connection object.

Note The ActiveDocument.Section [“Query].DataModel.Connect() works if you have already
successfully manually logged on once. However, if you have had an unsuccessful logon

attempt, you must manually logon first, before using the following script.

MyConnection = ActiveDocument.Sections["Query"].DataModel.Connection
MyConnection.Open("c:\\OCEs\\SampleDB.oce")
MyConnection.Username = "brio"
MyConnection.SetPassword("brio")
MyConnection.Connect()

✏

Connect (Method) 10-23

Copy (Method)

Applies To: ChartSection, DataModelSection, EISSection, PivotSection, QuerySection,
Section, TableSection

Description: Makes a copy of the section and puts in on the clipboard.

Syntax: Expression.Copy()

Expression Required: An expression that returns an object for any of the following:

ChartSection

DataModelSection

EISSection

OLAPQuerySection

PivotSection

QuerySection

Section

TableSection

Example: The following example shows you how to copy an entire Results section to the
clipboard.

ActiveDocument.Sections["Results"].Copy()
10-24 Methods

CreateConnection (Method)

Applies To: Application

Description: Creates a stand-alone connection object. Use this method to create oce files,
which are not automatically associated with a Data Model.
CreateConnection() returns a connection object. Refer to the Connection
object for a complete list of its methods and properties.

Syntax: Expression.CreateConnection() As Connection

Expression Required: An expression that returns an Application object.

Example: The following example shows you how to create a connection from scratch,
save it as an OCE and use it as the current connection. In this example, the
hostname uses the ODBC datasource name “Bookmart”.

var myCon = CreateConnection()
myCon.Api = bqApiODBC
myCon.Database = bqDatabaseODBC
myCon.HostName = "Bookmart"
myCon.SaveAs("c:\\temp\\bookmart.oce")
var MyQuery = ActiveDocument.Sections.Add(bqQuery)
MyQuery.DataModel.Connection.Open("c:\\temp\\bookmart.oce")
MyQuery.DataModel.Connection.Connect()
CreateConnection (Method) 10-25

CreateDateGroup (Method)

Applies To: Column

Description: Creates a date group from a Results or Table column. The data in the column
must be a date.

Syntax: Expression.CreateDateGroup()

Expression Required: An expression that returns a Column object.

Example: The following example searches through a result set for a date column and
creates a date group.

ColCount = ActiveDocument.Sections["Results"].Columns.Count
for (i = 1; i <= ColCount ; i++)
{
if (ActiveDocument.Sections["Results"].Columns[i].DataType ==bqDataTypeDate)
 ActiveDocument.Sections["Results"].Columns[i].CreateDateGroup()
}

10-26 Methods

CreateLimit (Method)

Applies To: Limits

Description: Creates a stand alone limit object. Use the CreateLimit method to create new
limits. After creating the limit, complete its properties before adding it to the
limits collection.

Syntax: Expression.CreateLimit(limitItem As String) As Limit

Note The argument for CreateLimit method is different for regular limits, computed item limits, and
aggregate limits. For regular limits the argument is a reference to the table topic and the topic
item, for example, CreateLimit(“Sales_Facts.Amount_Sales”). For both computed item limits

and aggregate limits the argument is a reference to the item’s Display Name on the request
line, for example, CreateLimit(“Request.Amount Sales”).

Expression Required: An expression that returns a Limits object.

Example 1: The following example shows you how to create a results limit. When creating
a local (results) limit the value for the LimitItem parameter needs to be the
name of the column the limit is being applied to.

MyLimit = ActiveDocument.Sections["Results"].Limits.CreateLimit("State")
MyLimit.Operator = bqLimitOperatorEqual
MyLimit.CustomValues.Add("CA")
MyLimit.SelectedValues.Add("CA")
ActiveDocument.Sections["Results"].Limits.Add(MyLimit)
ActiveDocument.Sections["Results"].Limits[1].DisplayName = "State"

✏

CreateLimit (Method) 10-27

Example 2: The following example shows you how to create a query limit. When creating a
server (query) limit the value for the LimitItem parameter needs to be the
name of the Topic and the TopicItem the limit is being applied to in the form
"Topic.TopicItem".

MyLimit = ActiveDocument.Sections["Query"].Limits.CreateLimit("Pcw_Items.OS")
MyLimit.Operator = bqLimitOperatorEqual
MyLimit.CustomValues.Add("Windows")
MyLimit.SelectedValues.Add("Windows")
ActiveDocument.Sections["Query"].Limits.Add(MyLimit)
ActiveDocument.Sections["Query"].Limits[1].DisplayName = "Os"

Example 3: The following example shows you how to create a query aggregate limit. When
creating a query aggregate limit the value for the LimitItem parameter needs to
be in the form of Request.DisplayName.

myLimit=ActiveDocument.Sections["SalesQuery"].AggregateLimits.CreateLimit
("Request.Amount Sales")
myLimit.Operator=bqLimitOperatorEqual
myLimit.CustomValues.Add("50")
myLimit.SelectedValues.Add("50")
ActiveDocument.Sections["SalesQuery"].AggregateLimits.Add(myLimit)
10-28 Methods

CustomSQLFrom (Method)

Applies To: QuerySection

Description: Sets the FROM clause of an SQL statement prior to processing. The FROM
clause indicates the specific tables to reference when the SELECT statement is
processed.The CustomSQLFrom, the CustomSQLWhere, and the
ResetCustomSQL methods correspond to the edit SQL functionality in the
user interface's Custom SQL dialog. However, no Custom SQL dialog will
display when this method is executed.

Syntax: Expression.CustomSQLFrom(CustomSQLStr As String)

Expression Required: An expression that returns a query object.

Example: The following example sets the FROM clause and the WHERE clause,
processes the query, and then restores the original SQL statement.

//Set the FROM clause, Set the WHERE clause, PROCESS, and then RESET
SQLActiveDocument.Sections["Query"].CustomSQLFrom("FROM From.Sales_Fact,
From.Periods, From.Products")
ActiveDocument.Sections["Query"].CustomSQLWhere("WHERE
(Periods.Day_Id=Sales_Fact.Day_Id AND
Products.Product_Id=Sales_Fact.Product_Id) AND (Periods.Quarter='Q1')")
ActiveDocument.Sections["Query"].Process()
ActiveDocument.Sections["Query"].ResetCustomSQL();
CustomSQLFrom (Method) 10-29

CustomSQLWhere (Method)

Applies To: QuerySection

Description: Sets the WHERE clause of an SQL statement prior to processing.

The WHERE clause identifies which rows to use in a table based on selected
criteria. The CustomSQLFrom, the CustomSQLWhere, and the
ResetCustomSQL methods correspond to the edit SQL functionality in the
user interface's Custom SQL dialog. However, no Custom SQL dialog will
display when this method is executed.

Syntax: Expression.CustomSQLWhere(CustomSQLStr As String)

Expression Required: An expression that returns a query object.

Example: The following example sets the FROM clause and the WHERE clause,
processes the query, and then restores the original SQL statement.

//Set the FROM clause, Set the WHERE clause, PROCESS, and then RESET
SQLActiveDocument.Sections["Query"].CustomSQLFrom("FROM From.Sales_Fact,
From.Periods, From.Products")
ActiveDocument.Sections["Query"].CustomSQLWhere("WHERE
(Periods.Day_Id=Sales_Fact.Day_Id AND
Products.Product_Id=Sales_Fact.Product_Id) AND (Periods.Quarter='Q1')")
ActiveDocument.Sections["Query"].Process()
ActiveDocument.Sections["Query"].ResetCustomSQL();
10-30 Methods

Disconnect (Method)

Applies To: Connection

Description: Drops the connection between the connection object and the datasource.

Syntax: Expression.Disconnect()

Expression Required: An expression that returns a Connection object.

Example: The following example shows you how to disconnect from the database.

if (ActiveDocument.Sections["Query"].DataModel.Connection.Connected == true)
 ActiveDocument.Sections["Query"].DataModel.Connection.Disconnect()
Disconnect (Method) 10-31

DoEvents (Method)

Applies To: Application

Description: The DoEvents() method halts a script from executing and switches control to
the operating-environment kernel so that the application can respond to
pending or queued events. This method is typically placed at the end of a for-
loop statement. It is usually included in a script that runs continuously and
displays live data.

Syntax: Application.DoEvents()

Example: The following script processes a query five times with limits. A DoEvents
method is included to display the applied limits each time the query is
processed.

function Wait(ms)
{
var oStart = new Date();
var oNow = new Date();

while (oNow.getTime() - oStart.getTime() < ms)
{

oNow = new Date() ;
DoEvents();

}
}

for (i=1;i<=5 ;i++)
{

// do something
if(ActiveDocument.Sections["Query"].Limits[2].Ignore ==false)

ActiveDocument.Sections["Query"].Limits[2].Ignore=true;
else

ActiveDocument.Sections["Query"].Limits[2].Ignore=false;
Console.Write("processing number: "+i+"\n")
ActiveDocument.Sections["Query"].Process()

 Wait(9000)
}

10-32 Methods

DrillInto (Method)

Applies To: AxisLabels (XLabels, YLabels, and ZLabels)

Description: Isolates and breaks out data using specified criteria.

Syntax: Expression.DrillInto(ItemNameOrIndex, DrillName As
String)

Expression Required: An expression that returns an AxisLabels object.

Example The following example shows you how to drill into the fourth axis label.

ActiveDocument.Sections["AllChart"].XLabels.DrillInto(4,"Territory")
DrillInto (Method) 10-33

Duplicate (Method)

Applies To: ChartSection, DataModelSection, EISSection, OLAPQuerySection,
PivotSection, QuerySection, ResultsSection, TableSection

Description: Creates an exact copy of a section.

Syntax: Expression.Duplicate()

Expression Required: An expression that returns an object for any of the following:

ChartSection

DataModelSection

EISSection

PivotSection

ReportSection

Example: The following example creates a duplicate of the Chart section.

ActiveDocument.Sections["Chart"].Duplicate()
10-34 Methods

ExecuteBScript (Method)

Applies To: Application

Description: Executes Brio Intelligence’s old scripting language commands. By default, all
old scripts are wrapped by this function when they are converted from an old
document.

Syntax: Expression.ExecuteBScript(Script As String)

Expression Required: An expression that returns an Application object.

Example: The following example shows a translated 5.x script:

Commands can be separated by semicolons or placed on individual lines.

ExecuteBScript("set logon root, 'OCENAME', 'test.oce'")
ExecuteBScript("connect logon root; show doc root, 'sectiontab'; hide doc root,
'requestline'")
ExecuteBScript (Method) 10-35

Export (Method)

Applies To: ChartSection, DataModelSection, Document, EISSection,
OLAPQuerySection, PivotSection, QuerySection, Section, TableSection

Description: Creates a new file with the information from a section object. Files can be
created using the standard data formats from the BqExportFileFormat
constant group.

Syntax: Expression.Export(Filename As String, FileFormat As
BqExportFileFormat, [IncludeHeaders As Boolean])

Expression Required: An expression that returns an object for any of the following:

ChartSection

DataModelSection

EISSection

OLAPQuerySection

PivotSection

QuerySection

Section

TableSection

Constants: The BqExportFileFormat constant group consists of the following values:

BqExportFileFormatCSV

BqExportFileFormatExcel2

BqExportFileFormatExcel5

BqExportFileFormatHTML

BqExportFileFormatJPEG

BqExportFileFormatLotus123

BqExportFileFormatText
10-36 Methods

Example: The following example shows you how to export a Results section to HTML.
The first part of the script creates a computed column that displays the
contents of the “URL” columns as HTML HREFs.

//Call the JavaScript link() method to convert the string to HREFs
var ComputedExpression = "URL.link()"
ActiveDocument.Sections["Results"].Columns.AddComputed("Clickable
URLS",ComputedExpression)
ActiveDocument.Sections["Results"].Export("C:\\HTML\\MyResults.htm",
bqExportFormatHTML,false)
Export (Method) 10-37

FocusSelection (Method)

Applies To: AxisLabels (XLabels, YLabels, and ZLabels)

Description: Allows you to single out selected label value item(s), enabling you to
concentrate your view to particular item(s) of interest.

Note You must specify the label value(s) item in an array before using the FocusSelection method.

Syntax: Expression.FocusSelection(ItemArray As Value)

Expression Required: An expression that focuses a LabelValues item.

Example The following example shows you how to include LabelValues items 1 and 3 in
an array and then focus them in the Chart.

var NewArray = new Array()
NewArray[0]=ActiveDocument.Sections["AllChart"].XLabels.LabelValues.Item(1)
NewArray[1]=ActiveDocument.Sections["AllChart"].XLabels.LabelValues.Item(2)
ActiveDocument.Sections["AllChart"].XLabels.FocusSelection(NewArray)

✏

10-38 Methods

GetCell (Method)

Applies To: Column, TableSection

Description: Returns the value of an individual cell in a Results or Table section.

Syntax: Expression.GetCell(nRow As Long) as variant
Expression.GetCell(nRow As Long, nCol as Long)

Expression Required: An expression that returns a Column or a TableSection object.

Example: The following example shows you how to populate a listbox from the values in
a Results section.

var MyList = ActiveDocument.Sections["EIS"].Controls["ListBox"]
var RowCount = ActiveDocument.Sections["Results"].RowCount
var MyCol = ActiveDocument.Sections["Results"].Columns["State"]
for (j = 1 ; j <= RowCount ; j = j+1)
{
 var Temp = MyCol.GetCell(j)
 MyList.Add(Temp)
}

GetCell (Method) 10-39

Hide (Method)

Applies To: Chart Fact objects

Description: Allows you to hide a chart fact. When this script is executed, the selected item
is removed from the Y-Facts area of the Chart Outliner,

Syntax: Expression.Hide()

Expression Required: An expression that hides a Chart Fact item.

Example The following example shows you how to hide the fact “Amount Sales.”

ActiveDocument.Sections["Chart"].Facts["Amount Sales"].Hide()
10-40 Methods

HideSelection (Method)

Applies To: AxisLabels (XLabels, Ylabels and ZLabels)

Description: Allows you to hide selected label value item(s), enabling you to concentrate
your view to selected item(s) of interest.

Note You must specify the label value(s) item in an Array before using the HideSelection method.

Syntax: Expression.HideSelection(ItemArray As Value)

Expression Required: An expression that hides a LabelValues item.

Example The following example shows you how to include LabelValues items 1 and 3 in
an array and then hide them in the Chart.

var NewArray = new Array()
NewArray[0]=ActiveDocument.Sections["AllChart"].XLabels.LabelValues.Item(1)
NewArray[1]=ActiveDocument.Sections["AllChart"].XLabels.LabelValues.Item(2)
ActiveDocument.Sections["AllChart"].XLabels.HideSelection(NewArray)

✏

HideSelection (Method) 10-41

ImportDataFile (Method)

Applies To: Document, WebClientDocument

Description: Imports a data file into a Query section.

Syntax: Expression.Import(Filename As String, FileType As
BqImportDataFileFormat)

Expression Required: An expression that returns a Sections object.

Constants: The BqImportDataFileFormat constant group contains the following values:

bqImportFormatCommaText

bqImportFormatExcel

bqImportFormatTabText

Example: The following example shows how to import a comma separated data file.

var Filename = "C:\\Imports\SalesData.csv"
var MySection = ActiveDocument.Sections.ImportDataFile(Filename,
bqImportFormatCommaText)
10-42 Methods

ImportSQLFile (Method)

Applies To: QuerySection

Description: Imports a complete SQL statement from a text file into an existing query, and
retrieves the data set from the database server. When the file is imported, it is
scanned to determine the number of columns that will be returned by the SQL,
with the request line becoming populated with a column indicator for each of
the columns. Using this feature, you can take advantage of SQL statements
you have already written.

Before using this method, be sure that you are connected to a database server.
The Query section to which you are importing the SQL must have no tables.
In addition, the SQL file to be imported must begin with a SELECT statement
and you should know the number of columns to be displayed in the Results
section.Once the SQL file has been imported into the query you can drag items
from the table onto the Request line, use the custom SQL feature, or display its
properties.The imported SQL file cannot be edited, but you can specify a user-
friendly name for the Request line item and identify its data type.

Syntax: Expression.ImportSQLFile(Filename As String,numColumns
As Number)

Expression Required: An expression that returns a Query object.

Example: The following example shows you how to set the imported SQL file name, and
process the query.

var Filename = "C:\\Program Files\\Brio\\BrioQuery\\Samples
\\SQLLoad\\SalesData.sql"
var MySection = ActiveDocument.Sections["Query"].ImportSQLFile(Filename, 2)
ActiveDocument.Sections["Query"].Process()
ImportSQLFile (Method) 10-43

InterruptQueryProcess(Method)

Applies To: Document

Description: The OnInterruptQueryProcess() method is a Brio Intelligence document level
function. This method stops the processing sequence and should only be used
in the OnPreProcess() event. The method takes no arguments.

Syntax: Expression.OnInterruptQueryProcess()

Expression Required: Brio Intelligence Document

Example: The following example displays the OnInterruptQueryProcess method for an
active document.

ActiveDocument.InterruptQueryProcess()
10-44 Methods

Item (Method)

Applies To: Columns, Controls, ControlsDropDown, ControlsListBox, DMCatalogItems,
DMResults, Documents, Joins, Limits, LimitValues, ListSelection, PivotLabels,
PivotLabelValues, RecentFiles, Requests, Sections, Shapes, Toolbars,
TopicItems, Topics

Description: This is the accessor function for all collections. Item is the default method used
by all collections. It returns the value of an item in a collection referred to by
the name or index.

Syntax: Expression.Item(NameOrIndex) As Object

Expression Required: An expression that returns an object for any of the following objects:

Column

Control

ControlsDropDown

ControlsListBox

DMCatalogItem

DMResults

Document

Join

LabelValues

Limit

LimitValues

ListSelection

LocalJoins

LocalResults

OLAPLabel

OLAPMeasure
Item (Method) 10-45

OLAPSlicer

PivotLabel

PivotLabelValue

RecentFiles

Request

Section

Shape

SortItems

Toolbar

TopicItem

Topic

Example: The following example shows you how to return the 3rd section, named
“Query”, in the current document.

var MySection = ActiveDocument.Sections.Item(3)
or
var MySection = ActiveDocument.Sections[3]
or
var MySection = ActiveDocument.Sections.Item("Query")
or
var MySection = ActiveDocument.Sections["Query"]
10-46 Methods

Layer (Method)

Applies to: Field object, Table object, ReportPivot collection, ReportChart collection,
Shapes collection

Description: Sets the value of the layer value of an object in the report section. A single
object can be layered (stacked) in relative position to other objects. The layer
options include four rearrangement options: Send to Front, Send to Back,
Bring Forward, and Send Backward.

Send to Front brings the object all the way front and puts the object at the front
of the stack.

Send to Back sends the object all the way back and puts the object on the
bottom of the stack. For example, if there are a square on the bottom, a
triangle on top of the square and a circle on top of the triangle, and you apply
"Send to Back" to the circle, it will place the circle at the bottom of the stack.
The new order of the objects from bottom to top wil now be: circle, square,
triangle.

Bring Forward brings an object forward one layer. For example, if there are a
square on the bottom, a triangle on top of the square and a circle on top of the
triangle, and you apply "Bring Forward" to the triangle, it will be placed at layer
forward. The new order of the objects from top to bottom will be triangle,
circle, and square.

Send Backward sends the object back one layer. Given the same initial
placement of triangle, square, and circle layered from bottom to top, applying
"Send Backward" to the circle will place the circle one layer down. The new
order of the objects from bottom to top will be square, circle, triangle.

Syntax: Expression.Spring(Name as String)

Expression Required: An expression that layers a report object.

Constants: The Layer method uses the BqLayer constant group.
Layer (Method) 10-47

This group consists of the following values:

bqLayerBack

bqLayerBackward

bqLayerForward

bqLayerFront

Example: The following example shows you how to reposition the Pivot object one
object forward.

ActiveDocument.Sections["Report"].Body.Pivots["Pivot"].Layer(bqLayerForward)
10-48 Methods

LoadFromFile (Method)

Applies To: Limit

Description: Loads a list of values into a limit from a file.

Syntax: Expression.LoadFromFile(Filename As String) As Boolean

Expression Required: An expression that returns a Limit object.

Example: The following example loads a list of values from a file named limits.txt into a
query limit on the “Store_Id” topic item.

var Filename = "d:\\LimitData.txt"
ActiveDocument.Sections["Query"].Limits["Store_Id"].LoadFromFile(Filename)
LoadFromFile (Method) 10-49

LoadSharedLibrary (Method)

Applies To: Application

Description: Initializes the communication between Brio Intelligence and an external
shared library (dll). Returns a SharedLibrary object that can be used to invoke
functions of the shared library.

Syntax: Expression.LoadSharedLibrary(Name As String) As
SharedLibrary

Expression Required: An expression that returns an Application object.

Example: The following example calls the Beep function of the Kernal32.dll for 4
seconds with 5000Hz.

var oLibrary;
oLibrary = LoadSharedLibrary("kernel32.dll");
oLibrary.Call("Beep", "UI,UI", 5000, 4000);
10-50 Methods

ModifyComputed (Method)

Applies To: Columns

Description: Enables you to reference an existing column and change its expression while
still maintaining the column name (that is, without having to delete and
recreate the column which might be used by other columns).

Syntax: Expression.ModifyComputed(NameOrIndex As Value,
Expression As String)

Expression Required: An expresion that returns a Columns object.

Example: The first part of the script adds four undefined computed columns. The
second part of the script resolves the errors in the computed columns.

//This expression causes the four computed items to become undefined
ActiveDocument.Sections["Results"].Columns.AddComputed("Twice","Unit_Sales * 2");
ActiveDocument.Sections["Results"].Columns.AddComputed("Fours","Twice * 2")
ActiveDocument.Sections["Results"].Columns["Twice"].Remove()
ActiveDocument.Sections["Query"].Process()
ActiveDocument.Sections["Results"].Columns.AddComputed("Twice","Unit_Sales * 3");
//This expression resolves the problem
ActiveDocument.Sections["Results"].Columns.AddComputed("Twice","Unit_Sales * 2");
ActiveDocument.Sections["Results"].Columns.AddComputed("Fours","Twice * 2")
ActiveDocument.Sections["Query"].Process()
ActiveDocument.Sections["Results"].Columns.ModifyComputed("Twice",
"Unit_Sales *3";
ModifyComputed (Method) 10-51

Move (Method)

Applies To: Groupitems object, ReportGroup object, TableFacts object

Description: Moves an object in the report collection. For example, you might use this
method to reverse the order of two items in the Table Facts outliner.

Syntax: Expression.Move(LabelNameBefore as String)

Expression Required: An expression that returns an object for any of the following:

GroupItems object

ReportGroup object

TableFacts object

Example: The following example shows you how to move the object "Unit Sales" before
"Amount Sales" in the TableFacts collection.

//State is Report Group 1, City is Report Group2.
//This script should move City on top of State.
//Description: void Move(String LabelNameBefore)
try
 {
ActiveDocument.Sections["Report"].Groups["Report Group2"].Move("Report Group1")
 }
catch(e)
 {
 Console.Writeln(e.toString())
 }
10-52 Methods

New (Method)

Applies To: Documents

Description: Creates a new blank Brio Intelligence document.

Syntax: Expression.New([Name As String]) As Document

Expression Required: An expression that returns a Documents object.

Example: The following example shows you how to create a new Brio Intelligence
document.

var MyName = "JavaScript Test"
var MyDoc = Documents.New(MyName)
MyDoc.Save()
New (Method) 10-53

OnActivate (Method)

Applies To: EIS Section

Description: The OnActivate() method is a Brio Intelligence section level function. This
method is available regardless of the state of the application and can be
accessed through scripting. The OnActivate() method will execute a script
stored under the OnActivate event trigger. The method takes no arguments.
Any scripts associated with the OnActivate method are executed when
entering an EIS section.

Syntax: Expression. OnActivate()

Expression Required: An expression that returns an object for any of the following:

ControlsCheckBox

CommandButton

ListBox

Radio ButtonGraphicsLine

Hz Line

Vt Line

Rectangle

Round Rectangle

Oval

Text Label

Picture

Embedded Section Objects

Query

Results

Pivot

Chart
10-54 Methods

Table

OLAPQuery

EIS

Example: The following example displays the OnActivate method for an active EIS
section.

ActiveDocument.Sections["EIS"].OnActivate()
OnActivate (Method) 10-55

OnChange (Method)

Applies To: EIS Section

Description: The OnChange() method is a Brio Intelligence EIS Object level function. This
method is only available when an EIS section is included in the Brio
Intelligence document, and the EIS section contains a text box.The
OnChange() method will execute a script stored in an EIS section text box
under the OnChange event trigger. The method takes no arguments.

Syntax: Expression.OnChange()

Expression Required: An expression that returns a Textbox object.

Example: The following example shows you how to associate an OnChange method in a
text box.

TextBox1.OnChange()
10-56 Methods

OnClick (Method)

Applies To: ControlsCheckBox, ControlsCommandButton, ControlsDropDown,
ControlsOptionsButton, ControlsTextBox, Shape

Description: Simulates a user click event. This method exhibits the same behavior as simply
clicking on a control. Any scripts associated with an onclick event are
triggered.

Syntax: Expression.Click()

Expression Required: An expression that returns an object for any of the following:

ControlsCheckBox

ControlsCommandButton

ControlsDropDown

ControlsOptionsButton

ControlsTextBox

Shape

Example: The following example shows you how to invoke a command buttons event
handler.

MyEIS = ActiveDocument.Sections["EIS"]
MyEIS.Controls["CommandButton1"].OnClick()
OnClick (Method) 10-57

OnDeactivate (Method)

Applies To: EIS Section

Description: The OnDeactivate() method is a Brio Intelligence EIS section level event. This
method is available regardless of the state of the application and can be
accessed through scripting. The OnDeactivate() method will execute a script
stored under the OnDeactivate event trigger. The method takes no
arguments.Any scripts associated with the OnDeactivate method are executed
when leaving an EIS section.

Syntax: Expression. OnDeactivate()

Expression Required: An expression that returns an object for any of the
following:

■ Controls

❑ CheckBox, CommandButton, ListBox, Radio Button

■ Graphics

❑ Line,Hz Line,Vt Line,Rectangle,Round Rectangle,Oval, Text
Label,Picture

■ Embedded Section Objects

❑ Results, Pivot, Chart, Table, OLAPQuery

■ EIS section script

■ Customized script

Example: The following example displays the DeActivate method for an active EIS
section.

ActiveDocument.Sections["EIS"].OnDeactivate()
10-58 Methods

OnDoubleClick (Method)

Applies To: EIS Section

Description: The OnDoubleClick() method is a Brio Intelligence EIS Object level function.
This method is only available when an EIS section is included in the Brio
Intelligence document and the EIS section contains a listbox.The
OnDoubleClick() method will execute a script stored in an EIS section listbox
under the OnDoubleClick event trigger. The method takes no arguments.

Syntax: Expression. OnDoubleClick()

Expression Required: An expression that returns a Listbox object.

Example: The following example shows you how to associate an OnDoubleClick method
with a list box.

ListBox1.OnDoubleClick()
OnDoubleClick (Method) 10-59

OnEnter

Applies To: EIS Section

Description: The OnEnter() method is a Brio Intelligence EIS Object level function. This
method is only available when an EIS section is included in the Brio
Intelligence document and the EIS section contains a text box.

Syntax: Expression. OnEnter()

Expression Required: An expression that returns a Textbox object.

Example: The following example shows you how to activate a text box.

ActiveDocument.Sections["EIS2"].Shapes["Textbox1"].OnEnter()
10-60 Methods

OnExit

Applies To: EIS Section

Description: The OnExit() method is a Brio Intelligence EIS Object level function. This
method is only available when an EIS section is included in the Brio
Intelligence document and the EIS section contains a text box.

Syntax: Expression.OnExit()

Expression Required: An expression that returns a Textbox object.

Example: The following example shows you how to exit a text box.

ActiveDocument.Sections["EIS2"].Shapes["Textbox1"].OnExit()
OnExit 10-61

OnPostProcess (Method)

Applies To: Document

Description: The OnPostProcess() method is a Brio Intelligence document level function.
This method is available regardless of the state of the application. As long as
the application is running, this method is available through scripting. The
OnPostProcess method will execute a script stored under the OnPostProcess
event trigger. The method takes no arguments.

Note Calling the Process() method from the OnPreProcess() or OnPostProcess() events can result in

an infinite loop.

Syntax: Expression.OnPostProcess()

Expression Required: An expression that returns a Brio Intelligence Document object.

Example: The following example displays the OnPostProcess method for the active
document.

ActiveDocument.OnPostProcess()

✏

10-62 Methods

OnPreProcess (Method)

Applies To: Document

Description: The OnPreProcess() method is a Brio Intelligence document level function.
The OnPreProcess method will execute a script stored under the OnPreProcess
event trigger. The method takes no arguments.

Note Calling the Process() method from the OnPreProcess() or OnPostProcess() events can result in
an infinite loop.

Syntax: Expression.OnPreProcess()

Expression Required: An expression that returns a Brio Intelligence Document object.

Example: The following example displays the OnPreProcess method for the active
document.

ActiveDocument.OnPreProcess()

✏

OnPreProcess (Method) 10-63

OnShutdown (Method)

Applies To: Document

Description: The OnShutdown() method is a Brio Intelligence document level function.
This method is available regardless of the state of the application. As long as
the application is running, this method is available through scripting. The
OnShutdown method will execute a script stored under the OnShutdown
event trigger. The method takes no arguments.

Note Any OnShutDown events are executed before you are prompted to save or discard changes

made to a document in the Save dialog box.

Syntax: Expression. OnShutdown()

Expression Required: An expression that returns a Brio Intelligence Document object.

Example: The following example shows you how to use the OnShutdown() method to
exit a document without executing Brio Intelligence. The second line of the
script shows you how to turn off the Prompt to Save dialog box when an
OnShutdown() method is executed.

Documents["Eistrigger.bqy"].OnShutdown()
Application.Quit(false)

✏

10-64 Methods

OnStartup (Method)

Applies To: Document

Description: The OnStartup() method is a Brio Intelligence document level function. It is
executed when a document is opened and can be used to initialize the
document and application for the user. This method is available regardless of
the state of the application. As long as the application is running, this method
is available through scripting. The OnStartup method will execute a script
stored under the OnStartup event trigger. The method takes no arguments.

Syntax: Expression. OnStartup()

Expression Required: An expression that returns a Brio Intelligence Document object.

Example: The following example displays the OnStartup method for an active
document.

ActiveDocument.OnStartup()
OnStartup (Method) 10-65

Open (Method)

Applies To: Connection, Documents

Description: Documents—Opens an existing Brio Intelligence document.

Connection—Opens an existing Open Catalog Extension file.

Syntax: Expression.Open(Filename As String)

Expression Required: An expression that returns a Connection, or Documents object.

Example 1 The following example shows you how to open an existing Brio Intelligence
document.

var MyFile = "C:\\BQDocs\\JavaTest.bqy"
var MyDoc = Documents.Open(MyFile)
Alert(MyDoc.Name + " is open")

Example 2 The following example shows how to open an existing Open Catalog
Extension file.

var MyOCE = "C:\\BQDocs\\SQL.oce"
var MyCon = ActiveDocument.Sections["Query"].DataModel.Connection.Open(MyOCE)
MyCon.Username = "brio"
MyCon.SetPassword("brio")
MyCon.Connect()
10-66 Methods

OpenURL (Method)

Applies To: Application

Description: Requests the browser to open a URL specified by the “url” parameter. The
target parameter refers to the browser window where the new url should be
displayed. Target may be the name of a browser frame or a keyword referring
to a specific browser window.

Target Description

“_self” The current browser window.

“_new” A new browser window.

Note The OpenURL() method is only applicable for Web-based clients (Insight users).

Syntax: Expression.OpenURL(URL As String, Target As String)

Expression Required: An expression that returns an Application object.

Example: The following example shows you how to open a Web page in a new window.

if(Application.Name != "BrioQuery")
{
 var MyURL = http://www.SeasonPass.com
 Application.OpenURL(MyURL,"_new")
}

✏

OpenURL (Method) 10-67

PivotThisChart (Method)

Applies To: PivotCollection

Description: Changes a chart object into the form of a Pivot report.

Syntax: Expression.PivotThisChart()

Expression Required: An expression that returns a Pivot object.

Example: The following example shows you how to change the BooksChart object into
the form of a Pivot report.

ActiveDocument.Sections["BooksChart"].PivotThisChart()
10-68 Methods

PivotTo (Method)

Applies To: PivotLabel

Description: Changes the position of a pivot label. By default, calling the PivotTo method
moves a pivot label from one label collection to another. PivotTo performs the
same action as selecting or deleting a pivot label out of one group and
reinserting into a different group.

Syntax: Expression.PivotTo([Index As Number])

Expression Required: An expression that returns a PivotLabel object.

Example: The following example shows you how to pivot a label from the top labels
collection to the 1st position in the side labels collection. The Index is an
optional property, which specifies where the label pivots. If the property is
empty then the pivot will place the label at the end of the list.

ActiveDocument.Sections["Pivot"].TopLabels["Year"].PivotTo(1)

//To pivot back to its original position use:

ActiveDocument.Sections["Pivot"].TopLabels["Year"].PivotTo()
PivotTo (Method) 10-69

PrintOut (Method)

Applies To: ChartSection, DataModelSection, OLAPQuerySection, PivotSection,
QuerySection, Section, TableSection

Description: Sends the information in a report section to the printer.

Syntax: Expression.PrintOut([FromPage As Long], [ToPage As
Long], [Copies As Long], [Filename As String])

Expression Required: An expression that returns an object for any of the following:

ChartSection

DataModelSection

OLAPQuerySection

PivotSection

QuerySection

Section

TableSection

Example: The following example shows you how to print multiple copies of a Pivot
section to the printer.

var StartPage = 1
var EndPage = 1
var NumCopies =2
ActiveDocument.Sections["Pivot"].PrintOut(StartPage,EndPage,NumCopies)
10-70 Methods

Process (Method)

Applies To: OLAPQuerySection, QuerySection

Description: Executes a query. This method is equivalent to selecting the Process Current
item from the Tools menu.

Syntax: Expression.Process()

Expression Required: An expression that returns an OLAPQuerySection or a QuerySection object.

Example: The following example shows you how to process every query in a document.

for (j =1; j <= ActiveDocument.Sections.Count; j++)
{
 if (ActiveDocument.Sections[j].Type == bqQuery)
 {
 var MyCon = ActiveDocument.Sections[j].DataModel.Connection
 MyCon.Username = "Brio"
 MyCon.SetPassword("Brio")
 MyCon.Connect()
 ActiveDocument.Sections[j].Process()
 Console.Writeln(ActiveDocument.Sections[j].Name + " was processed.")
 }
}

Process (Method) 10-71

ProcessStoredProc (Method)

Applies To: QuerySection

Description: This method provides you with the option to process stored procedures to
obtain results.

This method is used in conjunction with the SetStoredProcParam (Method).

Syntax: Expression.ProcessStoredProc()

Example: The following example shows you how to open and process a stored procedure
in the Query section.

ActiveDocument.Sections["Query"].SetStoredProcParam("Param1",1)
ActiveDocument.Sections["Query"].SetStoredProcParam("Param2",2)
ActiveDocument.Sections["Query"].ProcessStoredProc()
10-72 Methods

ProcessToTable (Method)

Applies To: QuerySection

Description: Executes the query and stores the results as a table on the database. Items on
the Request line become the column headings of the new table, and you can
append new columns to the table and query it as needed.

Tip The connection file and database to which you are connecting determine
whether or not you can use this feature. You must also have Create and Insert
priviledges on the database in order to process to a database table.

Syntax: Expression.ProcessToTable (TableName As String,
bqProcessType As String, [optional] Grantee As String).

Grantee is the person to whom access is granted—either PUBLIC, a single user
id, or list user ids that are comma delimited. Grantee is optional because it
depends on whether user is creating a new table or appending to an existing
table.

Expression Required: An expression that returns a QuerySection object.

Constants; The BqProcessType is constant group contains the following values:

bqProcessCreateTable

bqProcessAppendToTable

Example 1: In this example, the results are stored in a new table entitled “MyTable.”

ActiveDocument.Sections["Query"].ProcessToTable(‘MyTable’, bqProcessCreateTable,
‘Public’)

Example 2: In this example, the results are appended to “MyTable.”

ActiveDocument.Sections["Query"].ProcessToTable(‘MyTable’, bqAppendToTable,
‘Public’)

✰

ProcessToTable (Method) 10-73

Quit (Method)

Applies To: Application

Description: Shuts down the Brio Intelligence application.

Note The Quit method will not shut down a browser window.

Syntax: Expression.Quit([Silent As Boolean])

Expression Required: An expression that returns an Application object.

Example: The following example shows how to quit Brio Intelligence silently.

Application.Quit(false)

✏

10-74 Methods

Recalculate (Method)

Applies To: ChartSection, DataModelSection, EISSection, OLAPQuerySection,
PivotSection, QuerySection, Section, TableSection

Description: Forces a section to recalculate itself. Use this method to force a section to
recalculate. This is particularly important if you are using variables in
computed columns.

Syntax: Expression.Recalculate()

Expression Required: An expression that returns an object for the Results and Table sections.

Example: The following example forces a Results section to recalculate its values.

ActiveDocument.Sections["Results"].Recalculate()
Recalculate (Method) 10-75

Refresh (Method)

Applies To: DMCatalog

Description: Redisplays the tables in the table catalog.

Syntax: Expression.Refresh()

Expression Required: An expression that returns a DMCatalog object.

Example: The following example shows you how to refresh the items in the table catalog.

ActiveDocument.Sections["Query"].Catalog.Refresh()
10-76 Methods

RefreshAvailableValues (Method)

Applies To: Limit

Description: Generates a list of values for a limit. This method is equivalent to clicking the
“Show Values” button on the Limit dialog box.

Syntax: Expression.RefreshAvailableValues()

Expression Required: An expression that returns a Limit object.

Example: The following example shows how to update the available values for the “Unit
Sales” limit.

ActiveDocument.Sections["SalesQuery"].Limits["Unit Sales"].
RefreshAvailableValues()
RefreshAvailableValues (Method) 10-77

RefreshDataNow (Method)

Applies To: ChartSection, PivotSection

Description: Use the RefreshDataNow (Method) to refresh a section immediately if you
have selected to manually refresh the current section through the object model
or the UI. This method is used in conjunction with the RefreshData Property
when the property value has been set to: bqRefreshDataManually.

Syntax: Expression.RefreshDataNow()

Expression Required: An expression that returns an object for the Pivot or Chart sections.

Example: In the following example, the Pivot section is set to be refreshed manually and
immediately when the command is executed.

ActiveDocument.Sections["Pivot"].RefreshData=bqRefreshDataManually
ActiveDocument.Sections["Pivot"].RefreshDataNow()
10-78 Methods

Remove (Method)

Applies To: CategoryItems, ChartSection, Column, ControlsDropDown, ControlsListBox,
DataModelSection, EISSection, Join, Limit, OLAPQuerySection, PivotLabel,
PivotSection, QuerySection, Request, Section, TableSection, Topic

Description: Removes an individual item from the CategoryItems collection. In all other
cases, Remove is called without a name or index to delete an individual object.

Syntax: Expression.Remove(NameOrIndex) or Expression.Remove()

Expression Required: An expression that returns an object to any of the following:

CategoryItems

ChartSection

Column

ControlsDropDown

ControlsListBox

DataModelSection

EISSection

Join

Limit

LocalJoin

LocalResult

OLAPLabel

OLAPMeasure

OLAPQuerySection

OLAPSlicer

PivotLabel

PivotSection
Remove (Method) 10-79

QuerySection

Request

Section

TableSection

Topic

Example: The following example shows you how to remove the “Product ID” column
from a Results section

ActiveDocument.Sections["Results"].Columns[Product Id].Remove()
10-80 Methods

RemoveAll (Method)

Applies To: AxisLabels, CategoryItems, Columns, ControlsDropDown, ControlsListBox,
Joins, Limits, LimitValues, Requests, Topics

Description: Removes all the items from a collection.

Syntax: Expression.RemoveAll()

Expression Required: An expression that returns a collection for any of the following:

Limits

AxisLabels

CategoryItems

Columns

ControlsDropDown

ControlsListBox

Join

LimitValues

LocalJoins

OLAPLabels

OLAPMeasures

OLAPSlicers

Requests

Topics

Example: The following example shows how to remove every column from a Results or
Table section.

ActiveDocument.Sections["Results"].Columns.RemoveAll()
RemoveAll (Method) 10-81

RemoveExportSection (Method)

Applies To: ChartSection, DataModelSection, Document, EISSection,
OLAPQuerySection, PivotSection, QuerySection, Section, TableSection

Description: When sections are exported successfully, the Export() method clears the
export buffer. If sections are unsuccessful in being exported, then use this
method to flush the export buffer. All sections set for export are cleared from
the export buffer. For instance, if you specify a Report, Pivot, and Chart
section to be exported via the AddExportSection() method, a call to
RemoveExportSections() would nullify the section set up for export. You
could then specify the Export() method to export all sections.

Syntax: Expression.RemoveExportSections()

Example: In the following example, sections are set to be exported using the
AddExportSection () method, then cleared from the export buffer using the
Remove ExportSections() method, and then all of the documents sections are
exported using the Export ()method.

//Export SELECTED Sections of .bqy document
ActiveDocument.AddExportSection(‘Report’)
ActiveDocument.AddExportSection(‘Report2’)
ActiveDocument.AddExportSection(‘Results’)
ActiveDocument.AddExportSection(‘Table’)
ActiveDocument.AddExportSection(‘Pivot’)
ActiveDocument.AddExportSection(‘Pivot2’)
ActiveDocument.AddExportSection(‘Pivot3’)
ActiveDocument.AddExportSection(‘Chart’)
ActiveDocument.AddExportSection(’Chart2’)
ActiveDocument.AddExportSection(’OLAPQuery’)
//Flushes the Export buffer
ActiveDocument.RemoveExportSections()
//Export ALL sections of .bqy document since Export buffer was flushed
ActiveDocument.Export(‘C;\\Temp\\MyExportFile.htm’, bqExportFormatHTML)
10-82 Methods

ResetCustomerSQL (Method)

Applies To: QuerySection

Description: Resets the original SQL statement prior to processing. The CustomSQLFrom,
CustomSQLWhere, and ResetCustomSQL methods correspond to the edit
SQL functionality in the user interface's Custom SQL dialog. However, no
Custom SQL dialog will display when this method is executed.

Syntax: Expression.CustomSQLFrom(CustomSQLStr As String)

Expression Required: An expression that returns a query object.

Example: The following example sets the From clause and the Where clause, processes
the query, and then restores the original SQL statement.

//Set the FROM clause, Set the WHERE clause, PROCESS, and then RESET SQL
ActiveDocument.Sections["Query"].CustomSQLFrom("FROM From.Sales_Fact,
From.Periods, From.Products")
ActiveDocument.Sections["Query"].CustomSQLWhere("WHERE (Periods.Day_Id=Sales_Fact
.Day_Id AND Products.Product_Id=Sales_Fact.Product_Id) AND
(Periods.Quarter='Q1')")
ActiveDocument.Sections["Query"].Process()
ActiveDocument.Sections["Query"].ResetCustomSQL();
ResetCustomerSQL (Method) 10-83

ResizeToBestFit (Method)

Applies To: Column

Description: Changes the width of a column to fit the data without clipping any
information or displaying too much white space.

Syntax: Expression.ResizeToBestFit()

Expression Required: An expression that returns a Column object.

Example: The following example shows you how to change all the columns in a result set
to best fit the data.

for (j =1; j < = ActiveDocument.Sections["Results"].Columns.Count; j++)
ActiveDocument.Sections["Results"].Columns[j].ResizeToBestFit()
10-84 Methods

Save (Method)

Applies To: Connection, Document, WebClientDocument

Description: Saves the changes to a document or to an Open Catalog Extension file.

Syntax: Expression.Save()

Expression Required: An expression that returns an object for any of the following:

Connection

Document

WebClientDocument

Example: The following example shows you how to create a new Brio Intelligence
document and save it.

var MyDocs = "c:\\Mydocs"
var MyName = "JavaScript Test"
var MyDoc = Documents.New(MyName)
MyDoc.Save()
Save (Method) 10-85

SaveAs (Method)

Applies To: Connection, Document, WebClientDocument

Description: Saves a document or Open Catalog Extensions file with a new name and/or
location.

Syntax: Expression.SaveAs(Filename As String)

Expression Required. An expression that returns an object for any of the following:

Connection

Document

WebClientDocument

Example: The following example shows you how to save a document using a different
name.

var MyDocs = "c:\\Mydocs"
var MyName = "JavaScriptTest.bqy"
var MyFilename = MyDocs + "\\"+ MyName
ActiveDocument.SaveAs(MyFilename)
10-86 Methods

Select (Method)

Applies To: ControlsDropDown, ControlsListBox, ControlsTextBox

Description: Changes the user selection of items in a control.

Syntax: Expression.Select(Index As Long)

Expression Required: An expression that returns an object for any of the following:

ControlsDropDown

ControlsListBox

ControlsTextBox

Example: The following example shows you how to set the selection of one dropdown
list based selected index in another dropdown list.

var MyIndex = DropDown1.SelectedIndex=1
DropDown2.Select(MyIndex)
Select (Method) 10-87

SendSQL (Method)

Applies To: Application

Description: Sends a SQL string to a datasource. No data is retrieved from the database.

Currently, this will not send a SQL statement to the same database session to
which your query is connected.

Note If your SendSQL string is sending data modification commands, your database may require a
commit statement. The commit behavior of the database may restrict which type of SQL string

you may be able to send.

Since the SendSQL method requires an .oce as an argument, it does not apply to a script
written specifically for Insight.

Syntax: Expression.SendSQL(Ocename As String, Username As
String, Password As String, SQLString As String)

Expression Required: An expression that returns an Application object.

Example: The following example shows you how to send a SQL Statement to a database
associated with an OCE.

var SQL = "insert into test (store_id, store) values (2, 'Computer City')"
var OCE = "c:\\OCEs\\Oracle.oce"
var user = "brio"
var pass = "brio"
Application.SendSQL(OCE,user,pass,SQL)

✏

10-88 Methods

SetODSPassword (Method)

Applies To: WebClientDocument

Description: Sets the OnDemand Server password. This method is a Web-enabled method
and does not apply to Brio Intelligence. It can be used to automate logging on
to the OnDemand Server.

Syntax: Expression.SetODSPassword(Password As String)

Expression Required: An expression that returns a WebClientDocument object.

Example: The following example shows you how to set the OnDemand Server Password
from a password field in an EIS section. The name of the password field is
TextBox1.

var MyPass = TextBox1.Text
if (Application.Name != "BrioQuery")
ActiveDocument.SetODSPassword(MyPass)
SetODSPassword (Method) 10-89

SetPassword (Method)

Applies To: Connection

Description: Sets the password that is used by the Open Catalog Extension when connecting
to the database.

Syntax: Expression.SetPassword(Password As String)

Note It is very important that you enclose the password with parentheses. If you don’t, the string is

created as a variable and there is no way to unassign it.

Expression Required: An expression that returns a Connection object.

Example: The following example shows you how to set the Password from a password
field in an EIS section. The name of the password field is TextBox1.

var MyPass = TextBox1.Text
if (Application.Name != "BrioQuery")
ActiveDocument.Sections["Query"].DataModel.Connection.SetPassword(MyPass)

✏

10-90 Methods

SetStoredProcParam (Method)

Applies To: QuerySection

Description: This method provides you with the option to programmatically set up (select)
stored procedures for obtaining results.

The optional index parameter specifies the nth position in the stored
procedure argument list (with the first parameter being indexed at 1). If no
index value is provided, the assumed order is the order in which they are
defined (again, beginning at 1). If there is a mix of some method calls with the
index value and some without, the order will be those with indexes first
followed by definition order of those without indexes.

This method is used in conjunction with the ProcessStoredProc (Method).

Syntax: Expression.SetStoredProcParm(Parameter As Value,
[Optional]ParamIndex As Number)

Example: The following example shows you how to open and process a stored procedure
in the Query section.

ActiveDocument.Sections["Query"].SetStoredProcParam("Param1",1);
ActiveDocument.Sections["Query"].SetStoredProcParam("Param2",2);
ActiveDocument.Sections["Query"].ProcessStoredProc();
SetStoredProcParam (Method) 10-91

Shell (Method)

Applies To: Application

Description: Launches an external application and passes a command line argument to the
application.

Syntax: Expression.Shell(CommandLine As String,
[optional]Arguments As String)

Expression Required: An expression that returns an Application object.

Example: The following example launches notepad with a text file.

var App = "c:\\Winnt\\notepad.exe"
var Args = "C:\\Docs\\Readme.txt"
Application.Shell(App,Args)
10-92 Methods

SortByFact (Method)

Applies To: PivotLabelsTotals Collection, CategoryItems Collection

Description: Sets a data value (rather than "label") criterion in the sort conditions available
in the Pivot and Chart sections. This method corresponds to the Sort by Values
feature in the Pivot and Chart report sections where the second list selection
orders each value of the target item specified in the first list selection by its
corresponding numeric value in the second list.

Syntax: Expression.SortByFact(FactName As String,SortFunction
As BqSortFunction, [optional]SortOrder As BqSortOrder)

Expression Required: An expression that returns a PivotLabelsTotals or CategoryItems collection.

Constants: The BqSortFunction constant group contains of the following values:

bqSortFunctionAverage

bqSortFunctionCount

bqSortFunctionMaximum

bqSortFunctionMinimum

bqSortFunctionNonNullAverage

bqSortFunctionNonNullCount

bqSortFunctionNullCount

bqSortFunctionSum

The BqSortOrder constant group contains the following values:

bqSortAscend

bqSortDescend

Example: The following example shows you how to sort the Product Name item by its
corresponding numeric value "Amount Sales".

ActiveDocument.Sections["Pivot2"].TopLabels["Product Name"].SortByFact("Amount
Sales", bqSortFunctionSum, bqSortAscend)
SortByFact (Method) 10-93

SortByLabel (Method)

Applies To: PivotLabelsTotals Collection, CategoryItems Collection

Description: Sets the primary sort criterion on an item by label or name, rather than by
reference to corresponding numeric data values. This method corresponds to
the Sort by Labels feature in the Pivot and Chart report sections

Syntax: Expression.SortByLabel([SortOrder As BqSortOrder])

Expression Required: An expression that returns a PivotLabelsTotals or CategoryItems collection.

Constants: The BqSort Order constant group contains the following values:

bqSortAscend

bqSortDescend

Example: The following example shows you how to sort the top labels "Product Name"
by region.

ActiveDocument.Sections["Pivot2"].TopLabels["Product Name"].
SortByLabel(bqSortAscend)
10-94 Methods

SortNow (Method)

Applies To: SortItems Collection

Description: Sets the Sort Now feature on items placed on the Sort Line in Results. The Sort
Now feature initiates the sorting function immediately on items on the Sort
Line.

Syntax: Expression.SortNow()

Expression Required: An expression that returns a SortItems collection.

Example: The following example shows you how to use the SortNow method for items
on the Sort Line in the Results section.

ActiveDocument.Sections["Results"].SortItems.SortNow()
SortNow (Method) 10-95

Spring (Method)

Applies To: Field object, Table object, ReportPivot collection, ReportChart collection,
Shapes collection

Description: Allows you to maintains relative vertical spacing between dynamic objects.
That is, you can "spring" one object to another so that if the first object is
moved, increased or diminished, the second object moves in the same flow.

Syntax: Expression.Spring(Name as String)

Expression Required: An expression that springs a report object.

Example: The following example shows you how to spring the the table object and
"smart" report objects.

ActiveDocument.Sections["Report"].Body.Tables["Table"].Spring("Chart")ActiveDocum
ent.Sections["Report"].Body.Tables["Table"].Spring("Pivot")
10-96 Methods

SyncWithDatabase (Method)

Applies To: DataModel

Description: Causes a Data Model to synchronize itself with the underlying database tables.

Syntax: Expression.SyncWithDatabase()

Expression Required: An expression that returns a Data Model object.

Example: The following example shows you how to synchronize a Data Model with the
database.

var MyDM = ActiveDocument.Sections["Datamodel"].DataModel
MyDM.SyncWithDatabase()
SyncWithDatabase (Method) 10-97

UnhideAll (Method)

Applies To: AxisLabels (XLabels, Ylabels, and ZLabels)

Description: Allows you to restore all hidden label value item(s) that are hidden through the
HideSelection and FocusSelection methods.

Syntax: Expression.XLabels.UnhideAll()

Expression Required: An expression that unhides an AxisLabels item.

Example The following example shows you how to unhide all label value items on the
Xlabels.

ActiveDocument.Sections["AllChart"].XLabels.UnhideAll()
10-98 Methods

Unselect (Method)

Applies To: ControlsListBox

Description: Causes an item in a list box to be unselected whether it has been selected or
not.

Syntax: Expression.Unselect(Index As Number)

Index is the nth item in the ListBox (index based 1).

Expression Required: An expression that unselects a ListBox object.

Dependency The Multiple Select property must be enabled for the ListBox object in order to
use this method.

Example: In the following example, a listbox has been populated with four values, which
can all be selected and counted in a text box. The Unselect method has been
added for each of the four values and any out of bound values.

//Selects all values in ListBox1 and performs a count
var cnt = ListBox1.Count
for (var i = 1; i <= cnt; i++)
{
ListBox1.Select(i)
}
TextBox1.Text=ListBox1.SelectedList.Count
//Unselects first index value in ListBox1
ListBox1.Unselect(1)
TextBox1.Text=ListBox1.SelectedList.Count
//Unselects second index value in ListBox1
ListBox1.Unselect(2)
TextBox1.Text=ListBox1.SelectedList.Count
//Unselects third index value in ListBox1
ListBox1.Unselect(3)
TextBox1.Text=ListBox1.SelectedList.Count
//Unselects fourth index value in ListBox1
ListBox1.Unselect(4)
TextBox1.Text=ListBox1.SelectedList.Count
Unselect (Method) 10-99

UnSpring (Method)

Applies To: Field object, Table object, ReportPivot collection, ReportChart collection,
Shapes collection

Description: Allows you to remove the relative vertical spacing between dynamic objects.
That is, you can "unspring" one object from another so that if the first object
was sprung (moved, increased or diminished), the second object moved in the
same flow.

Syntax: Expression.Unspring(Name as String)

Expression Required: An expression that unsprings a report object.

Example: The following example shows you how to spring and unspring a table and
chart object in the Body section.

ActiveDocument.Sections["Report"].Body.Tables["Table"].Spring("Chart")
ActiveDocument.Sections["Report"].Body.Charts["Chart"].UnSpring()
10-100 Methods

UseAlternateMetadataLocation (Method)

Applies To: Connection

Description: Sets a alternate datasource for retrieving metadata information.

Syntax: Expression.UseAlternateMetadataLocation(Value As
Boolean, [MetadataOce As String])

Expression Required: An expression that returns a Connection object.

Example: The following example shows you how to change the metadata location for the
current Data Model.

var MyDM = ActiveDocument.Sections["DataModel"].DataModel
var MyOCE = "c:\\OCEs\\MetaOracle.oce"
MyDM.Connection.UseAlternatieMetadataLocation(true,MyOCE)
UseAlternateMetadataLocation (Method) 10-101

Write (Method)

Applies To: Console

Description: Prints the output text specified by the OutputData parameter to the console
window.

Syntax: Expression.Write(OutputData As Value)

Expression Required: An expression that returns a Console object.

Example: The following example shows you how to print the names of document
sections on a single line.

Console.Write(ActiveDocument.Name +"'s sections are: ")
for (j=1; j < ActiveDocument.Sections.Count; j++)
 Console.Write(ActiveDocument.Sections[j].Name + ", ")
10-102 Methods

Writeln (Method)

Applies To: Console

Description: Prints the output text specified by the OutputData parameter to the console
window and puts a new line after the inserted text.

Syntax: Expression.Writeln(OutputData As Value)

Expression Required: An expression that returns a Console object.

Example: The following example shows you how to print the names of document
sections on individual lines.

Console.Writeln(ActiveDocument.Name +"'s sections are: ")
for (j=1; j < ActiveDocument.Sections.Count; j++)
 Console.Writeln("Section #"+j +" = " +ActiveDocument.Sections[j].Name)
Writeln (Method) 10-103

10-104 Methods

11 Properties

A property stores information and can be used to change a document. This
chapter provides an alphabetical reference to the properties available for
Product Name Variable objects.

Object properties are simple string, numeric or true/false statements that can
be set or read. For example, a section has a property called Name. Name can be
set simple by assigning a string value; or read by assigning Name to a variable.

An object tracks its properties. Properties can be:

■ Read-only—A designer can access the value, but cannot change the data.

■ Read-Write—A designer can access or change the value. Changing a
property affects actions. For example, changing a toolbar property can
make it visible or not visible.

Object properties can be accessed directly by using a name or index as in the
following examples:

■ By name using [“ “] or a .

■ By index using []

■ Use . when accessing a known object property

■ Use [] when accessing elements within a collection.
11-1

Active (Property)

Applies To: ChartSection, DataModelSection, Document, EISSection,
OLAPQuerySection, PivotSection, PluginDocument, QuerySection, Section,
TableSection

Description: Section Object: Returns true if the section object refers to the current section;
otherwise, false.

Document Object: Returns true if the document object refers to the current
document; otherwise, false.

Action: Read-only, Boolean

Example: The following example shows you how to find the active section in the
document.

var SectionCount = ActiveDocument.Sections.Count
for(j = 1 ; j <= SectionCount ; j++)
{
 if(ActiveDocument.Sections[j].Active == true)
 Alert ("The Active section is "+ActiveDocument.Sections[j].Name)
}

11-2 Properties

AdaptiveState (Property)

Applies To: PluginDocument (Insight and Quickview Only)

Description: Returns the current Adaptive state mode to which plug-in belongs.

Action: Read-only

Constants: The BqAdaptiveState constant group consists of the following values:

bqStateAnalyzeOnly

bqStateAnalyzeProcess

bqStateDataModelAnalyze

bqStateNormal

bqStateQueryAnalyze

bqStateViewOnly

bqStateViewProcess

Example: The following example shows you how to use the AdaptiveState property to
conditionally execute certain scripts.

var CurState = ActiveDocument.AdaptiveState
if(CurState == bqStateAnalyzeOnly || CurState == bqStateViewOnly)
 ActiveDocument.Sections["Start Here"].Activate()
else
 ActiveDocument.Sections["Query"].Activate()
AdaptiveState (Property) 11-3

Alignment (Property)

Applies To: Column object, Shape object

Description: Returns or sets the horizontal alignment of the text in a column or shape.

Action: Read-write

Constants: The BqHorizontalAlignment constant group consists of the following values:

bqAlignCenter

bqAlignLeft

bqAlignRight

Example: The following example shows how to change the horizontal alignment of text
in a column.

var MyResults=ActiveDocument.Sections["SalesResults"]
var ColCount = MyResults.Columns.Count
for (j = 1 ; j <= ColCount ; j++)
 if (MyResults.Columns[j].DataType == bqDataTypeString)
 MyResults.Columns[j].Alignment = bqAlignLeft
 else
 MyResults.Columns[j].Alignment = bqAlignRight
11-4 Properties

AllowNonJoinedQueries (Property)

Applies To: Connection

Description: Returns or sets the value of a connection objects AllowNonJoinedQueries
property. Setting AllowNonJoinedQueries equal to true allows queries with
nonjoined topics to be processed.

Action: Read-write, Boolean

Example: The following example opens a connection file named, SQL.oce, sets the
username and password, changes the connection file to support nonjoined
topics, and connects to the data source.

ActiveDocument.Sections["Query"].DataModel.Connection.Open("c:\\OCEs\\SQL.oce")
ActiveDocument.Sections["Query"].DataModel.Connection.Username = "brio"
ActiveDocument.Sections["Query"].DataModel.Connection.SetPassword("briobrio")
ActiveDocument.Sections["Query"].DataModel.Connection.AllowNonJoinedQueries =
true
ActiveDocument.Sections["Query"].DataModel.Connection.Connect()
AllowNonJoinedQueries (Property) 11-5

API (Property)

Applies To: Connection

Description: Returns or sets the value of the API associated with a connection file.

Action: Read-write

Constants: The BqApi constant group consists of the following values:

bqApiCTLib

bqApiEssbase

bqApiMetaCube

bqApiNone

bqApiODBC

bqApiOLEDB

bqApiOpenClient

bqApiOracleExpress6

bqApiPersonalOracleExpress5

bqApiSQLNet

Example: The following example shows you how to create a connection file from scratch
and save it to a local file.

var myCon
myCon = Application.CreateConnection()
myCon.Api =bqApiSQLNet
myCon.Database = bqDatabaseSQLServer
myCon.HostName ="PlutoSQLSVR"
myCon.SaveAs("C:\\Program Files\\Brio\\BrioQuery\\Program\\Open Catalog
Extensions\\PlutoSQL.oce")
//Now use this connection in a datamodel
ActiveDocument.Sections["SalesQuery"].DataModel.Connection.Open("C:\\Program
Files\\Brio\\BrioQuery\\Program\\Open Catalog Extensions\\PlutoSQL.oce")
11-6 Properties

AutoAlias (Property)

Applies To: Data Model

Description: Returns or Sets the value of a Data Model AutoAlias property.

Action: Read-write, Boolean

Example: The following example shows you how to activate AutoAliasing and
AutoJoining.

ActiveDocument.Sections["Query"].DataModel.AutoAlias = true
ActiveDocument.Sections["Query"].DataModel.AutoJoin = true
AutoAlias (Property) 11-7

AutoCommit (Property)

Applies To: Connection

Description: Returns or sets the value of a connection object Autocommit property. Set this
property to false if your database does not support Autocommit.

Action: Read-write, Boolean

Example: The following example shows you how to create a connection from scratch
and save it to a local file.

var myCon
myCon = Application.CreateConnection()
myCon.Api =bqApiSQLNet
myCon.Database = bqDatabaseSQLServer
myCon.HostName ="PlutoSQLSVR"
myCon.AutoCommit = false
myCon.SaveAs("C:\\Program Files\\Brio\\BrioQuery\\Program\\Open Catalog
Extensions\\PlutoSQL.oce")
//Now use this connection in a datamodel
ActiveDocument.Sections["SalesQuery"].DataModel.Connection.Open("C:\\Program
Files\\Brio\\BrioQuery\\Program\\Open Catalog Extensions\\PlutoSQL.oce")
11-8 Properties

AutoFrequency (Property)

Applies To: XaxisLabel

Description: Returns or sets the value of a chart objects’ AutoFrequency object. This
property enables/disables the chart function to choose automatically the
display frequency on the X-axis.

Action: Read-write, Boolean

Example: The following example shows you how to change a chart X-axis to support
Auto Frequency.

ActiveDocument.Sections["Chart"].LabelsAxis.XAxis.AutoFrequency = true
AutoFrequency (Property) 11-9

AutoInterval (Property)

Applies To: LeftAxis

Description: Returns or sets the value of a chart objects AutoInterval property. This
property enables/disables the chart function to choose automatically the data
interval on the left axis.

Action: Read-write, Boolean

Example: The following example shows you how to change a charts left-axis to support
auto interval.

ActiveDocument.Sections["Chart"].ValuesAxis.LeftAxis.AutoInterval = true
11-10 Properties

AutoJoin (Property)

Applies To: Data Model

Description: Returns or sets the value of a Data Model objects AutoJoin property. This
property enables/disables the Data Model function to create automatic joins
between topics that are added to it.

Action: Read-write, Boolean

Example: The following example shows you how to turn on Auto Aliasing and Auto
Joining.

ActiveDocument.Sections["Query"].DataModel.AutoAlias = true
ActiveDocument.Sections["Query"].DataModel.AutoJoin = true
AutoJoin (Property) 11-11

AutoProcess (Property)

Applies To: QuerySection

Description: Returns or sets the value of a Query Section objects AutoProcess property.
This property enables/disables a query’s ability to automatically process itself
when it is opened or downloaded from the repository.

Action: Read-write, Boolean

Example: The following example shows you how to enable AutoProcess.

ActiveDocument.Sections["Query"].AutoProcess = true
11-12 Properties

AutoScale (Property)

Applies To: LeftAxis, RightAxis

Description: Returns or sets the value of a chart axis’s AutoScale property. This property
enables/disables a chart axis’s ability to automatically determine the best scale.

Action: Read-write, Boolean

Example: The following example enables Autoscaling on the left and right values axis.

ActiveDocument.Sections["Chart"].ValuesAxis.LeftAxis.AutoScale = true
ActiveDocument.Sections["Chart"].ValuesAxis.RightAxis.AutoScale = true
AutoScale (Property) 11-13

AvailableValues (Property)

Applies To: Limit

Description: Returns a collection of values that represent the entire list of valid criteria for a
limit.

Action: Read-only

Example: The following example shows you how to take every value from the
AvailableValues collection and add them to the SelectedValues collection. This
is essentially the same as performing a select all values and transferring the
selection in the Limit User Interface.

LimitCount = ActiveDocument.Sections["Results"].Limits[1].AvailableValues.Count
for (i=1;i<=LimitCount;i++)
{
MyVal = ActiveDocument.Sections["Results"].Limits[1].AvailableValues[i]
ActiveDocument.Sections["Results"].Limits[1].SelectedValues.Add(MyVal)
}

11-14 Properties

AxisPlotValues (Property)

Applies To: Line Chart Facts

Description: Returns or sets the axis plot value of each fact in a line Chart. This property
corresponds to the features on the Line Chart Axis Properties dialog box.

Action: Read-write

Constants: The BqChartAxisPlotValue constant group consists of the following values:

bqChartAxisPlotPrimary

bqChartAxisPlotSecondary

Example: The following example shows you how to set the axis plot value to the primary
or left axis.

ActiveDocument.Sections["Chart"].Facts["Unit_Sales"].AxisPlotValue=
bqChartAxisPlotPrimary
AxisPlotValues (Property) 11-15

AxisType (Property)

Applies To: CategoryItems

Description: Returns an enumerated type that represents the type of axis (X, Y or Z).

Action: Read-only

Constants: The BqChartAxisType group consists of the following values:

bqChartXAxis

bqChartYAxis

bqChartZAxis

Example: The following code shows how to determine the type of chart axis.

switch(ActiveDocument.Sections["Chart"].XCategories.AxisType)
{
case bqChartXAxis:
Alert("The axis is X)
Break
case bqChartYAxis:
Alert("The axis is Y)
Break
case bqChartZAxis:
Alert("The axis is Z)
Break
}

11-16 Properties

BackgroundAlternateColor (Property) 11-17

BackgroundAlternateColor (Property)

Applies To: Result object, Table object, ReportTable object

Description: Sets the background color of staggered (alternate) rows in a table.

Action: Read–write, BqColor Type

Constants: The BackgroundAlternateColor property uses the BqColorType constant
group, which consists of the following value.

bqAqua

bqBlack

bqBlue

bqBlueGray

bqBrightGreen

bqBrown

bqDarkBlue

bqDarkGreen

bqDarkRed

bqDarkTeal

bqDarkYellow

bqGold

bqGray40

bqGray50

bqGray80

bqGreen

bqIndigo

bqLavender

bqLightBlue

bqLightGreen

bqLightOrange

bqLightTurquoise

bqLightYellow

bqLime

bqOliveGreen

bqOrange

bqPaleBlue

bqPink

bqPlum

bqRed

bqSeaGreen

bqSkyBlue

bqTan

bqTeal

bqTransparent

bqTurquoise

bqViolet

bqWhite

bqYellow

Example: The following example shows you to set the alternate background color of
every other row to yellow.

ActiveDocument.Sections["Results"].BackgroundAlternateColor = bqLightYellow
ActiveDocument.Sections["Results"].BackgroundAlternateFrequency = 1
11-18 Properties

BackgroundAlternateFrequency (Property)

Applies To: Result object, Table object, ReportTable object

Description: Defines how often alternate colored rows occur. For example, an alternate
color row can occur on every other row, or every third row.

Action: Read-write, Number

Example: The following example shows you how to set alternate colored row to occur on
every other row. It also changes the background alternate color to light yellow.

ActiveDocument.Sections["Table2"].BackgroundAlternateColor = bqLightYellow
ActiveDocument.Sections["Table2"].BackgroundAlternateFrequency = 1
BackgroundAlternateFrequency (Property) 11-19

BackgroundColor (Property)

Applies To: Result object, Table object, ReportTable object

Description: Sets the background color of rows in a Table section.

Action: Read-write, BqColorType

Constants: The BackgroundColor property uses the BqColorType constant group, which
consists of the following value.

bqAqua

bqBlack

bqBlue

bqBlueGray

bqBrightGreen

bqBrown

bqDarkBlue

bqDarkGreen

bqDarkRed

bqDarkTeal

bqDarkYellow

bqGold

bqGray40

bqGray50

bqGray80

bqGreen

bqIndigo

bqLavender
11-20 Properties

bqLightBlue

bqLightGreen

bqLightOrange

bqLightTurquoise

bqLightYellow

bqLime

bqOliveGreen

bqOrange

bqPaleBlue

bqPink

bqPlum

bqRed

bqSeaGreen

bqSkyBlue

bqTan

bqTeal

bqTransparent

bqTurquoise

bqViolet

bqWhite

bqYellow

Example: The following example shows you how to set the background color of rows to
light green in the Table section.

ActiveDocument.Sections["Table"].BackgroundColor = bqLightGreen
BackgroundColor (Property) 11-21

BackgroundShowAlternateColor (Property)

Applies To: Result object, Table object, ReportTable object

Description: Sets the display of the alternate color property. That is, if you set this property
to "true," the ability to display alternate colored rows is enabled. If you set this
property to "false," alternated colored rows cannot be displayed.

Action: Read-write, Boolean

Example: The following example shows you how to disable the ability to display
alternate colored rows:

ActiveDocument.Sections["Table2"].BackgroundShowAlternateColor = false
11-22 Properties

BeginLimitName (Property)

Applies To: Parentheses object

Description: When the Parentheses collection is invoked, this property sets the limit value
before which the beginning parentheses is inserted. This property is often used
in conjunction with the EndLimitName property.

Action: Read only. BeginLimitName as String

Example: The following example shows you how to display the name of the beginning
limit value enclosed in a parenthetical expression on the limit line:

Alert(ActiveDocument.Sections["Query"].Limits.Parentheses["State
Province,City"].BeginLimitName)
BeginLimitName (Property) 11-23

BorderColor (Property)

Applies To: Result object, Table object, ReportTable object

Description: Sets the color of a table border.

Action: Read-write, BqColorType

Constants: The BorderColor property uses the BqColorType constant group, which
consists of the following value.

bqAqua

bqBlack

bqBlue

bqBlueGray

bqBrightGreen

bqBrown

bqDarkBlue

bqDarkGreen

bqDarkRed

bqDarkTeal

bqDarkYellow

bqGold

bqGray40

bqGray50

bqGray80

bqGreen

bqIndigo

bqLavender
11-24 Properties

bqLightBlue

bqLightGreen

bqLightOrange

bqLightTurquoise

bqLightYellow

bqLime

bqOliveGreen

bqOrange

bqPaleBlue

bqPink

bqPlum

bqRed

bqSeaGreen

bqSkyBlue

bqTan

bqTeal

bqTransparent

bqTurquoise

bqViolet

bqWhite

bqYellow

Example:The following example shows you how to set the color of the table border
to red in a Table section.

ActiveDocument.Sections["Table2"].BorderColor = bqRed
BorderColor (Property) 11-25

BorderWidth (Property)

Applies To: Result object, Table object, ReportTable object

Description: Sets the width of a border in points.

Action: Read-write, Number

Example: The following example shows you how to set the border width to 4 points.

ActiveDocument.Sections["Results"].BorderWidth = 3
11-26 Properties

BottomMargin (Property)

Applies To: ReportSection object

Description: Sets the bottom margin of the report. Margins are set for the entire report.

Note When using this property and the SuspendCalculation property is set to true (which it is by
default), then you must use the Recalculate method to force the Report section to recalculate

itself.

Action: Read-write, Number

Example: The following example shows you how to set the bottom margin of the report
to .25 inches.

ActiveDocument.Sections["Report"].BottomMargin = .25

✏

BottomMargin (Property) 11-27

ChartType (Property)

Applies To: ChartSection

Description: Returns or sets the type of chart. This property controls which type of chart is
displayed in the chart section.

Action: Read-write

Constants: The BqChartType constant group consists of the following values:

bqChartTypeArea

bqChartTypeAreaLine

bqChartTypeBarLine

bqChartTypeClusterBar

bqChartTypeHorizontalBar

bqChartTypeHorizontalStackBar

bqChartTypeLine

bqChartTypeNone

bqChartTypePie

bqChartTypeRibbon

bqChartTypeStackArea

bqChartTypeVerticalBar

bqChartTypeVerticalStackBar

Example: The following example shows you how to change chart properties based on the
type of chart.

if (ActiveDocument.Sections["Chart"].ChartType == bqChartTypeBarLine)
{
ActiveDocument.Sections["Chart"].BarLineChart.ClusterBy = bqClusterByZ
ActiveDocument.Sections["Chart"].BarLineChart.IgnoreNulls = false
ActiveDocument.Sections["Chart"].BarLineChart.ShiftPoints = bqShiftCenter
ActiveDocument.Sections["Chart"].BarLineChart.StackClusterType = bqBarLineCluster
11-28 Properties

ActiveDocument.Sections["Chart"].BarLineChart.ShowBarValues = false
}

ChartType (Property) 11-29

Checked (Property)

Applies To: ControlsCheckBox, ControlsRadioButton

Description: Returns or sets the selection of a check box or radio button controls.

Action: Read-write, Boolean

Example: The following example shows you how to change the selection of a Radio
button or check box. This script assumes that you are running in the same EIS
as two controls: RadioButton1, CheckBox1.

if (RadioButton1.Checked ==true)
 CheckBox1.Checked = false
else
 CheckBox1.Checked = true
11-30 Properties

Clusterby (Property)

Applies To: BarChart, BarLineChart

Description: Returns or sets the type of clustering used when displaying Bar or Bar Line
charts.

Action: Read-write

Constants: The BqClusterBarType constant group consists of the following values:

bqClusterByY

bqClusterByZ

Example: The following example shows you how to cluster the data according to the
values on the Z-axis.

ActiveDocument.Sections["Chart"].BarChart.ClusterBy = bqClusterByZ
Clusterby (Property) 11-31

Color (Property)

Applies To: Font, Fill, Line

Description: Returns or sets the color of text associated with a font object. The color
property may be set using the values in the BqColorType constant group or by
using a hexadecimal number that represents a RGB color value.

Action: Read-write

Constants: The following values are some of the values that are contained in the
BqColorType constant group. For a complete list see the
Product Name Variable object model Script Editor.

bqAqua

bqBlack

bqBlue

bBlueGray

bqBrightGreen

bqBrown

bqDarkBlue

bqDarkYellow

bqLightBlue

bqLightOrange

bqWhite

bqYellow

Example: This example shows you how to set the color, width and dash style of the
border of an EIS text label box.

MyColor = ActiveDocument.Sections["EIS"].Shapes["TextLabel"]
MyColor.Line.Color = bqRed
MyColor.Line.Width = 4
MyColor.Line.DashStyle = bqDashStyleDotDotDash
11-32 Properties

ColumnType (Property)

Applies To: Column

Description: Returns a value that represents the type of Results or Table column. Possible
column types are: Normal, Computed, Date and Grouped.

Action: Read-only

Constants: The BqColumnType constant group consists of the following values:

bqColumnNone

bqComputedColumn

bqDateColumn

bqGroupedColumn

bqStandardColumn

Example: The following example shows you how to determine the column type in a
Results section.

for (j = 1 ; j < = ActiveDocument.Sections["Results"].Columns.Count ;j++)
{
 MyCol = ActiveDocument.Sections["Results"].Column[j].
 switch (MyCol.Type)
 {
 case bqComputedColumn:
 Alert ("The column named "+MyCol.Name + "is a Computed column")
 Break
 case bqDateColumn:
 Alert ("The column named "+MyCol.Name + "is a Date column")
 Break
 case bqGroupedColumn:
 Alert ("The column named "+MyCol.Name + " is a Grouped column")
 Break
 case bqStandardColumn:
 Alert ("The column named "+MyCol.Name + "" is a Standard
column”)
 Break
 }

}

ColumnType (Property) 11-33

Connected (Property)

Applies To: Connection

Description: Returns a value that represents the current connection status of a connection
object. Returns true if the user is connected to the data source; otherwise, false.

Action: Read-only, Boolean

Example: The following example shows how to check the connection status of a
connection object and prompt the user to connect.

var MyCon =ActiveDocument.Sections["SalesQuery"].DataModel.Connection
if (MyCon.Connected ==false)
{

if (Alert
("Do you want to connect to the database?", "Get Connected"," Yes"," No")==1)

MyCon.Connect()
 }
11-34 Properties

Count (Property)

Applies To: AxisLabels, CategoryItems, Columns. Controls, ControlsDropDown,
ControlsListBox, DMResults, Documents, Joins, Limits, LimitValues,
ListSelection, LocalJoins, LocalResults, LAPLabel, OLAPLabels,
OLAPMeasure, OLAPMeasures, OLAPSlicer, OLAPSlicers, PivotLabels,
PivotLabelValue, PivotLabelValues, RecentFiles, Repository, Requests,
Sections, Sorts, StoredProcedures, Toolbars, TopicItems, Topics

Description: Returns a value that represents the number of items in a collection. The count
property is a standard property of all collections.

Action: Read-only, Integer

Example: The following example shows you how to determine the number of sections in
a document and the number of columns in a Results section.

var NumSections = ActiveDocument.Sections.Count
var NumColumns = ActiveDocument.Sections["Results"].Columns.Count
Count (Property) 11-35

CSSExport (Property)

Applies To: ReportSection object

Description: Sets the property to export an html page with a Style Sheet (CSS)

Action: Read-write, Boolean

Example: The following example shows you how to export the Style Sheet with the
report section.

ActiveDocument.Sections["Report"].CSSExport = true
11-36 Properties

CurrentDir (Property)

Applies To: Application

Description: Returns a value that represents the working directory of the application. The
working directory specifies the path used by Product Name Variable when
using relative referencing.

Action: Read-write, String

Example: The following example shows you how to change the working directory of the
application.

Note JavaScript treats “\” as a special character.

var MyDir = "c:\Documents\Demos\JavaScript"
Application.CurrentDir = MyDir

✏

CurrentDir (Property) 11-37

CustomSQL (Property)

Applies To: Limit

Description: Returns or sets the value of the CustomSQL strings in a limit.

Action: Read-write, String

Example: The following example shows you how to set the value of the custom SQL for a
limit.

var SQLString = "SELECT Name From Customers WHERE Cust_ID > 200"
ActiveDocument.Sections["Query"].Limits[1].CustomSQL = SQLString
11-38 Properties

CustomValues (Property)

Applies To: Limit

Description: Returns a collection of values that represent the entire list of custom values for
a limit.

Action: Read-only

Example: The following example shows you how to add all of the values from the
CustomValues collection to the SelectedValues collection. This is essentially
the same as performing a select custom values in the Custom Values list of the
Limit User Interface.

LimitCount =
ActiveDocument.Sections["SalesResults"].Limits["Amount Sales"].CustomValues.Count
for (i=1;i<=LimitCount;i++)
{
MyVal =
ActiveDocument.Sections["SalesResults"].Limits["Amount Sales"].CustomValues.
Item(i)
ActiveDocument.Sections["SalesResults"].Limits["Amount Sales"].SelectedValues.
Add(MyVal)
}

CustomValues (Property) 11-39

DashStyle (Property)

Applies To: Line

Description: Returns or sets the type of border style for a shape or control.

Action: Read-write

Constants: The BqDashStyle constant group consists of the following values:

bqDashStyleDash

bqDashStyleDot

bqDashStyleDotDash

bqDashStyleDotDotDash

bqDashStyleSolid

Example: The following example shows you how to change border color, width and the
dash style of a rectangle.

MyRectangle = ActiveDocument.Sections["EIS"].Shapes["Rectangle"]
MyRectangle.Line.Color = bqRed
MyRectangle.Line.Width = 4
MyRectangle.Line.DashStyle = bqDashStyleDotDotDash
11-40 Properties

Database (Property)

Applies To: Connection

Description: Returns or sets the name of the database vendor and version number.

Action: Read-write

Constants: The following values are some of the values that are contained in the
BqDataBase constant group. For a complete list see the
Product Name Variable object model Script Editor.

bqDatabaseAS400

bqDatabaseBroadbase

bqDatabaseDB2Olap

bqDatabaseEssbase6

bqDatabaseInformix7

bqDatabaseSQLServer7

bqDatabasenone

bqDatabaseODBC

bqDatabaseOracle8

bqDatabaseRedBrick5Warehouse

bqDatabaseSybaseSystem11

bqDatabaseTeraData
Database (Property) 11-41

Example: The following example shows how to create a new connection (OCE) from
scratch using JavaScript.

var myCon
myCon = Application.CreateConnection()
myCon.Api =bqApiSQLNet
myCon.Database = bqDatabaseSQLServer
myCon.HostName ="PlutoSQLSVR"
myCon.SaveAs("C:\\Program Files\\Brio\\BrioQuery\\Program\\Open Catalog
Extensions\\PlutoSQL.oce")
//Now use this connection in a datamodel
ActiveDocument.Sections["SalesQuery"].DataModel.Connection.Open("C:\\Program
Files\\Brio\\BrioQuery\\Program\\Open Catalog Extensions\\PlutoSQL.oce")
11-42 Properties

DatabaseList (Property)

Applies To: Connection, Sybase Only and SQL Server only

Description: Returns or sets the list of databases to which the OCE can connect..

Action: Read-write, String

Example:

var myCon
myCon = Application.CreateConnection()
myCon.Api =bqApiSQLNet
myCon.Database = bqDatabaseSQLServer
myCon.HostName ="PlutoSQLSVR"
myCon.DatabaseList = "master, customer, sales"
myCon.SaveAs("C:\\Program Files\\Brio\\BrioQuery\\Program\\Open Catalog
Extensions\\PlutoSQL.oce"

//Now use this connection in a datamodel
ActiveDocument.Sections["SalesQuery"].DataModel.Connection.Open("C:\\Program
Files\\Brio\\BrioQuery\\Program\\Open Catalog Extensions\\PlutoSQL.oce")
DatabaseList (Property) 11-43

DatabaseName (Property)

Applies To: DMCatalogItem

Description: Returns the name of the database associated with a table in the table catalog.

Action: Read-only

Example: The following example prints out the name of the database for each table in the
Table Catalog.

var TableCatalog = ActiveDocument.Sections["SalesQuery"].DataModel.Catalog
var TableCount = ActiveDocument.TableCatalog.CatalogItems.Count
for (j=1;j<=TableCount;j++)
Console.Writeln (TableCatalog.CatalogItems[j].Name)
11-44 Properties

DataFunction (Property)

Applies To: Chart and Pivot Facts

Description: Returns aggegrate values which summarize groupings of data when applied to
Chart and Pivot facts. In the user interface, data functions are available from
the right-click menu and Chart and Pivot menus only if a fact value is selected.
Data functions are particularly useful when you need to show the kind of value
represented in the Chart and Pivot report. For example, you can show the
total sale, average sale, and maximum sale of each product by Quarter. The
supported data functions for Pivot and Chart Facts are:

Sum (default function)

Average

Count

Maximum

Minimum

Percent Grand

Percent Column

Percent Row

Null Count

Non-Null Count

Action: Read-only
DataFunction (Property) 11-45

Constants: The DataFunction property uses the BqDataFunction constant. The
BqDataFunction constant consists of the following values:

bqDataFunctionAverage

bqDataFunctionCount

bqDataFunctionIncrease (Pivot Totals properties, not Facts)

bqDataFunctionMaximum

bqDataFunctionMinimum

bqDataFunctionNone

bqDataFunctionNonNullAverage

bqDataFunctionNonNullCount

bqDataFunctionNullCount

bqDataFunctionPercentOfColumn

bqDataFunctionPercentOfRow

bqDataFunctionPercentofGrand (For Totals, not Facts)

bqDataFunctionSum

Example: The following example shows you how to set the "Product Line" TopLabels
column in the Pivot section to the average data function.

ActiveDocument.Sections["SalesPivot"].TopLabels["Product Line"].Totals[2].
DataFunction=bqDataFunctionAverage
11-46 Properties

DataType (Property)

Applies To: Column, Request

Description: Returns the data type associated with an object.

Action: Read-only

Constants: The BqDataType constant group consists of the following values:

bqDataTypeDate

bqDataTypeInteger

bqDataTypeNone

bqDataTypeNumber

bqDataTypeString

Example: This script example returns the data type associated with all columns in a
Results section.

var ColCount = ActiveDocument.Sections["Results"].Columns.Count
for (j = 1 ; j <= ColCount ; j++)
{
Console.Writeln(ActiveDocument.Sections["Results"].Columns[j].DataType)
}

DataType (Property) 11-47

DBLibAllowChangeDatabase (Property)

Applies To: Connection

Description: DB-Lib Only. Returns or sets the value of the DBLibAllowChangeDatabase
property. Allows the user to change the database during login.

Action: Read-write, Boolean

Example: The following example shows how to create a new connection (OCE) from
scratch using JavaScript.

var myCon
myCon = Application.CreateConnection()
myCon.Api = bqApiOpenClient
myCon.Database = bqDatabaseSQLServer
myCon.HostName ="PlutoSQLSVR"
myCon.DBLibAllowChangeDatabase = true
myCon.SaveAs("d:\\OCEs\\PlutoSQL.oce")

//Now use this connection in a datamodel
ActiveDocument.Sections["Query"].DataModel.Connection.Open
("d:\\OCEs\\PlutoSQL.oce")
11-48 Properties

DBLibApiSeverity (Property)

Applies To: Connection

Description: DB-Lib only. Returns or sets the value of the DBLibApiSeverity property.
Changes the API’s error level severity.

Action: Read-write, Long

Example: The following example shows how to create a new connection (OCE) from
scratch using JavaScript.

var myCon
myCon = Application.CreateConnection()
myCon.Api = bqApiOpenClient
myCon.Database = bqDatabaseSQLServer
myCon.HostName ="PlutoSQLSVR"
myCon.DBLibApiSeverity = 2
myCon.SaveAs("d:\\OCEs\\PlutoSQL.oce")

//Now use this connection in a datamodel
ActiveDocument.Sections["Query"].DataModel.Connection.Open
("d:\\OCEs\\PlutoSQL.oce")
DBLibApiSeverity (Property) 11-49

DBLibDatabaseCancel (Property)

Applies To: Connection

Description: DB-Lib only. Returns or sets the value of the DBLibDatabaseCancel property.
Changes the Database cancel options.

Action: Read-write

Constants: The BqDbLibCancelMode constant group consists of the following values:

bqDbLibCancel

bqDbLibLogoff

bqDbLibPrompt

Example: The following example shows how to create a new connection (OCE) from
scratch using JavaScript.

var myCon
myCon = Application.CreateConnection()
myCon.Api = bqApiOpenClient
myCon.Database = bqDatabaseSQLServer
myCon.HostName ="PlutoSQLSVR"
myCon.DBLibDatabaseCancel = bqDbLibPrompt
myCon.SaveAs("d:\\OCEs\\PlutoSQL.oce")

//Now use this connection in a datamodel
ActiveDocument.Sections["Query"].DataModel.Connection.Open
("d:\\OCEs\\PlutoSQL.oce")
11-50 Properties

DBLibPacketSize (Property)

Applies To: Connection

Description: DB-Lib only. Returns or sets the value of the DBLibPacketSize property.
Changes the packet size of the query.

Action: Read-write, Numeric

Example: The following example shows how to create a new connection (OCE) from
scratch using JavaScript.

var myCon
myCon = Application.CreateConnection()
myCon.Api = bqApiOpenClient
myCon.Database = bqDatabaseSQLServer
myCon.HostName ="PlutoSQLSVR"
myCon.DBLibPacketSize = 200
myCon.SaveAs("d:\\OCEs\\PlutoSQL.oce")

//Now use this connection in a datamodel
ActiveDocument.Sections["Query"].DataModel.Connection.Open
("d:\\OCEs\\PlutoSQL.oce")
DBLibPacketSize (Property) 11-51

DBLibServerSeverity (Property)

Applies To: Connection

Description: DB-Lib Only. Returns or sets the value of the DBLibServerSeverity property.
Changes the Server’s error level severity.

Action: Read-write, Numeric

Example: The following example shows how to create a new connection (OCE) from
scratch using JavaScript.

var myCon
myCon = Application.CreateConnection()
myCon.Api = bqApiOpenClient
myCon.Database = bqDatabaseSQLServer
myCon.HostName ="PlutoSQLSVR"
myCon.DBLibServerSeverity = 2
myCon.SaveAs("d:\\OCEs\\PlutoSQL.oce")

//Now use this connection in a datamodel
ActiveDocument.Sections["Query"].DataModel.Connection.Open
("d:\\OCEs\\PlutoSQL.oce")
11-52 Properties

DBLibUseQuotedIdentifiers (Property)

Applies To: Connection

Description: DB-Lib Only. Returns or sets the value of the DBLibUseQuotedIdentifiers
property.

Enable or disable the use of quoted indentures when connecting via DB-Lib.

Action: Read-write, Boolean

Example: The following example shows how to create a new connection (OCE) from
scratch using JavaScript.

Var myCon
myCon = Application.CreateConnection()
myCon.Api = bqApiOpenClient
myCon.Database = bqDatabaseSQLServer
MyCon.HostName ="PlutoSQLSVR"
MyCon.DBLibUseQuotedIdentifiers = true
MyCon.SaveAs("d:\\OCEs\\PlutoSQL.oce")

//Now use this connection in a datamodel
ActiveDocument.Sections["Query"].DataModel.Connection.Open
("d:\\OCEs\\PlutoSQL.oce")
DBLibUseQuotedIdentifiers (Property) 11-53

DBLibUseSQLTable (Property)

Applies To: Connection

Description: DB-Lib Only. Returns or sets the value of the DBLibUseSQLTable property. If
enabled the connection will use SQL to get tables.

Action: Read-write, Boolean

Example: The following example shows how to create a new connection (OCE) from
scratch using JavaScript.

var myCon
myCon = Application.CreateConnection()
myCon.Api = bqApiOpenClient
myCon.Database = bqDatabaseSQLServer
MyCon.HostName ="PlutoSQLSVR"
MyCon.DBLibUseSQLTable = true
myCon.SaveAs("d:\\OCEs\\PlutoSQL.oce")

//Now use this connection in a datamodel
ActiveDocument.Sections["Query"].DataModel.Connection.Open
("d:\\OCEs\\PlutoSQL.oce")
11-54 Properties

Description (Property)

Applies To: Connection

Description: Returns or sets the description associated with an Open Catalog Extension
(OCE).

Action: Read-write, String

Example: The following example creates a connection file from scratch and then applies
it to the current document.

var myCon = Application.CreateConnection()
myCon.Description = "This OCE configures the connection via ODBC, to a SQLServer
6.5 database named pluto."
myCon.Api = bqApiOpenClient
myCon.Database = bqDatabaseSQLServer
myCon.HostName ="PlutoSQLSVR"
myCon.SaveAs("d:\\OCEs\\PlutoSQL.oce")

//Now use this connection in a datamodel
ActiveDocument.Sections["Query"].DataModel.Connection.Open
("d:\\OCEs\\PlutoSQL.oce")
Description (Property) 11-55

Display (Property)

Applies To: CornerLabels , DataLabels

Description: Returns the display value of a corner or data label. The Display property uses
the BqPivotLabelDisplay constant. Valid options for displaying the label are
side, top, both or none. The default corner label value is none.

Action: Read-write, String

Constants: The BqPivotLabelDisplay constant group consists of the following values:

BqPivotLabelDisplayBoth

BqPivotLabelDisplayNone

BqPivotLabelDisplaySide

BqPivotLabelDisplayTop

Example: The following example shows you how to return a corner label at the top of the
pivot report .

ActiveDocument.Sections["SalesPivot"].CornerLabels.
Display=bqPivotLabelDisplayBoth
11-56 Properties

DisplayName (Property)

Applies To: Limit, Request, TopicItem

Description: Returns or sets the display name of one the objects listed above.

Action: Read-write, String

Example: The following example writes the names of all the topics and topic items to the
console window.

var Tcount = ActiveDocument.Sections["Query"].DataModel.Topics.Count
for (j = 1; j <= Tcount ; j ++)
{
var myTopic = ActiveDocument.Sections["Query"].DataModel.Topics[j]
Console.Writeln("Topic : "+myTopic.PhysicalName)
var TICount =
ActiveDocument.Sections["Query"].DataModel.Topics[j].TopicItems.Count

for (k = 1 ; k <= TICount ; k ++)
{

var myItem = ActiveDocument.Sections["Query"].DataModel.
Topics[j].TopicItems[k]

Console.Writeln(" Item: "+ myItem.DisplayName)
}

}

DisplayName (Property) 11-57

Effect (Property)

Applies To: Font

Description: Returns or sets the font effect of text associated with a font object.

Action: Read-write

Constants: The BqFontEffect constant group consists of the following values:

bqFontEffectNone

bqFontEffectStrikeThrough

bqFontEffectSubScript

bqFontEffectSuperScript

bqFontEffectUnderline

Example: The following example changes the font effect of the text in a text label named,
Description.

ActiveDocument.Sections["EIS2"].Shapes["Description"].Font.Effect=
bqFontEffectUnderline
11-58 Properties

EnableAsyncProcess (Property)

Applies To: Connection

Description: Enable or disable asynchronous processing of a query associated with the
connection object.

Action: Read-write, Boolean

Example: The following example creates a connection file from scratch and then applies
it to the current document.

var myCon = Application.CreateConnection()
myCon.Description = "This OCE configures the connection via ODBC, to a SQLServer
6.5 database named pluto."
myCon.Api = bqApiOpenClient
myCon.Database = bqDatabaseSQLServer
myCon.HostName ="PlutoSQLSVR"
myCon.EnableAsyncProcess = true
myCon.SaveAs("d:\\OCEs\\PlutoSQL.oce")

//Now use this connection in a datamodel
ActiveDocument.Sections["Query"].DataModel.Connection.Open
("d:\\OCEs\\PlutoSQL.oce")
EnableAsyncProcess (Property) 11-59

Enabled (Property)

Applies To: Control, ControlsCheckBox, ControlsCommandButton, ControlsDropDown,
ControlsListBox, ControlsRadioButton, ControlsTextBox

Description: Returns or sets the current state of a control object. If a control is disabled,
then you cannot access it by way of the EIS section. The control is shown in the
EIS section in a “grayed out or disabled state.

Action: Read-write, Boolean

Example: The following examples enables every shape and control object in an EIS
section named, EIS.

var EISSection = ActiveDocument.Sections["EIS"]
var ShapeCount = EISSection.Shapes.Count
for (j=1;j <= ShapeCount ;j++)
{
EISSection.Shapes[j].Enable = true
}

11-60 Properties

EnableTransActionMode (Property)

Applies To: Connection

Description: Returns or sets the value of the EnableTransactionMode property. If set to
true, transaction mode will be enabled for the OCE or current connection.

Action: Read-write, Boolean

Example: The following example creates a connection file from scratch and then applies
it to the current document.

var myCon = Application.CreateConnection()
myCon.Description = "This OCE configures the connection via ODBC, to a SQLServer
6.5 database named pluto."
MyCon.EnableTransAction = true
myCon.Api = bqApiOpenClient
myCon.Database = bqDatabaseSQLServer
myCon.HostName ="PlutoSQLSVR"
myCon.SaveAs("d:\\OCEs\\PlutoSQL.oce")

//Now use this connection in a datamodel
ActiveDocument.Sections["Query"].DataModel.Connection.Open
("d:\\OCEs\\PlutoSQL.oce")
EnableTransActionMode (Property) 11-61

EndLimitName (Property)

Applies To: Parentheses object

Description: When the Parentheses collection is invoked, this property sets the limit value
after which the ending (closing) parentheses is inserted. This property is often
used in conjunction with the BeginLimitName property.

Action: Read only. EndLimitName as String

Example: The following example shows you how to display the name of the ending limit
value enclosed in a parenthetical expression on the limit line:

Alert(ActiveDocument.Sections["Query"].Limits.Parentheses["State
Province,City"].EndLimitName)
11-62 Properties

ExportWithoutQuotes (Property)

Applies To: PivotSection, ResultsSection, TableSection, OLAPQuerySection

Description: When exporting section data, enables or disables the double quotes
surrounding column/cell values containing real values. The default value is
disabled.

Action: Read-write, Boolean

Example 1: The following example exports Results to a tab delimited text file that retains
double quotes surrounding the Results column data.

ActiveDocument.Sections["Results"].ExportWithoutQuotes=false
ActiveDocument.Sections["Results"].Export("C:\Temp\ExportTest\ MyFile",
bqExportFormatText)

Example 2: The following example exports Results to a tab delimited text file without
double quotes surrounding the Results column data.

ActiveDocument.Sections["Results"].ExportWithoutQuotes=true
ActiveDocument.Sections["Results"].Export("C:\Temp\ExportTest\ MyFile",
bqExportFormatText)
ExportWithoutQuotes (Property) 11-63

Filename (Property)

Applies To: Connection

Description: Returns the full name and path of the OCE file associated with the connection
object.

Action: Read-only, String

Example: The following example creates a connection file from scratch and then applies
it to the current document.

var myCon = Application.CreateConnection()
myCon.Description = "This OCE configures the connection via ODBC, to a SQLServer
6.5 database named pluto.".Api = bqApiOpenClient
myCon.Database = bqDatabaseSQLServer
myCon.HostName ="PlutoSQLSVR"
myCon.SaveAs("d:\\OCEs\\PlutoSQL.oce")

//Now use this connection in a
datamodelActiveDocument.Sections["Query"].DataModel.Connection.Open
("d:\\OCEs\\PlutoSQL.oce")
var OCEFilename = ActiveDocument.Sections["Query"].DataModel.Connection.Filename
Console.Write ("Successfully opened the OCE named : "+OCEFilename)
11-64 Properties

FilePath (Property)

Applies To: Picture Chart

Description: Sets the file name of a picture object.

Action: Read-write, Name

Example: The following example shows you how to set the file path name for the picture
entitled "report".

ActiveDocument.Sections["Report"].Body.Shapes["Picture"].FilePath =
"c:\\brio\\report.bmp"
FilePath (Property) 11-65

FillUnderRibbon (Property)

Applies To: Area Chart

Description: If set to true, the area under the ribbon on an area chart is filled in.

Action: Read-write, Boolean

Example: The following example enables the FillUnderRibbion attribute of an area chart
for the section named “Sales Chart”.

var MyChart = ActiveDocument.Sections["Sales Chart"]
MyChart.AreaChart.FillUnderRibbon = true
11-66 Properties

Focus (Property)

Applies To: Legend Collection

Description: Returns or sets the focus of the legend on a selected chart axis type (X-axis, Y-
axis, or Z axis. This property uses the BqChartAxisType constant group.

Action: Read only

Constants The BqChartAxisType constant group consists of the following values:

BqChartXAxis

BqChartYAxis

BqXhartZAxis

Example: The following example shows you how to change the chart axis type to the X-
axis category.

ActiveDocument.Sections["Chart"].Legend.Focus=bqChartXAxis
Focus (Property) 11-67

Formula (Property)

Applies To: Fields collection

Description: Sets a computable value for a Field item in the Report section. This property is
analogous to editing or entering a formula for a selected field in the
Expression bar.

Action: Read-write, String

Example: The following example shows you how to concatenate the name of the report
and the current date in the ReportName field.

ActiveDocument.Sections["Sales Report"].ReportHeader.Fields["ReportName
Field"].Formula = "ReportName() + ' ' + new Date()"
11-68 Properties

FullName (Property)

Applies To: Limit

Description: Returns or sets the value of limits full name. The full name may include the
topic, which it is associated with (Query and Data Model Limits only).

Action: Read-write, String

Example: The following example prints out the full names of all the limits in a query
section named “SalesQuery”.

var MyQuery = ActiveDocument.Sections["SalesQuery"]
var LimitCount = MyQuery.Limits.Count
for (j =1 ; j <= LimitCount ; j++)
 Console.Writeln("Limit fullname is " + MyQuery.Limits[j].FullName)
FullName (Property) 11-69

Group (Property)

Applies To: ControlsRadioButton

Description: Returns or sets the value of an EIS Radio buttons group property. Use the
group property to join together two or more Radio buttons.

Action: Read-only, String

Example: The following example shows you how to assign a group name to
radiobuttons.

RadioButton1.Group="Sales"
RadioButton2.Group="Sales"
RadioButton3.Group="Sales"
11-70 Properties

Height (Property)

Applies To: PieChart

Description: Returns or sets the height properties of a specific Pie chart.

Action: Read-write, Numeric

Example: The following example shows you how to change the height of a pie chart in
the chart section named “Sales Pie Chart”.

var MyChart = ActiveDocument.Sections[" Pie Chart"]
MyChart.PieChart.Height = 10
Height (Property) 11-71

HorizontalAlignment (Property)

Applies To: TableFacts object

Description: Returns or sets the horizontal alignment of text in a table column. This
property corresponds to the features on the Alignment Properties dialog box.

Action: Read-write, BqHorizontalAlignment

Constants: The HorizontalAlignment property uses the BqHorizontalAlignment constant
group, which consists of the following values:

bqAlignCenter

bqAlignLeft

bqAlignRight

Example: The following example shows you how to align left the horitzontal text in the
"Unit Sales" column.

ActiveDocument.Sections["Report"].Body.Tables["Table"].Facts["U
nit Sales"].HorizontalAlignment=bqAlignLeft
11-72 Properties

Hostname (Property)

Applies To: Connection

Description: Returns or sets the name of the datasource.

Action: Read-write, String

Example: The following example creates a connection file from scratch and then applies
it to the current document. The data source name in this example is
“PlutoSQLSVR” which is a user DSN using the SQL Server 6.5 driver.

var myCon = Application.CreateConnection()
myCon.Description = "This OCE configures the connection via ODBC, to a SQLServer
6.5 database named pluto.".Api = bqApiOpenClient
myCon.Database = bqDatabaseSQLServer
myCon.HostName ="PlutoSQLSVR"
myCon.EnableAsyncProcess = true
myCon.SaveAs("d:\\OCEs\\PlutoSQL.oce")

//Now use this connection in a datamodel
ActiveDocument.Sections["Query"].DataModel.Connection.Open
("d:\\OCEs\\PlutoSQL.oce")
Hostname (Property) 11-73

HTMLExportBreakCount (Property)

Applies To: PivotSection, ResultsSection, TableSection, OLAPQuerySection

Description: Enables users to set the number of rows per exported HTML page. The default
is 100. Setting the value to 0 causes the HTML pages to not break.

Action: Read-write, Number

Example 1: The following example retrieves the value of HTMLExportBreakCount.

var breakVal=ActiveDocument.Sections["Pivot"].
HTMLExportBreakCount;

Example 2: The following example sets the number of rows per HTML page to 1000.

ActiveDocument.Sections["Results"=1000
11-74 Properties

Ignore (Property)

Applies To: Limit

Description: Returns or sets the value of a limits ignore property. If set to true, the limit is
not applied to the query to recalculate results.

Action: Read-write, Boolean

Example: The following example shows you how to temporarily ignore all the Data
Model limits prior to processing the query.

var MyQuery = ActiveDocument.Sections["Query" MyDM = MyQuery.DataModel
var DMLimitCount = MyDM.Limits.Count
for (j = 1 ; j <= DMLimitCount ; j++)
 MyDM.Limits[j].Ignore = true
//Assumes you are already connected
MyQuery.Process()
Ignore (Property) 11-75

IgnoreNulls (Property)

Applies To: BarLineChart, LineChart

Description: Returns or sets the value of the IgnoreNulls property. If set to true, null values
will be ignored when displaying the chart.

Action: Read-write, Boolean

Example: The following example shows you how to set the Bar Line and Line charts to
ignore null values.

var MyChart = ActiveDocument.Sections[“Chart”]
MyChart.BarLineChart.IgnoreNulls = true
MyChart.LineChart.IgnoreNulls = true
11-76 Properties

IncludeNulls (Property)

Applies To: Limit

Description: Returns or sets the value of the IncludeNulls property. If set to true then null
values will be included as part of the limit.

Action: Read-write, Boolean

Example: The following example shows you how to set all the limits in the Data Model to
support null values.

var MyQuery = ActiveDocument.Sections[“Query”]
var MyDM = MyQuery.DataModel
var DMLimitCount = MyDM.Limits.Count
for (j = 1 ; j <= DMLimitCount ; j++)
 MyDM.Limits[j].IncludeNulls = true
//Assumes you are already connected
MyQuery.Process()
IncludeNulls (Property) 11-77

Index (Property)

Applies To: PivotLabel, PivotFact, Column

Description: Returns or sets the value of the index property.

Action: Read-write, PivotLabel and PivotFact

Read-only, Column

Example 1: The following example shows how to change the position of a PivotFact.

ActiveDocument.Sections["SalesPivot"].Facts["Unit Sales"].Index=3

Example 2: The following example shows how to change the position of a Column.

ActiveDocument.Sections["SalesResults"].Columns["Unit Sales"].Index=3
11-78 Properties

IntervalFrequency (Property)

Applies To: LeftAxis

Description: Returns or sets the value of a chart’s left axis IntervalFrequency property.

Action: Read-write, Number

Example: The following example shows how to change the left axis to display the data in
intervals of 20,000.

ActiveDocument.Sections["AllChart"].ValuesAxis.LeftAxis.IntervalFrequency=20000
IntervalFrequency (Property) 11-79

KeepWithNext (Property)

Applies To: PageHeader object, PageFooter object, ReportHeader object, ReportHeader
object, Body object

Description: Returns or sets the value which instructs BrioQuery to keep bands within a
group together when paginating a report. If the lower band cannot also fit on
the page when the report is paginated, both bands will be moved to the
following page.

Note When using this property and the SuspendCalculation property is set to true (which it is by
default), then you must use the Recalculate method to force the Report section to recalculate
itself.

Action: Read-write, Boolean

Example: The following example shows you how to keep the body band together when a
page is paginated.

ActiveDocument.Sections["Report"].Body.KeepWithNext = true
Recalculate()

✏

11-80 Properties

KeepTogether (Property)

Applies To: PageHeader object, PageFooter object, ReportHeader object, ReportHeader
object, Body object

Description: Returns or sets the value which instructs Brio Intelligence not to split a band
when a break is encountered. When a break is encountered, the entire band is
moved to the next page.

Note When using this property and the SuspendCalculation property is set to true (which it is by
default), then you must use the Recalculate method to force the Report section to recalculate
itself.

Action: Read-write, Boolean

Example: The following example shows you how not to split the page header bade when
a break is encountered in a report.

ActiveDocument.Sections["Report"].PageHeader.KeepTogether
Recalculate()

✏

KeepTogether (Property) 11-81

LabelFrequency (Property)

Applies To: XAxis

Description: Returns or sets the frequency of labels displayed on a chart’s X-axis.

Action: Read-write, Number

Example: The following example shows how to change the frequency of when to display
the labels on the X-axis.

ActiveDocument.Sections["Chart"].LabelsAxis.XAxis.LabelFrequency =3
11-82 Properties

LabelText (Property)

Applies To: LeftAxis, RightAxis, XAxisLabel, ZaxisLabel

Description: Returns or sets the value of the text associated with a chart Axis or label.

Action: Read-write, String

Example: The following example shows how to set the text for the different labels.

var MyChart = ActiveDocument.Sections["Chart"]
MyChart.ValuesAxis.LeftAxis.LabelText = "Left Axis"
MyChart.ValuesAxis.RightAxis.LabelText = "Left Axis"
MyChart.LabelsAxis.XAxis.LabelText = "Xaxis"
MyChart.LabelsAxis.ZAxis.LabelText = "Zaxis"
LabelText (Property) 11-83

LastPrinted (Property)

Applies To: ChartSection, DataModelSection, EISSection, OLAPQuerySection,
PivotSection, QuerySection, ResultsSection, TableSection

Description: Returns a data object corresponding to the last date a section was printed. To
get the date value you will need to use the methods and properties of the Date
Object.

Action: Read-only, Date Object

Example: The following example shows how to print the date the document was last
printed to the console window.

Console.Writeln(ActiveDocument.Sections["Pivot"].LastPrinted.toString())
Thu Jun 03 13:56:13 GMT-0700 (Pacific Daylight Time) 2001
11-84 Properties

LastSaved (Property)

Applies To: Document, PluginDocument

Description: Returns a value corresponding to the date on which a document was last saved.
To get the date value you will need to use the methods and properties of the
Date Object.

Action: Read-only, Date Object

Example: The following example shows how to print the date the document was last
saved to the console window.

Console.Writeln(ActiveDocument.LastSaved.toString())
Thu Jun 03 13:56:13 GMT-0700 (Pacific Daylight Time) 2001
LastSaved (Property) 11-85

LastSQLStatement (Property)

Applies To: Document, PluginDocument

Description: Returns the last SQL statement generated by a query.

Action: Read-only

Example The following example shows you how to display the last SQLStatement
generated by a query in an Alert box.

Alert (ActiveDocument.Sections["Query"].LastSQLStatement)
11-86 Properties

LeftMargin (Property)

Applies To: ReportSection object

Description: Sets the left margin of the report. Margins are set for the entire report.

Note When using this property and the SuspendCalculation property is set to true (which it is by
default), then you must use the Recalculate method to force the Report section to recalculate
itself.

Action: Read-write, Number

Example: The following example shows you how to set the left margin of the report to
.25 inches.

ActiveDocument.Sections["Report"].LeftMargin = .25

✏

LeftMargin (Property) 11-87

LimitValueType (Property)

Applies To: Limit collection

Description: Returns or sets the value of the selected limit value set. That is, you can select
in advance whether to use the Available values (Show values) or Custom values
on the Limit dialog box.

Action: Read-write

Constants: The BqLimitValueType constant group consists of the following values:

bqLimitValueTypeAvailable

bqLimitValueTypeCustom

bqLimitValueTypeSQL

Example: The following example shows you how to select the custom values for the
second limit item on the Limit dialog.

ActiveDocument.Sections["Query"].Limits[2].LimitValueType=bqLimitValueTypeCustom
11-88 Properties

LogicalOperator (Property)

Applies To: Limit collection

Description: Sets the value of the limit logical operator of each limit object. The limit
LogicalOperator property is ignored when only one limit value appears for the
particular section. The limit LogicalOperator property is also always ignored
for the first limit value when there is more than one limit value. If more than
one limit value appears in a particular section, then the LogicalOperator of the
second limit applies to the relationship between the first and second limit
values; the LogicalOperator of the third limit applies to the relationship
between the second and third limit values, and so on.

Action: Read-write

Constants: The BqLogicalOperator constant group consists of the following values:

bqLogicalOperatorAND (default value)

bqLogicalOperatorOR

Example: The following example shows you how to set the "OR" logical operator on a
limit object.

ActiveDocument.Sections["SalesQuery"].Limits["Year"].LogicalOperator=bqLogicalOperatorOR
LogicalOperator (Property) 11-89

MarkerBorderColor (Property)

Applies To: Legend Collection

Description: Returns or sets the color of a marker's border. A marker depicts an individual
data value or point that emerges in a cell.

Action: Read-write

Constants: The following values are some of the values that are contained in the
BqColorType constant group. For a complete list see the
Product Name Variable object model Script Editor.

bqAqua

bqBlack

bqBlue

bBlueGray

bqBrightGreen

bqBrown

bqDarkBlue

bqDarkYellow

bqLightBlue

bqLightOrange

bqWhite

bqYellow

Example: The following example shows you how to set the marker border color to blue.

ActiveDocument.Sections["AllChart"].Legend.Items["Unit Sales"].Line.
MarkerBorderColor=bqBlue
11-90 Properties

MarkerFillColor (Property)

Applies To: Legend Collection

Description: Returns or sets the fill color property of a marker. A marker depicts an
individual data value or point that emerges in a cell.

Action: Read-write

Constants: The following values are some of the values that are contained in the
BqColorType constant group. For a complete list see the
Product Name Variable object model Script Editor.

bqAqua

bqBlack

bqBlue

bBlueGray

bqBrightGreen

bqBrown

bqDarkBlue

bqDarkYellow

bqLightBlue

bqLightOrange

bqWhite

bqYellow

Example: The following example shows you how to set the marker fill color to green.

ActiveDocument.Sections["AllChart"].Legend.Items["Unit Sales"].Line.
MarkerFillColor=bqGreen
MarkerFillColor (Property) 11-91

MarkerSize (Property)

Applies To: Legend Collection

Description: Returns or sets the size property of a marker. A marker depicts an individual
data value or point that emerges in a cell.

Action: Read-write, Number

Example: The following example shows you how to set the marker size property to six
points.

ActiveDocument.Sections["AllChart"].Legend.Items["Unit Sales"].Line.MarkerSize=6
11-92 Properties

MarkerStyle (Property)

Applies To: Legend Collection

Description: Returns or sets the style property of a marker, such as diamond-shaped,
circular, rectangular or triangular. A marker depicts an individual data value
or point that emerges in a cell.

Action: Read-write

Constants: The BqMarkerStyle constant group consists of the following values:

bqMarkerStyleCircle

bqMarkerStyleDiamond

bqMarkerStyleRectangle

bqMarkerStyleTriangle

Example: The following example shows you how to set the marker style property.

ActiveDocument.Sections["AllChart"].Legend.Items["Unit Sales"].Line.
MarkerStyle=bqMarkerStyleTriangle
MarkerStyle (Property) 11-93

MetadataPassword (Property)

Applies To: Connection

Description: Returns or sets the password used in the metadata connection.

Action: Read-write, String

Example: The following example creates a connection file from scratch and then applies
it to the current document. The data source name in this example is
“PlutoSQLSVR” which is a user DSN using the SQL Server 6.5 driver.

var myCon = Application.CreateConnection()
myCon.Description = "This OCE configures the connection via ODBC, to a SQLServer
6.5 database named pluto.
myCon.Api = bqApiOpenClient
myCon.Database = bqDatabaseSQLServer
myCon.HostName ="PlutoSQLSVR"
myCon.MetadataUsername = "brio"
myCon.MetadataPassword = "briobrio"
myCon.UseAlternateMetadataLocation(true,c:\\OCEs\\PlutoMeta.OCE)
myCon.EnableAsyncProcess = true
myCon.SaveAs("d:\\OCEs\\PlutoSQL.oce")

//Now use this connection in a datamodel
ActiveDocument.Sections["Query"].DataModel.Connection.Open
("d:\\OCEs\\PlutoSQL.oce")
11-94 Properties

MetadataUser (Property)

Applies To: Connection

Description: Returns or sets the value of the username used to connect to the metadata data
source.

Action: Read-write, String

Example: The following example creates a connection file from scratch and then applies
it to the current document. The data source name in this example is
“PlutoSQLSVR” which is a user DSN using the SQL Server 6.5 driver.

var myCon = Application.CreateConnection()
myCon.Description = "This OCE configures the connection via ODBC, to a SQLServer
6.5 database named pluto.
myCon.Api = bqApiOpenClient
myCon.Database = bqDatabaseSQLServer
myCon.HostName ="PlutoSQLSVR"
myCon.MetadataUsername = "brio"
myCon.MetadataPassword = "briobrio"
myCon.UseAlternateMetadataLocation(true,c:\\OCEs\\PlutoMeta.OCE)
myCon.EnableAsyncProcess = true
myCon.SaveAs("d:\\OCEs\\PlutoSQL.oce")

//Now use this connection in a datamodel
ActiveDocument.Sections["Query"].DataModel.Connection.Open
("d:\\OCEs\\PlutoSQL.oce")
MetadataUser (Property) 11-95

MetaFileChoice (Property)

Applies To: Connection

Description: Returns or sets the value of the MetaData source from the Bqmeta0.ini file.
The metadata source is the name of the predefined metadata vendor.

Action: Read-write, String

Example: The following example creates a connection file from scratch and then applies
it to the current document. The data source name in this example is
“PlutoSQLSVR” which is a user DSN using the SQL Server 6.5 driver.

var myCon = Application.CreateConnection()
myCon.Description = "This OCE configures the connection via ODBC, to a SQLServer
6.5 database named pluto.
myCon.Api = bqApiOpenClient
myCon.Database = bqDatabaseSQLServer
myCon.HostName ="PlutoSQLSVR"
myCon.MetadataUsername"brio"
myCon.MetadataPassword = "briobrio"
myCon.MetaFileChoice = "Broadbase"
myCon.UseAlternateMetadataLocation(true,c:\\OCEs\\PlutoMeta.OCE)
myCon.EnableAsyncProcess = true
myCon.SaveAs("d:\\OCEs\\PlutoSQL.oce")

//Now use this connection in a datamodel
ActiveDocument.Sections["Query"].DataModel.Connection.Open
("d:\\OCEs\\PlutoSQL.oce")
11-96 Properties

MultiSelect(Property)

Applies To: ControlsListBox

Description: Returns or sets the value of the Multiselect property. If set to true, multiple
items may be selected from a list box control.

Action: Read-write, Boolean

Example: The following example shows you how to configure a list box to support
multiple user selections.

var MyEIS = ActiveDocument.Sections["EIS"]
MyEIS.Shapes"Listbox1"].MultiSelect = true
MultiSelect(Property) 11-97

Name (Property)

Applies To: Application, ChartSection, Column, Control, ControlsCheckBox,
ControlsCommandButton, ControlsDropDown, ControlsListBox,
ControlsRadioButton, ControlsTextBox, DataModelSection, DMCatalogItem,
DMResult, Document, EISSection, OLAPQuerySection, PivotLabelValue,
PivotSection, PluginDocument, QuerySection, ReportObjectContainer,
RepositoryItem, Section, SortItem, StoredProcedure, TableSection, Toolbar

Description: Returns or sets the name of an object listed above.

Action: Read-only, String

Application, Column, Control, ControlsCheckBox,
ControlsCommandButton, ControlsDropDown, ControlsListBox,
ControlsRadioButton, ControlsTextBox, PivotLabelValue, Toolbar

Read-write, String

ChartSection, DataModelSection, DMCatalogItem, DMResult, Document,
EISSection, OLAPQuerySection, , PivotSection, PluginDocument,
QuerySection, Section, TableSection

Example: The following example prints a list of all the sections in a document to the
console.

for (j = 1 ; j <= ActiveDocument.Sections.Count ; j ++)
Console.Writeln(ActiveDocument.Sections[j].Name)
11-98 Properties

Negate (Property)

Applies To: Limit

Description: Returns or sets the value of the negate property. If negate is set to true then the
negation will be applied to the limit operator. For example, if a limit is set to
select only the values Equal to a criteria and the negate property is true, then
the values returned from the query will be NOT Equal to the criteria.

Action: Read-write, Boolean

Example: The following example shows you how to set the negate property of a limit.

var MyLimit = ActiveDocument.Sections["Query"].Limits["State"]
MyLimit.Negate = true
Negate (Property) 11-99

NumberFormat (Property)

Applies To: Column

Description: Returns or sets the value of the number format property. Use this property to
format the data in a results or table column.

Action: Read-write, String

Example: The following example shows you how to apply currency number formatting
to data in the Results section.

ActiveDocument.Sections["SalesResults"].Columns["Amount Sales"].
NumberFormat="$#,##0.00"
11-100 Properties

ODBCDatabasePrompt (Property)

Applies To: Connection

Description: ODBC Only. Returns or sets the value of the ODBCDatabasePrompt property.
If set to true, users will be prompted to enter the name of the ODBC database.

Action: Read-write, Boolean

Example: The following example creates a connection file from scratch and then applies
it to the current document. The data source name in this example is
“PlutoSQLSVR” which is a user DSN using the SQL Server 6.5 driver.

var myCon = Application.CreateConnection()
myCon.Description"This OCE configures the connection via ODBC, to a SQLServer 6.5
database named pluto."
myCon.Api = bqApiOpenClient
myCon.Database = bqDatabaseSQLServer
myCon.HostName ="PlutoSQLSVR"
myCon.ODBCDatabasePrompt = true
myCon.SaveAs("d:\\OCEs\\PlutoSQL.oce")

//Now use this connection in a datamodel
ActiveDocument.Sections["Query"].DataModel.Connection.Open
("d:\\OCEs\\PlutoSQL.oce")
ODBCDatabasePrompt (Property) 11-101

ODBCEnableLargeBufferMode (Property)

Applies To: Connection

Description: ODBC Only. Returns or sets the value of the ODBCEnableLargeBufferMode
property. If set to true, then ODBC connections will use Larger buffer mode.

Action: Read-write, Boolean

Example: The following example creates a connection file from scratch and then applies
it to the current document. The data source name in this example is
“PlutoSQLSVR”, which is a user DSN using the SQL Server 6.5 driver.

var myCon = Application.CreateConnection()myCon.Description = "This OCE configures
the connection via ODBC, to a SQLServer 6.5 database named pluto."
myCon.Api = bqApiOpenClient
myCon.Database = bqDatabaseSQLServer
myCon.HostName ="PlutoSQLSVR"
myCon.ODBCEnableLargeBufferMode = true
myCon.SaveAs("d:\\OCEs\\PlutoSQL.oce")

//Now use this connection in a datamodel
ActiveDocument.Sections["Query"].DataModel.Connection.Open
("d:\\OCEs\\PlutoSQL.oce")
11-102 Properties

ODSUsername (Property)

Applies To: WebClientDocument (Brio Insight & Brio Quickview Only)

Description: Returns or sets the value of the username when connecting to the OnDemand
Server. This property only applies if a Web document has been saved to a local
file system. This property can be used to reconnect without prompting to
logon to the ODS.

Action: Read-write, String

Example: The following example shows you how to connect to the OnDemand server
from a script.

Note This script only applies to documents that have already been registered to the OnDemand
server and saved locally.

ActiveDocument.ODSUsername = "Brio"
ActiveDocument.SetODSPassword("BrioBrio")

✏

ODSUsername (Property) 11-103

Operator (Property)

Applies To: Limit

Description: Returns or sets the value of a limits operator. The operator is applied to the
limit criteria when executing a query or recalculating a results set. If the
operator is set to Equal, only the values, which are exactly equal to the limit
criteria, are returned or displayed.

Action: Read-write

Constants: The BqLimitOperator constant group consists of the following values:

bqLimitOperatorBeginsWith

bqLimitOperatorBetween

bqLimitOperatorContains

bqLimitOperatorCustomSQL

bqLimitOperatoEndsWith

bqLimitOperatorEqual

bqLimitOperatorGreaterThan

bqLimitOperatorGreaterThanOrEqual

bqLimitOperatorIsNull

bqLimitOperatorLessThan

bqLimitOperatorLessThanOrEqual

bqLimitOperatorLike

bqLimitOperatorNotEqual
11-104 Properties

Example: The following example shows you how to modify values of an existing results
limit.

MyLimit = ActiveDocument.Sections["Results"].Limits[1]
//Clear all the values which are currently set
MyLimit.SelectedValues.RemoveAll()
// add new values to the selectedvalues collection
MyLimit.SelectedValues.Add(2000)
//Change the limit criteria
MyLimit.Operator = bqLimitOperatorLessThan
Operator (Property) 11-105

Orientation (Property)

Applies To: ReportSection object

Description: Returns the value of portrait (vertical) or landscape (horizontal) for the page
orientation of the printed report.

Note When using this property and the SuspendCalculation property is set to true (which it is by
default), then you must use the Recalculate method to force the Report section to recalculate
itself.

Action: Read-only, String

Constants: The Orientation property uses the BqOrientation constant group, which
consists of the following values:

bqOrientationLandscape

bqOrientationPortrait

Example: The following example shows you how to set the page orientation to
landscape:

ActiveDocument.Sections["Report"].Orientation = bqOrientationLandscape

✏

11-106 Properties

Owner (Property)

Applies To: DMCatalogItem

Description: Returns the value of the database owner name associated with table in the table
catalog.

Action: Read-only, String

Example: The following example shows you how to write all the information about the
tables in the Table Catalog to the console window.

with (ActiveDocument.Sections["Query"].DataModel)
{
var NumTables = Catalog.CatalogItems.Count

for (I = 1 ; I <= NumTables ;I++)
{

OutputString = "Database Name =" + Catalog.CatalogItems[I].DatabaseName
OutputString = OutputString +":Database Owner=" + Catalog.CatalogItems[I].Owner
OutputString = OutputString +":Table Name=" + Catalog.CatalogItems[I].Name
Console.Writeln(OutputString)

}
}

Owner (Property) 11-107

PageBreak (Property)

Applies To: PageHeader object, PageFooter object, ReportHeader object, ReportHeader
object, Body object

Description: Returns or sets the value which instructs BrioQuery on where to page break in
the report. Note that a page break cannot be inserted before a report header
group or in the page header, body or page footer.

Note When using this property and the SuspendCalculation property is set to true (which it is by
default), then you must use the Recalculate method to force the Report section to recalculate
itself.

Action: Read-only, Boolean

Constants: The PageBreak property uses the BqPageBreak constant group. This constant
group consists of the following values:

bqPageBreakBoth

bqPageBreakAfter

bqPageBreakBefore

bqPageBreakNone

Example: The following example shows you how to insert a page break after the Report
Header group.

ActiveDocument.Sections["Report"].ReportHeader.PageBreak = bqPageBreakAfter

✏

11-108 Properties

Password (Property)

Applies To: ControlsTextBox

Description: Returns or sets the value of a text box’s password setting. If this property is
true, the text in the text box will be replaced with ****.

Action: Read-only, String

Example: The following example shows you how to set the password property on a text
box.

ActiveDocument.Sections["EIS"].Shapes["TextBox1"].Password = true
Password (Property) 11-109

Path (Property)

Applies To: Document, PluginDocument

Description: Returns a string containing the full path and name of the document.

Note A plugin document name will be the temporary name and path of the document on the local
file system. For information about Web server path, refer to the URL property.

Action: Read-only, String

Example: The following example prints out the path information for all the open
documents to the console window.

for (j = 1 ; j < = Documents.Count ; j++)\
 Console.Writeln(Documents[j].Name + is located on +Documents[j].Path)

✏

11-110 Properties

PathSeparator (Property)

Applies To: Application

Description: Returns the separator used by the operating systems file system.

Windows – “\

UNIX – “/

Macintosh – “:

Action: Read-only, String

Example: The following example shows you how to use the path separator to build a
path.

var PS = Application.PathSeparator
Alert(PS)
PathSeparator (Property) 11-111

Pattern (Property)

Applies To: FillFormat object

Description: Returns or sets the background fill pattern of an object. The fill pattern refers
to the level of shading used in the background object.

Action: Read-only

Constants: The Pattern property uses the BqFillPattern constant group, which consists of
the following values:

bqFillPattern100

bqFillPattern25

bqFillPattern50

bqFillPattern75

bqFillPatternNone

Example: The following example shows you how to use the path separator to build a
path:

var PS = Application.PathSeparator
var myDir = "c:"+PS+"Documents"+PS+"Brio Docs"+PS+"Sales Reports"
Alert(myDir)
11-112 Properties

PhysicalName (Property)

Applies To: Topic, TopicItem

Description: Returns the actual name of the topic or topicitem. This name cannot be
changed through scripting or through the user interface.

Action: Read-only, String

Example: The following example writes the names of all the topics and topic items to the
console window.

var Tcount = ActiveDocument.Sections"Query"].DataModel.Topics.Count
for (j = 1; j <= Tcount ; j ++)
{
var myTopic = ActiveDocument.Sections["Query"].DataModel.Topics[j]
Console.Writeln("Topic : "+myTopic.PhysicalName)
var TICount =
ActiveDocument.Sections["Query"].DataModel.Topics[j].TopicItems.Count
for (k = 1 ; k <= TICount ; k ++)
{
var myItem = ActiveDocument.Sections["Query"].DataModel.Topics[j].TopicItems[k]
Console.Writeln("Topic Item: "+ myItem.PhysicalName)
}
}

PhysicalName (Property) 11-113

ProcessEventOrigin (Property)

Applies To: Document

Description: Identifies how the Process() event was initiated.

Action: Read-only

Constants: The BqRequestEventOriginType constant group consists of the following
values:

bqRequestEventOriginScript

bqRequestEventOriginMenu

bqRequestEventOriginToolbar

Example: The following example shows how to identify the origin of the process event.

Console.Writeln("Start OnPreProcess")

//determine process event origin
Console.Writeln("Process Event Origin is: " + ActiveDocument.ProcessEventOrigin)

//write process event origin to the selected console technique
switch(ActiveDocument.ProcessEventOrigin)
{
case 0:
Console.Writeln("Switch: Process Event Origin is 0, Menu")
break;

case 1:
Console.Writeln("Switch: Process Event Origin is 1, Toolbar")
break;

case 2:
Console.Writeln("Switch: Process Event Origin is 2, Script")
break;

default:
break;
}

Console.Writeln("End OnPreProcess")
11-114 Properties

Prompt (Property)

Applies To: Limit

Description: Returns or sets the value of the text displayed on the limit dialog box.

Action: Read-write, String

Example: The following example shows you how to change the text displayed in a
variable limit.

var MyLimit = ActiveDocument.Sections"Query"].Limits["State"]
MyLimit.VariableLimit = true
MyLimit.Prompt = "Please select a state from the list box below."
Prompt (Property) 11-115

QueryInProcess (Property)

Applies To: Document

Description: Identifies the name of the query being processed. This property is only
appropiate for use in the OnPreProcess() and OnPostProcess() events.

Action: Read-only, String

Example: The following example shows you how to display the name of the query being
processed in an Alert box.

Console.Writeln("Start OnPreProcess")
switch(ActiveDocument.QueryInProcess)
{
case "Query":
Alert("Query");
break;
 case "Query2":
 Alert("Query2");
break;
case "OLAPQuery":
Alert("OLAPQuery");
break;
default: Alert("Default");
break;
}

11-116 Properties

QuerySize (Property)

Applies To: QuerySection

Description: Returns the estimated number of rows the current query will return if
processed.

Action: Read-only, Integer

Example: The following example shows you how to check the size of the query before
processing and ask the user if they want to process the query given the size.

var MyCon = ActiveDocument.Sections"Query"].DataModel.Connection
MyCon.Username = "Brio"
MyCon.SetPassword("BrioBrio")
MyCon.Connect()
var QS = ActiveDocument.Sections["Query].QuerySize
if (QS > 5000)
{
 var Msg = "The query you are about to run, returns "+QS+ rows. "Are you sure
you want to continue?"
 var retVal = Alert(Msg,Alert,Yes,No)
 if (retVal == 1)
 ActiveDocument.Sections["Query"].Process()
}

QuerySize (Property) 11-117

RefreshData (Property)

Applies To: PivotSection, ChartSection

Description: You can set a separate refresh frequency for each Pivot and Chart in your
document. When the query is processed, reports are populated with data
according to their refresh frequencies. There are three methods available for
refreshing reports: After Process, OnActivate and Manually. These options are
mutually exclusive. An additional option, the RefreshDataNow method, is
only available when "Manually" is the selected option.

Note Refresh options are set on a per-report basis. For example, if you have ten Pivot reports that
you want to refresh when activated, you need to set the When Section Displayed option for
each report.

Action: Read-Write

Constants: The BqRefreshData constant group consists of the following values:

bqRefreshDataAfterProcess

bqRefreshDataManually

bqRefreshDataOnActivate

Example1 : In this example, a request is made to manually refresh the Pivot section, after
which an immediate refresh to the current section is invoked.

//Manual Refresh of Data
ActiveDocument.Sections["Pivot"].RefreshData=bqRefreshDataManually
ActiveDocument.Sections["Pivot"].RefreshDataNow()

✏

11-118 Properties

Example 2: In example 2, a request is made to establish an automatic link to the Results
section to update the report whenever the query is processed.

//Refresh Data After Processing
ActiveDocument.Sections["Pivot"].RefreshData=bqRefreshDataAfterProcess

Example 3: In example 3, a request is made to refresh when the section is accessed and
displayed.

//Refresh Data When Section is Displayed
ActiveDocument.Sections["Pivot"].RefreshData=bqRefreshDataOnActivate
RefreshData (Property) 11-119

ResetPrintProperties (Property)

Applies To: Application

Description: Provides users with the option to use the most current default print settings or
to use the documents original print settings. When ResetPrintProperties is
false (the default), the original default print settings are used for all sections of
the document. When ResetPrintProperties is true, the document uses the most
current default print settings.

Note Unexpected print behavior may occur when this option is enabled in the user interface and

disabled through the object model in a document OnStartup script.

Action: Read-write, Boolean

Example: This example shows you how to set the SetPrintProperties to true.

Application.ResetPrintProperties=true

✏

11-120 Properties

RightMargin (Property)

Applies To: ReportSection object

Description: Sets the right margin of the report. Margins are set for the entire report.

Note When using this property and the SuspendCalculation property is set to true (which it is by
default), then you must use the Recalculate method to force the Report section to recalculate
itself.

Action: Read-write, Number

Example: The following example shows you how to set the left margin of the report to
.25 inches.

ActiveDocument.Sections["Report"].LeftMargin = .25

✏

RightMargin (Property) 11-121

Rotation (Property)

Applies To: PieChart

Description: Returns or sets the value of a pie charts rotation. Use this property to change
the visual perspective of a pie chart.

Action: Read-write, Numeric

Example: The following example shows you how to change the rotation of a pie chart.

ActiveDocument.Sections["AllChart"].PieChart.Rotation=45
11-122 Properties

RowCount (Property)

Applies To: ResultsSection, TableSection

Description: Returns the number of rows in a results or table section.

Note The number of rows in section can be affected by local limits. Consequently, this property does
not always equal the number of rowsreturned by a query. Use the QuerySize property to

determine the number of rows returned by a query.

Action: Read-only, Integer

Example: The following example shows you how to transfer a list of values from a table
column to a list box in an EIS section.

var RC = ActiveDocument.Sections["Table"].RowCount
 for (j = 1; j <= RC ; j++)
 {
 var MyVal = ActiveDocument.Sections["Table"].Column["State"].GetCell(j)
 ActiveDocument.Sections["EIS"].Shapes["ListBox1"].Add(MyVal)
 }

✏

RowCount (Property) 11-123

RowLimit (Property)

Applies To: QuerySection, DataModelSection

Description: Sets the maximum of rows to be retrieved by a query against the Data Model.
This property corresponds to the Rows field on the General tab of the Data
Model Options dialog.

Action: Read-Write, Number

Example: The following example shows you how to set the row limit to 100 and then
process the query.

ActiveDocument.Sections["Query2"].DataModel.RowLimitActive = true
ActiveDocument.Sections["Query2"].DataModel.RowLimit = 100
ActiveDocument.Sections["Query2"].Process()
11-124 Properties

RowLimitActive (Property)

Applies To: QuerySection, DataModelSection

Description: Returns the enable/disable for Row Limit setting property. This property
corresponds to the Return First field on the General tab of the Data Model
Options dialog.

Action: Read-only, Boolean

Example: The following example enables the Row Limit setting, sets the maximum
number of rows to retrieve, and processes the query.

ActiveDocument.Sections["Query2"].DataModel.RowLimitActive = true
ActiveDocument.Sections["Query2"].DataModel.RowLimit = 200
ActiveDocument.Sections["Query2"].Process()
RowLimitActive (Property) 11-125

RowNumber (Property)

Applies To: ResultsSection, TableSection

Description: Returns the selected row in a Results/Table section. The RowNumber
property can be called from the OnRowDoubleClick event as well as from
within any other BQ event, including those in the EIS section,
Startup/Shutdown, and Custom Menu items. RowNumber is determined by
what row is selected in the Row/Table section. This property also applies to a
Results/Table section that is "actively" embedded in an EIS section when you
select a row from the embedded Results/Table. Selecting a Results/Table
section sets the RowNumber property to a number that represents the nth row
in the section. When no row is selected, the RowNumber property is reset to 0.

Action: Read-only, Integer

Example: The following example shows you how to display the RowNumber.

Alert (ActiveDocument.Sections["Results"].RowNumber)
11-126 Properties

SaveResults (Property)

Applies To: QuerySection

Description: Returns or sets the value of the “Save Results with document” options. Setting
this property equal to true will save the results of a query with the document.

Note Saving results with the document is performed on a query-by-query basis.

Action: Read-write, Boolean

Example: The following example shows you how to save the results with the query
section named “SalesQuery”.

ActiveDocument.Sections["SalesQuery"].SaveResults=true

✏

SaveResults (Property) 11-127

SaveWithoutUsername (Property)

Applies To: Connection

Description: Returns or sets the value of the SaveWithoutUsername property. Setting this
property equal to true will NOT save the database username with the Open
Catalog Extension file.

Action: Read-write, Boolean

Example: The following example creates a connection file from scratch and then applies
it to the current document. The data source name in this example is
“PlutoSQLSVR”, which is a user DSN using the SQL Server 6.5 driver.

var myCon = Application.CreateConnection()
myCon.Description = "This OCE configures the connection via ODBC, to a SQLServer
6.5 database named pluto."
myCon.Api = bqApiOpenClient
myCon.Database = bqDatabaseSQLServer
myCon.HostName ="PlutoSQLSVR"
myCon.EnableAsyncProcess = true
myCon.SaveWithoutUsername = true
myCon.SaveAs("d:\\OCEs\\PlutoSQL.oce")

//Now use this connection in a datamodel
ActiveDocument.Sections["Query"].DataModel.Connection.Open
("d:\\OCEs\\PlutoSQL.oce")
11-128 Properties

ScaleMax (Property)

Applies To: LeftAxis, RightAxis

Description: Returns or sets the maximum scale values for the right and/or left chart axis.

Action: Read-write, Numeric

Example: The following example shows you how to change the maximum scale of left
and right chart axes.

ActiveDocument.Sections["AllChart"].ValuesAxis.LeftAxis.ScaleMax=2000000
ActiveDocument.Sections["AllChart"].ValuesAxis.RightAxis.ScaleMax=2000000
ScaleMax (Property) 11-129

ScaleMin (Property)

Applies To: LeftAxis, RightAxis

Description: Returns or sets the minimum scale values for the right and/or left chart axes.

Action: Read-write, Numeric

Example: The following example shows you how to change the minimum scale of a left
and right chart axis.

var MyChart = ActiveDocument.Sections["Chart"]
MyChart.ValuesAxis.LeftAxis.ScaleMin = 25
MyChart.ValuesAxis.RightAxis.ScaleMin = 25
11-130 Properties

ScaleX (Property)

Applies To: Picture object

Description: Sets the horizontal scale of a picture object.This property corresponds to the
Percent Scale Width field on the Picture Properties screen.

Action: Read-write, Numeric

Example: The following example shows you how to reduce the width of the picture by
50%.

ActiveDocument.Sections["Report"].Body.Shapes["Picture"].ScaleX = 50
ScaleX (Property) 11-131

ScaleY (Property)

Applies To: Picture object

Description: Sets the vertical scale of a picture object. This property corresponds to the
Percent Scale Height field on the Picture Properties screen.

Action: Read-write, Numeric

Example: The following example shows you how to increase the width of the picture by
50%.

ActiveDocument.Sections["Report"].Body.Shapes["Picture"].ScaleY = 150
11-132 Properties

Scrollable (Property)

Applies To: ControlsTextBox

Description: Returns or sets the value of the textbox’s scrollable property. Setting this
property to true will enable vertical scrolling of text in the Text box control.

Action: Read-write, Boolean

Example: The following example shows you how to change the properties of a text box.

ActiveDocument.Sections["EIS"].Shapes["TextBox1"].Scrollable= true
Scrollable (Property) 11-133

ScrollbarsAlwaysShown (Property)

Applies To: EISSection

Description: Provides the option of having scrollbars always showing for embedded section
objects. This property does not apply to hyperlinked embedded section objects
or view-only embedded sections with auto-sizing enabled.

The default setting, show scrollbars after the embedded section is selected, is
false.

Action: Read-write, Boolean

Example: The following example shows how to enable embedded section objects to
always show scrollbars.

ActiveDocument.Sections["EIS"].Shapes["Chart1"].ScrollbarsAlwaysShown=true
11-134 Properties

SelectedIndex (Property)

Applies To: ControlsDropDown

Description: Returns or sets the selections index in a dropdown control. Setting this value
will cause the dropdown to change its selection.

Action: Read-write, Integer

Example: The following example shows you how to display the number of the selected
item in an Alert dialog box.

Index=ActiveDocument.Sections["EIS2"].Shapes["DropDown1"].SelectedIndex=3
Alert("The user selected " + String(Index))
SelectedIndex (Property) 11-135

Shadow (Property)

Applies To: Picture object

Description: Sets the value to display a drop-shadow to a line or shape so that objects
appear as three-dimensional. This property corresponds to the Shadow field
on the Borders and Background screen in the user interface.

Action: Read-write, Boolean

Example: The following example shows you how to set the shadow property to the
picture object.

ActiveDocument.Sections["Report"].Body.Shapes["Picture"].Shadow = true
11-136 Properties

ShiftPoints (Property)

Applies To: BarLineChart

Description: Returns or sets the value of the BarLine chart’s ShiftPoints property.

Action: Read-write

Constants: The BqBarLineShift constant group consists of the following values:

bqShiftCenter

bqShiftLeft

Example: The following example shows you how to change a Bar Line charts shift points.

ActiveDocument.Sections["AllChart"].BarLineChart.ShiftPoints=bqShiftLeft
ShiftPoints (Property) 11-137

Show3DObjects (Property)

Applies To: ChartSection

Description: Returns or sets the value of the chart sections Show3DObjects property.
Setting this property to true will display charts using 3D objects, setting it to
false will display charts using 2D objects.

Action: Read-write, Boolean

Example: The following example shows you how to change a chart to display 3D objects.

ActiveDocument.Sections"Chart"].Show3DObjects = true
11-138 Properties

ShowAdvanced (Property)

Applies To: Connection

Description: Returns or sets the Show advanced options property of a connection file.
Setting this property to true will enable the advanced properties dialog in the
OCE wizard.

Action: Read-write, Boolean

Example: The following example shows you how to set the advanced property.

ActiveDocument.Sections["Query"].DataModel.Connection.Open
("d:\\OCEs\\PlutoSQL.oce")
ActiveDocument.Sections["Query"].DataModel.Connection.ShowAdvanced = true
ActiveDocument.Sections["Query"].DataModel.Connection.Save()
ShowAdvanced (Property) 11-139

ShowAllPositive (Property)

Applies To: PieChart

Description: Returns or sets the ShowAllPositive Property for Pie charts. Setting this
property to true will display all values (both positive and negative) as positive
when displaying a pie chart.

Action: Read-write, Boolean

Example: The following example shows you how to display all the values as positive
values in a pie chart.

var MyChart = ActiveDocument.Sections["Sales Pie Chart"]
MyChart.PieChart.ShowAllPositive = true
11-140 Properties

ShowBackPlane (Property)

Applies To: ChartSection

Description: Returns or sets the ShowBackPlane property of a chart. Setting this property
equal to true will cause charts to display a back plane.

Action: Read-write, Boolean

Example: The following example shows you how to display the back plane in a chart
section.

var MyChart = ActiveDocument.Sections["Sales Chart"]
MyChart.ShowBackPlane = true
ShowBackPlane (Property) 11-141

ShowBarValues (Property)

Applies To: BarChart, BarLineChart

Description: If set to true data values are displayed on the tops of individual bars in Bar and
Bar Line Charts.

Action: Read-write, Boolean

Example: The following example shows you how to display the values on top of the bars
in bar and bar line charts.

var MyChart = ActiveDocument.Sections["AllChart"]
MyChart.BarChart.ShowBarValues = true
11-142 Properties

ShowBorder (Property)

Applies To: ChartSection

Description: Returns or sets a charts ShowBorder property. Setting this property equal to
true will display a border around a chart.

Action: Read-write, Boolean

Example: The following example shows you how to display the chart border.

var MyChart = ActiveDocument.Sections["Sales Chart"]
MyChart.ShowBorder = true
ShowBorder (Property) 11-143

ShowBrioRepositoryTables (Property)

Applies To: Connection

Description: Returns or sets a connections ShowBrioRepositoryTables property. Setting this
property equal to true will display the Brio Repository Tables in the table
catalog associated, which is associated with the Open Catalog Extension.

Action: Read-write, Boolean

Example: The following example creates a connection file from scratch and then applies
it to the current document. The data source name in this example is:
“PlutoSQLSVR”, which is a user DSN using the SQL Server 6.5 driver.

Var myCon = Application.CreateConnection()
MyCon.Description = "This OCE configures the connection via ODBC, to a SQLServer
6.5 database named pluto."
myCon.Api = bqApiOpenClient
myCon.Database = bqDatabaseSQLServer
MyCon.HostName ="PlutoSQLSVR"
MyCon.EnableAsyncProcess = true
MyCon.ShowBrioRepositoryTables = true
MyCon.SaveAs("d:\\OCEs\\PlutoSQL.oce")

//Now use this connection in a datamodel
ActiveDocument.Sections["Query"].DataModel.Connection.Open
("d:\\OCEs\\PlutoSQL.oce")
11-144 Properties

ShowCatalog (Property)

Applies To: Document, PluginDocument

Description: Returns or sets a document objects ShowCatalog property. Setting this
property equal to true will display the Section/Catalog pane. This has the same
effect as selecting/deselecting the Section/Catalog item from the view menu.

Action: Read-write, Boolean

Example: The following example shows you how to hide and show various user interface
elements in Brio based on the application they are running.

if (Application.Name == "BrioQuery")
{
 ActiveDocument.ShowCatalog = true
 ActiveDocument.ShowMenuBar = true
}
else
{
//Save space in plugin by hiding catalog and turning off menu bar
 ActiveDocument.ShowCatalog = false
 Application.ShowMenuBar = false
}

ShowCatalog (Property) 11-145

ShowColumnTitles (Property)

Applies To: ReportTable object

Description: Sets the value to either display or not display table column titles.

Note When using this property and the SuspendCalculation property is set to true (which it is by
default), then you must use the Recalculate method to force the Report section to recalculate
itself.

Action: Read-write, Boolean

Example: The following example shows you how to not to display table column titles.

ActiveDocument.Sections["Report"].Body.Tables["Table"].ShowColumnTitles = false

✏

11-146 Properties

ShowColumnTotal (Property)

Applies To: TableFact object

Description: Sets the attribute to display a column total (break total) on a table fact column
in the report section.

Note When using this property and the SuspendCalculation property is set to true (which it is by
default), then you must use the Recalculate method to force the Report section to recalculate
itself.

Action: Read-write, Boolean

Example: The following example shows you how to display the column total for the
"Amount Sales" table column.

ActiveDocument.Sections["Report"].Body.Tables["Table"].Facts["Amount
Sales"].ShowColumnTotal = true

✏

ShowColumnTotal (Property) 11-147

ShowFullNames (Property)

Applies To: DMCatalog

Description: Returns or sets a table catalogs ShowFullNames property. Setting this property
equal to true will display the full names of tables in the table catalog.

Action: Read-write, Boolean

Example: The following example shows you how to display the full names of tables in a
table catalog.

var myQuery = ActiveDocument.Sections["Query"]
myQuery.DataModel.Catalog.ShowFullNames = true
11-148 Properties

ShowHorizontalPlane (Property)

Applies To: ChartSection

Description: Returns or sets a chart sections ShowHorizontalPlane property. Setting this
property equal to true will display the horizontal plane of a chart.

Action: Read-write, Boolean

Example: The following example shows you how to display the chart border.

var MyChart = ActiveDocument.Sections"Sales Chart"]
MyChart.ShowBorder = true
MyChart.ShowHorizontalPlane = true
ShowHorizontalPlane (Property) 11-149

ShowIconJoins(Property)

Applies To: DataModel

Description: Returns or sets a DataModels ShowIconJoins property. Setting this property
equal to true will display the joins between topics that have been made into
icons in the Data Model.

Action: Read-write, Boolean

Example: The following example shows you how to show icon joins in a Data Model.

ActiveDocument.Sections["Query"].DataModel.ShowIconJoins = true
11-150 Properties

ShowIntervalTickmarks (Property)

Applies To: ValuesAxis

Description: Returns or sets a charts ValueAxis ShowIntervalTickmarks property. Setting
this property equal to true will display the tickmarks on a charts values axis.

Action: Read-Write, Boolean

Example: The following example shows you how to enable Interval tickmarks for a chart.

ActiveDocument.Sections["Chart"].ValuesAxis.ShowIntervalTickmarks = true
ShowIntervalTickmarks (Property) 11-151

ShowIntervalValues (Property)

Applies To: ValueAxis

Description: Returns or sets a charts ValueAxis ShowIntervalValues property. Setting this
property equal to true will display the interval values on a charts values axis.

Action: Read-write, Boolean

Example: The following example shows you how to enable Interval tickmarks for a chart.

ActiveDocument.Sections"Chart"].ValuesAxis.ShowIntervalValues = true
11-152 Properties

ShowLabel (Property)

Applies To: LeftAxis , RightAxis, XAxisLabel, ZaxisLabel

Description: Returns or sets a charts ShowLabel property. Setting this property equal to true
will display the label associated with an axis.

Action: Read-write, Boolean

Example: The following example shows you how to show all the labels for the various
chart objects.

ActiveDocument.Sections["Chart"].Activate()
ActiveSection.ValuesAxis.RightAxis.ShowLabel = true
ActiveSection.LabelsAxis.XAxis.ShowLabel = true
ActiveSection.ValuesAxis.LeftAxis.ShowLabel = true
ActiveSection.LabelsAxis.ZAxis.ShowLabel = true
ShowLabel (Property) 11-153

ShowLabels (Property)

Applies To: PieChart

Description: Returns or sets a pie chart’s ShowLabels property. Setting this property equal
to true will display the labels associated with a pie chart.

Action: Read-write, Boolean

Example: The following example shows you how to set pie chart specific properties.

ActiveDocument.Sections["Chart"].PieChart.ShowLabels = true
ActiveDocument.Sections["Chart"].PieChart. ShowPercentages = true
11-154 Properties

ShowLegend (Property)

Applies To: ChartSection

Description: Returns or sets a charts ShowLegend property. Setting this property equal to
true will display the legend associated with a chart.

Action: Read-write, Boolean

Example: The following example shows you how to enable the chart legend.

ActiveDocument.Sections["Chart"].ShowLegend = true
ShowLegend (Property) 11-155

ShowLocalResults (Property)

Applies To: DMCatalog

Description: Returns or sets a table catalogs ShowLocalResults property. Setting this
property equal to true will display the list of local results in the table catalog.

Action: Read-write, Boolean

Example: The following example shows you how to search through the document for
more than one results set and then display the local results in the Table
Catalog.

var ResultsCount = 0
for (j =1 ; j <= ActiveDocument.Sections.Count ; j++)
 if (ActiveDocument.Sections[j].Type == bqQuery)
 ResultsCount++
if (ResultsCount > 1)
 ActiveDocument.Sections["Query"].DataModel.ShowLocalResults = true
11-156 Properties

ShowMenuBar (Property)

Applies To: Application

Description: Returns or sets the applications ShowMenuBar property. Setting this property
equal to true will display the applications menu bar. The default value is true.

Action: Read-write, Boolean

Example: The following example shows how to hide and show various user interface
elements in Brio based on the application they are running.

if (Application.Name == "BrioQuery Designer")
{
 ActiveDocument.ShowCatalog = true
 Application.ShowMenuBar = true
}
else
{
//Save space in plugin by hiding catalog and turning off menu bar
 ActiveDocument.ShowCatalog = false
 Application.ShowMenuBar = false
}

ShowMenuBar (Property) 11-157

ShowMetadata (Property)

Applies To: Connection

Description: Returns or sets a connections ShowMetadata property. Setting this property
equal to true will display metadata settings in the Open Catalog Extensions
wizard.

Action: Read-write, Boolean

Example: The following example creates a connection file from scratch and then applies
it to the current document. The data source name in this example is
“PlutoSQLSVR”, which is a user DSN using the SQL Server 6.5 driver.

var myCon = Application.CreateConnection()
myCon.Description = "This OCE configures the connection via ODBC, to a SQLServer
6.5 database named pluto."
mmyCon.Api = bqApiOpenClient
myCon.Database = bqDatabaseSQLServer
myCon.HostName ="PlutoSQLSVR"
myCon.EnableAsyncProcess = true
myCon.ShowMetaData = true
myCon.SaveAs("d:\\OCEs\\PlutoSQL.oce")

//Now use this connection in a datamodel
ActiveDocument.Sections["Query"].DataModel.Connection.Open
("d:\\OCEs\\PlutoSQL.oce")
11-158 Properties

ShowOutliner (Property)

Applies To: ChartSection, OLAPQuerySection, PivotSection, QuerySection,
ResultsSection, TableSection

Description: Returns or sets a ShowOutliner property. Setting this property equal to true
will display the Outliner associated with a section. The default value is true.

Action: Read-write, Boolean

Example: The following example shows you how to display the chart outliner.

ActiveDocument.Sections["Chart"].ShowOutliner = true
ShowOutliner (Property) 11-159

ShowPercentages (Property)

Applies To: PieChart

Description: Returns or sets a pie charts ShowPercentages property. Setting this property
equal to true will display the percentages next to the pie slices in a pie chart.

Action: Read-write, Boolean

Example: The following example shows how to set pie chart specific properties.

ActiveDocument.Sections["Chart"].PieChart.ShowLabels = true
ActiveDocument.Sections["Chart"].PieChart. ShowPercentages = true
11-160 Properties

ShowRowNumbers (Property)

Applies To: TableSection

Description: Returns or sets a table sections ShowRowNumbers property. Setting this
property equal to true will display the row numbers in the left most region of a
table section.

Action: Read-write, Boolean

Example: The following example displays the row numbers.

ActiveDocument.Sections"Results"].ShowRowNumbers = true
ShowRowNumbers (Property) 11-161

ShowSectionTitleBar (Property)

Applies To: Document, PluginDocument

Description: Returns or sets a documents ShowSectionTitleBar property. Setting this
property equal to true will display the section specific title bar. Changing this
property is equivalent to showing/hiding the section title bar from the view
menu.

Action: Read-write, Boolean

Example: The following example shows you how to hide and show various user interface
elements in Brio based on the application you are running.

if (Application.Name == "BrioQuery Designer")
{
 ActiveDocument.ShowCatalog = true

ActiveDocument.ShowSectionTitleBar = true
Application.ShowStatusBar = true

 Application.ShowMenuBar = true
}
else
{
//Save space in plugin by turning off various user interface elements
 ActiveDocument.ShowCatalog = false
 ActiveDocument.ShowSectionTitleBar = false

Application.ShowStatusBar = false
 Application.ShowMenuBar = false
}

11-162 Properties

ShowStatusBar (Property)

Applies To: Application

Description: Returns or sets the applications ShowStatusBar property. Setting this property
equal to true will display the status bar. Changing this property is equivalent to
showing/hiding the status bar from the view menu.

Action: Read-write, Boolean

Example: The following example shows you how to hide and show various user interface
elements in Brio based on the application they are running.

if (Application.Name == "BrioQuery Designer")
{
 ActiveDocument.ShowCatalog = true

ActiveDocument.ShowSectionTitleBar = true
Application.ShowStatusBar = true

 Application.ShowMenuBar = true
}
else
{
//Save space in plugin by hiding by various user interface elements
 ActiveDocument.ShowCatalog = false
 ActiveDocument.ShowSectionTitleBar = false
 Application.ShowStatusBar = false
 Application.ShowMenuBar = false
}

ShowStatusBar (Property) 11-163

ShowSubtitle (Property)

Applies To: ChartSection

Description: Returns or sets the charts ShowSubTitle property. Setting this property equal
to true will display the sub title.

Action: Read-write, Boolean

Example: The following example shows you how to add a sub-title to a chart.

var MyChart=ActiveDocument.Sections["Chart"]
MyChart.SubTitle="This is the Sub Title"
MyChart.ShowSubTitle=true
11-164 Properties

ShowTickmarks (Property)

Applies To: XAxis, ZAxis

Description: Returns or sets the charts ShowTickmarks property. Setting this property equal
to true will display the tickmarks on X-axis and/or Z-axis.

Action: Read-write, Boolean

Example: The following example shows how to display tickmarks on the X-axis and hide
them on the Z-axis.

var MyChart = ActiveDocument.Sections["Chart"]
MyChart.LabelsAxis.XAxis.ShowTickmarks = true
MyChart.LabelsAxis.ZAxis.ShowTickmarks = false
ShowTickmarks (Property) 11-165

ShowTitle (Property)

Applies To: ChartSection

Description: Returns or sets the charts ShowTitle property. Setting this property equal to
true will display the chart title.

Action: Read-write, Boolean

Example: The following example shows you how to add a title to a chart.

var MyChart=ActiveDocument.Sections["Chart"]
MyChart.Title="This is the Title"
MyChart.ShowTitle=true
11-166 Properties

ShowValues (Property)

Applies To: XAxis, ZAxis

Description: Returns or sets the charts ShowValues property. Setting this property equal to
true will display the values along the X-axis and/or the Z-axis.

Action: Read-write, Boolean

Example: The following example shows how to display the values on the X-axis and hide
them on the Z-axis.

var MyChart = ActiveDocument.Sections["Chart"]
MyChart.LabelsAxis.XAxis.ShowValues = true
MyChart.LabelsAxis.ZAxis.ShowValues = false
ShowValues (Property) 11-167

ShowValuesAtRight (Property)

Applies To: ValuesAxis

Description: Returns or sets the charts ShowValuesAtRight property. Setting this property
equal to true will display the values to the right of the values axis.

Action: Read-write, Boolean

Example: The following example shows how to display the values to the right of the axis.

var MyChart = ActiveDocument.Sections"Chart"]
MyChart.ValuesAxis.ShowValuesAtRight = true
11-168 Properties

ShowVerticalPlane (Property)

Applies To: ChartSection

Description: Returns or sets the charts ShowVerticalPlane property. Setting this property
equal to true will display the vertical plane in a chart section.

Action: Read-write, Boolean

Example: The following example shows how to display the vertical plane on a chart.

ActiveDocument.Sections["Chart"].ShowVerticalPlane=true
ShowVerticalPlane (Property) 11-169

Size (Property)

Applies To: Font

Description: Returns or sets the value of a font objects size property. This property controls
the size of the text associated with a font object.

Action: Read-write, Numeric

Example: The following example shows how to change the size of the text associated with
a text label.

var MyLabel = ActiveDocument.Sections"EIS"].Shapes["TextLabel1"]
MyLabel.Font.Size = 14
MyLabel.Font.Style = bqFontStyleBoldItalic
11-170 Properties

SortFactName (Property)

Applies To: PivotLabels Collection

Description: Returns or sets the sort criteria for a pivot fact. This property is used in
conjunction with the SortByFact (Method).

Action: Read only, String

Example The following example shows you how to sort the side label "Product Name"
by the fact value.

ActiveDocument.Sections["Pivot3"].SideLabels["Product Name"].SortFactName="Unit
Sales"
SortFactName (Property) 11-171

SortFunction (Property)

Applies To: PivotLabels Collection

Description: Returns or sets aggregate statistical functions programmatically. This property
takes a BqSortFunction group value, which duplicates the data functions
available in the Pivot and Chart sections. This property is used in conjunction
with the SortByFact (Method) which allows you to sort by a numeric data
item.

Action: Read only, String

Constants: The BqSortFunction group constant consists of the following values:

bqSortFunctionAverage

bySortFunctionCount

bqSortFunctionMaximum

bqSortFunctionMinimum

bqSortFunctionNonNullAverage

bqSortFunctionNonNullCount

bqSortFunctionNullCount

bqSortFunctionSum

Example The following example shows you how to sort values based on the average
statistical function.

ActiveDocument.Sections["Pivot3"].SideLabels["Product Name"].SortFunction=
bqSortFunctionAverage
11-172 Properties

SortOrder (Property)

Applies To: Sort Items

Description: Returns or sets the ascending or descending sort order property.

Action: Read-write

Constants The constant associated with this property is a member of the constant group
called BqSortOrder. The BqSortOrder constant group consists of the
following values:

bqSortAscend

bqSortDescend

Example: The following example shows you how to sort in ascending order in the Table
section.

ActiveDocument.Sections["Table"].SortItems[1].SortOrder=bqSortAscend
SortOrder (Property) 11-173

SpecificMetadataLogin (Property)

Applies To: Connection

Description: Returns or sets a connection objects SpecificMetadataLogin property. Setting
this property to true will use the login information specified in the default
connection for the metadata connection.

Action: Read-write, Boolean

Example: The following example creates an OCE from scratch and then applies it to the
current document. The data source name in this example is: “PlutoSQLSVR”,
which is a user DSN using the SQL Server 6.5 driver.

var myCon = Application.CreateConnection()
myCon.Description"This OCE configures the connection via ODBC, to a SQLServer 6.5
database named pluto."
myCon.Api = bqApiOpenClient
myCon.Database = bqDatabaseSQLServer
myCon.HostName ="PlutoSQLSVR"
myCon.EnableAsyncProcess = true
myCon. SpecificMetadataLogin = true
myCon.SaveAs("d:\\OCEs\\PlutoSQL.oce")

//Now use this connection in a datamodel
ActiveDocument.Sections["Query"].DataModel.Connection.Open
("d:\\OCEs\\PlutoSQL.oce")
11-174 Properties

SQLName (Property)

Applies To: Request

Description: Returns the value of a request object’s SQLName property. The value of this
property is the name of the request object, which is used in building the SQL
statement.

Action: Read-only, String

Example: The following example shows you how to display all the names used in the
SQL statement corresponding to the request line items.

var RequestCount = ActiveDocument.Sections["Query"].Requests.Count
for (j =1 ; j <= RequestCount ; j++)
 {
 var DisplayName = ActiveDocument.Sections["Query"].Requests[j].DisplayName
 var SQLName = ActiveDocument.Sections["Query"].Requests[j].SQLName
 Console.Writeln("The column named "+ DisplayName + "is actually known by "+
SQLName + "to the database.")
 }
SQLName (Property) 11-175

SQLNetRetainDateFormats (Property)

Applies To: Connection

Description: SQLNet Only. Returns or sets the value of a connection objects
SQLNetRetainDateFormats property. Setting this property equal to true will
retain the date formats specified by SQLNet.

Action: Read-write, Boolean

Example: The following example creates a connection file from scratch and then applies
it to the current document.

Var myCon = Application.CreateConnection()
MyCon.Description = "This OCE configures the connection via ODBC, to a SQLServer
6.5 database named pluto."
MyCon.Api = bqApiSQLNet
MyCon.Database = bqDatabaseOracle71
MyCon.HostName ="PlutoORACLE"
MyCon. SQLNetRetainDateFormats =true
MyCon.SaveAs("d:\\OCEs\\PlutoORACLE.oce")

//Now use this connection in a datamodel
ActiveDocument.Sections["Query"].DataModel.Connection.Open
("d:\\OCEs\\PlutoORACLE.oce")
11-176 Properties

StackClusterType (Property)

Applies To: BarLineChart

Description: Returns or sets the value of the BarLineChart objects StackClusterType
property.

Action: Read-write

Constants: The BqClusterBarType constant consists of the following values:

bqClusterByY

bqClusterByZ

Example: The following example shows how to change the type of BarLineChart.

var MyChart = ActiveDocument.Sections["Chart"]
MyChart.BarLineChart.StackClusterType = bqClusterByY
StackClusterType (Property) 11-177

StringRetrieval (Property)

Applies To: Connection

Description: Returns or sets the value of a connection objects StringRetrieval property. If
this property is set to true then the connection will use string retrieval, if the
property is set to false then the connection will use binary retrieval.

Action: Read-write, Boolean

Example: The following example creates a connection from scratch and then applies it to
the current document.

Var myCon = Application.CreateConnection()
MyCon.Description = "This OCE configures the connection via ODBC, to a SQLServer
6.5 database named pluto."
myCon.Api = bqApiSQLNet
myCon.Database = bqDatabaseOracle71
myCon.HostName ="PlutoORACLE"
myCon. StringRetrieval =true
myCon.SaveAs("d:\\OCEs\\PlutoORACLE.oce")

//Now use this connection in a datamodel
ActiveDocument.Sections["Query"].DataModel.Connection.Open
("d:\\OCEs\\PlutoORACLE.oce")
11-178 Properties

Style (Property)

Applies To: Font

Description: Returns or sets the value of a font objects style property. This property changes
the look and feel of the text associated with the font object.

Action: Read-write

Constants: The BqFontStyle constant consissts of the following values:

bqFontStyleBold

bqFontStyleBoldItalic

bqFontStyleItalic

bqFontStyleNone

bqFontStyleRegular

Example: The following example shows you how to change the size of the text associated
with a text label.

var MyLabel = ActiveDocument.Sections["EIS"].Shapes["TextLabel1"]
MyLabel.Font.Size = 14
MyLable.Font.Style = bqFontStyleBoldItalic
Style (Property) 11-179

SubTitle (Property)

Applies To: ChartSection

Description: Returns or sets the value of a charts sub title.

Action: Read-write, String

Example: The following example shows how to add a sub title to a chart.

ActiveDocument.Sections["Chart"].SubTitle ="This is the sub title"
ActiveDocument.Sections["Chart"].ShowSubTitle=true
11-180 Properties

SuppressDuplicates (Property)

Applies To: Column

Description: Returns or sets the value of a column objects SuppressDuplicates property.
Setting this property equal to true will suppress duplicate values in an
individual column.

Action: Read-write, Boolean

Example: The following example shows you how to suppress duplicate results on specific
columns within a Results section.

var Col1 = "State"
var Col2 = "City"
ActiveDocument.Sections"Results"].Columns[Col1].SupressDuplicates = true
ActiveDocument.Sections["Results"].Columns[Col2].SupressDuplicates = true
SuppressDuplicates (Property) 11-181

SurfaceValues (Property)

Applies To: PivotSection

Description: Returns or sets the value of the Pivot Section's surface values property. Surface
values instruct the entire Pivot to perform calculations based on surface values
as opposed to the entire underlying results set. Changes to the property are
selected in the UI when the property is set. Changes to the UI are reflected
when the property is read. The default value is false.

Action: Read-write, Boolean

Example 1: The following example shows you how to turn on surface values.

//Surface Values ON
ActiveDocument.Sections["Pivot"].SurfaceValues=true

Example 2: The following example shows you how to turn off surface values.

//Surface Values OFF
ActiveDocument.Sections["Pivot"].SurfaceValues=false
11-182 Properties

SuspendRecalculation (Property)

Applies To: Limit (Results limits only)

Description: Returns or sets the value of a results limit object SuspendRecalculation
property. Setting this property equal to true will prevent the results limit from
recalculating after every modification. This greatly enhances performance of
results limit calculations.

Note You must use the Recalculate() method to force a recalculation when using this property.

Action: Read-write, Boolean

Example: The following example shows you how to increase the performance of limits
applied to a results set using the Suspend Recalculation property.

var MyLimit = ActiveDocument.Sections["Results"].Limits["Units"]
MyLimit.SuspendRecalculation = true
MyLimit.SelectedValues.RemoveAll()
MyLimit.SelectedValues.Add(10)
MyLimit.SelectedValues.Add(11)
MyLimit.SelectedValues.Add(12)
MyLimit.SuspendRecalculation = false
ActiveDocument.Sections["Results].Recalculate()

Note Instead of calculating the results limit four times, the script above only calculates it once.

✏

✏

SuspendRecalculation (Property) 11-183

Text (Property)

Applies To: ControlsTextBox

Description: Returns or sets the value of the text that is displayed in a Text box control or
Text label shape.

Action: Read-write, String

Example: The following example shows you how to set an initial value for a text box.

ActiveDocument.Sections["EIS2"].Shapes["TextBox1"].Text="Hello World"
Alert (ActiveDocument.Sections["EIS2"].Shapes["TextBox1"].Text)
11-184 Properties

TextWrap (Property)

Applies To: Column

Description: Returns or sets the value of a column objects Textwrap property. Setting this
property equal to true will cause the text in a column to wrap and extend the
height of the column.

Action: Read-write, Boolean

Example: The following example shows you how to force text to wrap on specific
columns within the Results section.

var Col1 = "State"
var Col2 = "City"
ActiveDocument.Sections["Results"].Columns[Col1].TextWrap = false
ActiveDocument.Sections["Results"].Columns[Col2]. TextWrap = true
TextWrap (Property) 11-185

TickmarkFrequency (Property)

Applies To: XAxis

Description: Returns or sets the value of a charts XAxis objects TickmarkFrequency
property. This property effects the number of tickmarks displayed on the X-
axis.

Action: Read-write, Numeric

Example 1: The following example shows how to display a tickmark for every value on the
X-axis.

ActiveDocument.Sections["AllChart"].LabelsAxis.XAxis.TickmarkFrequency=1
ActiveDocument.Sections["AllChart"].LabelsAxis.XAxis.ShowTickmarks=true

Example 2: The following example shows how to display a tickmark for every other value
on the X-axis.

ActiveDocument.Sections["AllChart"].LabelsAxis.XAxis.TickmarkFrequency=2
ActiveDocument.Sections["AllChart"].LabelsAxis.XAxis.ShowTickmarks=true
11-186 Properties

TimeLimit (Property)

Applies To: Connection, DataModel, QuerySection

Description: Returns or sets the value of the timelimit property. This property controls the
maximum time limit a query can process before timing out. It can be set on the
OCE, DataModel or Connection level. The time increment is minutes.

Action: Read-write, Numeric

Example: The following example shows you how to set the Time limit property for all
the supported objects.

//Connections
var myCon = Application.CreateConnection()
myCon.Api = bqApiSQLNet
myCon.Database = bqDatabaseOracle71
myCon.HostName ="PlutoORACLE"
myCon.TimeLimit = 20
myCon.SaveAs("d:\\OCEs\\PlutoORACLE.oce")

//DataModel
ActiveDocument.Sections["Query].DataModel.TimeLimit = 30

//Query
ActiveDocument.Sections["Query].TimeLimit = 30
TimeLimit (Property) 11-187

TimeLimitActive (Property)

Applies To: QuerySection, DataModelSection

Description: Returns the enable/disable for Time Limit setting property. It is associated
with the TimeLimit property.

Action: Read-only, Boolean

Example: The following example shows you how to enable the Time Limit setting, set the
maximum time limit to process a query before timing out,. and process the
query.

ActiveDocument.Sections["Query"].DataModel.TimeLimitActive = true
ActiveDocument.Sections["Query"].DataModel.TimeLimit = 30
ActiveDocument.Sections["Query"].Process()
11-188 Properties

Title (Property)

Applies To: ChartSection

Description: Returns or sets the value of the title property. This property changes the value
of the title displayed on a chart.

Action: Read-write, String

Example: The following example shows you how to add a title to a chart.

var MyChart = ActiveDocument.Sections"Chart"]
MyChart.Title = "This is the Title"
MyChart.ShowTitle = true
Title (Property) 11-189

TopicName (Property)

Applies To: Joins, Local Join

Description: Retrieves the parent of the Topic item, which is the Topic Name in a join or
local join. It also allows you to retrieve the Topic Item Names of joins (and not
local joins).

Action: Read-only, String

Example 1 The following example shows you how to retrieve the topic names 1 and 2
from a join.

//Get Join Topic Names
TextBox1.Text=ActiveDocument.Sections["Query"].DataModel.Joins["1"].Topic1Name;
TextBox2.Text=ActiveDocument.Sections["Query"].DataModel.Joins["1"].Topic2Name;
TextBox3.Text=ActiveDocument.Sections["Query"].DataModel.Joins["1"].Type;

Example 2 The following example shows you how to retrieve the Topic Item Names from
a join.

/Get Join Topic Item Names
TextBox4.Text=ActiveDocument.Sections["Query"].DataModel.Joins["1"].TopicItem1.Di
splayName
TextBox5.Text=ActiveDocument.Sections["Query"].DataModel.Joins["1"].TopicItem2.Ph
ysicalName

Example 3 The following example shows you how to retrieve the topic names 1 and 2
from a local join.

//Get Local Join Topic Names
TextBox6.Text=ActiveDocument.Sections["Query"].DataModel.LocalJoins["1"].Topic1Na
me;
TextBox7.Text=ActiveDocument.Sections["Query"].DataModel.LocalJoins["1"].Topic2Na
me;
TextBox8.Text=ActiveDocument.Sections["Query"].DataModel.LocalJoins["1"].Type;
11-190 Properties

TopMargin (Property)

Applies To: ReportSection object

Description: Sets the top margin the report. Margins are set for the entire report.

Note When using this property and the SuspendCalculation property is set to true (which it is by
default), then you must use the Recalculate method to force the Report section to recalculate
itself.

Action: Read-write, Number

Example: The following example shows you how to set the left margin of the report to
.25 inches.

ActiveDocument.Sections["Report"].TopMargin = .25

✏

TopMargin (Property) 11-191

Type (Property)

Applies To: Join, Section, Toolbar, Topic, Shape, JoinsOptions

Description: Returns the value of the type property.

Section Objects – This property represents the type of section. (Chart,
Pivot, Query, etc..)

Join – This property refers to the type of join. (Left, right, Outer, etc.)

Toolbar – This property represents the type of toolbar. (Standard,
format, etc.)

Topic – This property represents the type of topic. (Standard, Meta, etc.)

Shape – This property represents the type of drawing object or control in
an EIS section. (Line, Rectangle, etc)

Joins Options – This property represents the type of join option. (All
Topics, Auto Join, etc.)

Action: Read-only

Constants: Section Objects – BqSectionType

bqChart

bqDataModel

bqDetail

bqEIS

bqOLAP

bqPivot

bqQuery

bqReport

bqResults

bqTable
11-192 Properties

Join – BqJoinType

bqJoinLeft

bqJoinOuter

bqJoinRight

bqJoinSimpleEqual

bqJoinSimpleGreaterThan

bqJoinSimpleGreaterThanOREqual

bqJoinSimpleLessThan

bqJoinSimpleLessThanOrEqual

bqJoinSimpleNotEqual

Toolbar – BqToolbars

bqToolbarFormat

bqToolbarNavigation

bqToolbarSections

bqToolbarStandard

Topic – BqTopicType

bqTopicTypeMeta

bqTopicTypeNone

bqTopicTypeQueryObject

bqTopicTypeResults

bqTopicTypeStoredProcedure

Shape – BqShapeType

bqButton

bqCheckBox

bqDropBox

bqEmbeddedSection
Type (Property) 11-193

bqHorizontalLine

bqLine

belistBox

bqOval

bqPicture

bqRadioButton

bqRectangle

bqRoundRectangle

bqTextBox

bqTextLabel

bqVerticalLine

JoinsOptions – BqDataModelJoinsOptions

bqDataModelJoinsOptionAllTopics

bqDataModelJoinsOptionAutoJoin

bqDataModelJoinsOptionDefJoin

bqDataModelJoinsOptionMinTopics

bqDataModelJoinsOptionRefTopics

Example: The following example shows you how to use the type property to determine
which properties apply to a specific object. In this example, checking the Type
property of the Section objects allows the script to process every query in a
document.

var SecCount = ActiveDocument.Sections.Count
for (j = 1; j <= SecCount ; j++)
 {
 if (ActiveDocument.Sections[j].Type == bqQuery)
 ActiveDocument.Sections[j].Process()
 }
11-194 Properties

UnionController (Property)

Applies To: AppendQueriesSection

Description: Returns or sets the value of the Append Query union operator. The union
operator governors how rows are retrieved when the Append Query Option
feature is used. This property uses the BqUnionController constant group,
which consists of the bqUnion and bqUnionAll constants value.Use the
bqUnion constant value when you want to programmatically retrieve all
distinct rows selected by either query without duplicates. Use the bqUnionAll
constant value when you want to programmatically retrieve all rows selected
by either query, including duplicate rows.

Action: Read-write

Constants The BqUnionController constant consists of the following values:

 bqUnion

 bqUnionAll

This is the UnionController Constant Definition:

typedef enum BqUnionController
{

bqUnion = 1,
bqUnionAll,

} BqUnionController;

Example: The following example shows you how to append a query using the Union
operator.

ActiveDocument.Sections["Query"].AppendQueries.Add()
ActiveDocument.Sections["Query"].AppendQueries[1].UnionController=bqUnion
UnionController (Property) 11-195

UniqueRows (Property)

Applies To: QuerySection

Description: Returns or sets the value of a query sections unique row property. Setting this
property to true will cause the query to return only unique rows of data.

Action: Read-write, Boolean

Example: The following example sets each query in a document to return unique rows.

var SecCount = ActiveDocument.Sections.Count
for (j = 1; j <= SecCount ; j++)
 {
 if (ActiveDocument.Sections[j].Type == bqQuery)
 ActiveDocument.Sections[j].UniqueRows = true
 }
11-196 Properties

URL (Property)

Applies To: PluginDocument (Insight & Quickview Only)

Description: PluginDocument – Returns the value of the URL (Uniform Resource Locator)
associated with the document. If the document is registered with the
OnDemand Server, the URL contains the address to the server and the name of
the Broker. If the document came from a Web server or local file system, the
URL contains the fully qualified server name and directory.

Action: Read-only, String

Example: The following example illustrates the how to use the URL property to direct
users to help information stored on the same server.

if(Application.Name.indexOf("BrioQuery") != -1)
 {

Alert("This property is not valid in BrioQuery")
}

else
{

var MyURL = ActiveDocument.URL
Application.OpenURL(MyURL + "\/helpinfo.html,_new")

}

URL (Property) 11-197

Username (Property)

Applies To: Connection

Description: Returns or sets the value of the username property. The username property of
the connection objects refers to the username used by the OCE (Open Catalog
Extension).

Action: Read-write, String

Example: The following example shows you how to create a connection from scratch
and how to set its various properties.

var myCon = Application.CreateConnection()
myCon.Api = bqApiSQLNet
myCon.Database = bqDatabaseOracle71
myCon.HostName ="PlutoORACLE"
myCon.TimeLimit = 20 //minutes
myCon.Username = "Brio
myCon.SaveAs("d:\\OCEs\\PlutoORACLE.oce")
11-198 Properties

ValueSource (Property)

Applies To: Limit

Description: Returns the value of a limit object’s ValueSource property. This property
returns an enumerated value, which specifies where the limit values originated.

Action: Read-only

Constants: The BqLimitValueSource constant consists of the following values:

bqLimitSourceDatabase

bqLimitSourceFile

Example: The following example shows you how to use the ValueSource property to
determine the location of the limits values.

ActiveDocument.Sections["Query"].Limits[1].LoadFromFile("d:\\LimitData.txt")
if (ActiveDocument.Sections["Query"].Limits[1].ValueSource != bqLimitSourceFile)
 Alert("An error has occurred,Error!")
ValueSource (Property) 11-199

VariableLimit (Property)

Applies To: Limit

Description: Returns or sets the value of a limit objects VariableLimit Property. This
property enables or disables a limit as a variable limit. If the VariableLimit
property is equal to true then a limit is considered a variable limit and will
prompt the user for a limit value when they process a query.

Action: Read-write, Boolean

Example: The following example checks to see if any query limits are set as variable limits
and reverts them into normal limits.

for (j=1 ; j <= ActiveDocument.Sections["Query"].Limits.Count; j++)
 if (ActiveDocument.Sections["Query"].Limits[j].VariableLimit == true)
 ActiveDocument.Sections["Query"].Limits[j].VariableLimit = false
11-200 Properties

Version (Property)

Applies To: Application

Description: Returns the value of the Product Name Variable application version number.

Action: Read-only, String

Example: The following example shows you how to display your current version
number.

Alert (Application.Version)
Version (Property) 11-201

VerticalAlignment (Property)

Applies To: Shape object

Description: Returns or sets the vertical alignment of the text in a shape objectThis property
corresponds to the features on the Alignment Properties dialog box.

Action: Read-write

Constants: The BqVerticalAlignment constant group consists of the following values:

bqAlignBottom

bqAlignMiddle

bqAlignTop

Example: The following example changes a text label to 8 points, bold Italic and
vertically aligned at the top.

var MyLabel = ActiveDocument.Sections["EIS"].Shapes["TextLabel"]
MyLabel.Font.Size = 8
MyLabel.Font.Style = bqFontStyleBoldItalic
MyLabel.VerticalAlignment=bqAlignTop
11-202 Properties

View (Property)

Applies To: Topic

Description: Returns or sets the value of a topic objects view property. This property
controls the display characteristics of topics in a Data Model.

Action: Read-Write

Constants: The BqTopicView constant consists of the following values:

bqDetailView

bqIconView

bqStructureView

bqTopicViewNone

Example: The following example resets all the Topics in a Data Model to the structure
view.

var TopicCount = ActiveDocument.Sections["Query"].DataModel.Topics.Count
for (j =1 ; j <= TopicCount ; j++)
ActiveDocument.Sections["Query"].DataModel.Topics[j].View = bqStructureView
View (Property) 11-203

Visible (Property)

Applies To: Application, ChartSection, Column, ControlsCheckBox,
ControlsCommandButton, ControlsDropDown, ControlsListBox,
ControlsRadioButton, ControlsTextBox , PivotLabelValue, PivotSection,
QuerySection, Request, Section, Shape,Toolbar, TopicItem

Description: Returns or sets the value of the visible property. The visible property controls
the display of its base object. Setting visible equal to false will hide the object or
setting visible equal to true will show the object.

Action: Read-write, Boolean

Example: The following example unhides all the sections in a document.

var SecCount = ActiveDocument.Sections.Count
for (j =1 ; j <= SecCount ; j++)
 if (ActiveDocument.Sections[j].Visible == false)
 ActiveDocument.Sections[j].Visible = true
11-204 Properties

Width (Property)

Applies To: Line

Description: Returns or sets the value of the Lines Width property. This property effects the
size of the border of shape and control objects.

Action: Read-write, Integer

Example: The following example changes all the rectangles to have a border width of five
pixels.

var ShapeCount = ActiveDocument.Sections["EIS"].Shapes.Count
var ShapesCol = ActiveDocument.Sections["EIS"].Shapes
for (j =1 ; j <= ShapeCount ; j++)
 if (ShapesCol[j].Type == bqShapeTypeRectangle)
 ShapesCol[j].Line.Width = 5
Width (Property) 11-205

WindowState (Property)

Applies To: Application (Product Name Variable Only)

Description: Returns or sets the value of the applications WindowState property. This
property effects the display of the main application window. Using the
enumerated type BqWindowState the window can be minimized, maximized
or restored back to a default state.

Action: Read-write

Constants: The BqWindowState constant consists of the following values:

bqWindowStateMaximized

bqWindowStateMinimized

bqWindowStateNormal

Example: The following example checks if Product Name Variable is maximized, and
changes its state based on the result.

if(Application.WindowState != bqWindowStateMaximized)
 Application.WindowState = bqWindowStateMaximized
else
 Application.WindowState = bqWindowStateNormal
11-206 Properties

12 JavaScript Examples

This chapter provides sample JavaScript scripts for these Brio Intelligence
tasks:

■ Displaying and Entering Values in a Text Box

■ Retrieving and Setting the Properties of an Object

■ Enabling and Disabling Controls

■ Controlling the Visibility of Graphics and Controls

■ Creating an OCE (connection file)

■ Displaying a Connection Login Box

■ Downloading Data Models

■ Displaying a Table Catalog

■ Adding Topics to a Data Model Section

■ Setting up Topic Object Variables

■ Adding Joins

■ Adding Items to the Request Line

■ Adding a Computed Column to a Query Request Line

■ Creating and Setting Variable Limits

■ Using the ODS User Name as a Limit

■ Using a Brio Intelligence 6.6 Limit Dialog Box and Storing Selected
Value in Text Box

■ Turning off the Page Headers for the First Page in the Report

■ Including Limit Values in the URL Submitted to the ODS

■ Turning off the Prompt To Save Dialog Box

■ Processing Queries Using “Prompt For Database Logon”

■ Processing Queries Using “Don’t Prompt For Database Logon”
12-1

Displaying and Entering Values in a Text Box
A Brio Intelligence text box provides users a way to display output to and
gather input from the application. You can write values to a text box or read
values from a text box. There are three events associated with a text box—
OnEnter, OnChange, and OnExit.

Uses for a text box in Run Mode include:

■ Entering values

■ Displaying values

■ Displaying read-only information

■ Validating data

■ Calculating data

Example 1, Example , and Example show you how to attach JavaScript scripts
to the various text box events.

Example 1 /* OnEnter Event"enables CommandButton */
var sect_name=’EIS’;
var ctrl_name=’CommandButton1’;
ActiveDocument.Sec-
tions[sect_name].Shapes[ctrl_name].Enabled = true;

/* OnChange Event- validates changes*/
var sect_name=’EIS’;
var ctrl_name=’TextBox1’;
if (ActiveDocument.Sec-
tions[sect_name].Shapes[ctrl_name].Text==’Hello’)
{
Alert(‘Hello is an Invalid Entry’);
}

/* OnExit Event- increments variable counter */
var sect_name=’EIS’;
var ctrl_name=’TextBox1’;
if (ActiveDocument.Sec-
tions[sect_name].Shapes[ctrl_name].Text==’2’)
{
x=x+1;
}

12-2 JavaScript Examples

Retrieving and Setting the Properties of an Object
Brio Intelligence objects have associated properties. The properties represent
attributes of an object. Some examples of properties include name, visible,
enabled, and text. Many of the properties can be set using the Properties dialog
box in the EIS section. Example , Example , and Example show you how to use
JavaScript to get and set properties for controls.

/* Get the value of the ListBox MultiSelect property*/
var sect_name=’EIS’;
var ctrl_name=’ListBox1’;
TextBox1.Text =
ActiveDocument.Sections[sect_name].Shapes[ctrl_name].MultiSe-
lect;

/* Set the value of the CheckBox Checked property */
var sect_name=’EIS’;
var ctrl_name=’CheckBox1’;
ActiveDocument.Sec-
tions[sect_name].Shapes[ctrl_name].Checked = true;

/* Get the value of the RadioButton Group property */
var sect_name=’EIS’;
var ctrl_name=’CheckBox1’;
TextBox1.Text =
ActiveDocument.Sec-
tions[sect_name].Shapes[ctrl_name].Group;
Retrieving and Setting the Properties of an Object 12-3

Enabling and Disabling Controls
EIS graphics and control objects have an enabled property that determines
whether the object is enabled or disabled in EIS Run mode. When an object is
enabled, users can access the control and trigger events that can perform
actions. When an object is disabled, the object appears dimmed and does not
recognize events when a user attempts to access the control. The enabled
property is available from the Object page of the Properties dialog box for
graphics and control objects. Example and Example show how to
programmatically enable or disable a control.

/* Enables controls */
var sect_name=’EIS’;
var ctrl_name=’TextBox1’;
ActiveDocument.Sec-
tions[sect_name].Shapes[ctrl_name].Enabled = true;

/* Disables controls */
var sect_name=’EIS’;
var ctrl_name=’TextBox1’;
ActiveDocument.Sec-
tions[sect_name].Shapes[ctrl_name].Enabled = false;
12-4 JavaScript Examples

Controlling the Visibility of Graphics and Controls
EIS graphics and control objects have a visible property that determines
whether the object is displayed in EIS Run mode. When an object is visible,
users can access the control and trigger events that can perform actions. When
an object is invisible, the object does not appear. The visible property is
available from the Object page of the Properties dialog box for graphics and
control objects. Example and Example show you how to programmatically
make a control visible or invisible.

/* Makes control Visible */
var sect_name=’EIS’;
var ctrl_name=’TextBox1’;
ActiveDocument.Sections[sect_name].Shapes[ctrl_name].Visi-
ble = true;

/* Makes control Invisible */
var sect_name=’EIS’;
var ctrl_name=’TextBox1’;
ActiveDocument.Sections[sect_name].Shapes[ctrl_name].Visi-
ble = false;
Controlling the Visibility of Graphics and Controls 12-5

Creating an OCE (connection file)
Example shows the script to use to create an OCE (connection file).

// try to create sample.oce from scratch.
// create SQLNet-Oracle8 oce - save as sample.oce
MyConnection = ActiveDocument.Sections["Query"].Data-
Model.Connection
MyConnection.Open("c:\\OCEs\\Sample.oce")
MyConnection.Username = "brio"
MyConnection.SetPassword("brio")
MyConnection.Connect()
MyConnection.SaveAs("c:\\temp\\sample.oce")

ActiveDocument.Sections["DataModel"].DataModel.Connec-
tion.Open("c:\\temp\\astro8.oce")
// need to connect ?
ActiveDocument.Sections["DataModel"].DataModel.Connection.User-
Name = "brio"
ActiveDocument.Sections["DataModel"].DataModel.Connection.SetPass-
word("brio")
ActiveDocument.Sections["DataModel"].DataModel.Connection.Con-
nect()

Displaying a Connection Login Box
Example shows the script to use to display a connection login box.

ExecuteBScript("set logon root, 'OCENAME', 'd:\\program
files\\brio\\oces\\Astro SQLNet
Oracle8.oce'; connect logon root")
12-6 JavaScript Examples

Downloading Data Models
Example shows the script to use to download a data model, standard query, or
standard query with report from the repository.

//download a data model, standard query or standard query
with reports //from a local repository
//(document name to gain the download), (type of docu-
ment), (repository //owner) (group with access), (name of
document)
ExecuteBScript("download doc root, 'SQR', 'ts', 'PUBLIC',
'Sales")

Displaying a Table Catalog
Example shows the script to use to programmatically show a listing of the
available tables on your database.

// display table catalog
ActiveDocument.Sections["DataModel"].DataModel.Cata-
log.Refresh()

Adding Topics to a Data Model Section
Example shows the script to use to add topics to a data model section.

// add topics to DataModel section
CatItem = ActiveDocument.Sections["DataModel"].Data-
Model.Catalog.CatalogItems["PCW_ITEMS"]
ActiveDocument.Sections["DataModel"].DataModel.Topics.Add(Cat-
Item)
Adding Topics to a Data Model Section 12-7

Setting up Topic Object Variables
Example shows the script to use to set up topic object variables.

// setting up topic objects variables...
PCWItems = ActiveDocument.Sections["DataModel"].Data-
Model.Topics["PCW_ITEMS"]
PCWSales = ActiveDocument.Sections["DataModel"].Data-
Model.Topics["PCW_SALES"]
PCWCustomers = ActiveDocument.Sections["DataModel"].Data-
Model.Topics["PCW_CUSTOMERS"]
PCWPeriods = ActiveDocument.Sections["DataModel"].Data-
Model.Topics["PCW_PERIODS"]

Adding Joins
Example shows the script to use to add a join.

// add join between PCW_PERIODS (Day) and PCW_SALES
(Order_Date)
PCWPeriods_Day = PCWPeriods.TopicItems["Day"]
PCWSales_OrderDate = PCWSales.TopicItems["Order_Date"]
Day_OrderDate_Join = ActiveDocument.Sections["Data-
Model"].Data-
Model.Joins.Add(PCWPeriods_Day,PCWSales_OrderDate,
bqJoinSimpleEqual)
12-8 JavaScript Examples

Adding Items to the Request Line
Example shows the script to use to add items to the request line.

// add items to the request line
ActiveDocument.Sec-
tions["Query"].Requests.Add("PCW_CUSTOMERS", "Store")
ActiveDocument.Sec-
tions["Query"].Requests.Add("PCW_SALES", "Store_Id")
ActiveDocument.Sec-
tions["Query"].Requests.Add("PCW_SALES", "Order_Date")
ActiveDocument.Sec-
tions["Query"].Requests.Add("PCW_SALES", "Delivery_Date")
ActiveDocument.Sec-
tions["Query"].Requests.Add("PCW_SALES", "Units")
ActiveDocument.Sec-
tions["Query"].Requests.Add("PCW_SALES", "Amount")
ActiveDocument.Sec-
tions["Query"].Requests.Add("PCW_CUSTOMERS", "City")
ActiveDocument.Sec-
tions["Query"].Requests.Add("PCW_CUSTOMERS", "State")
ActiveDocument.Sec-
tions["Query"].Requests.Add("PCW_PERIODS", "Year")

Adding a Computed Column to a Query Request Line
Example shows the script to use to add a computed column to a query request
line.

// add computed column to Query request line -
Amount/Units
ActiveDocument.Sections["Query"].Requests.AddComputedItem
("CompItem","Amount/Units",3)
Adding a Computed Column to a Query Request Line 12-9

Creating and Setting Variable Limits
Example shows the script to use to create and set variable limits.

// create and set variable limit - Store_Id
mylimit = ActiveDocument.Sections["Query"].Limits.Create-
Limit("PCW_SALES.Store_Id")
mylimit.Operator = bqLimitOperatorLessThanOrEqual
mylimit.CustomValues.Add(10)
mylimit.SelectedValues.Add(10)
ActiveDocument.Sections["Query"].Limits.Add(mylimit)
mylimit.VariableLimit = true

Using the ODS User Name as a Limit
The script in Example shows how to specify the ODS user name as a limit.

ActiveDocument.Sections["Query"].Limits[1].SelectedVal-
ues.RemoveAll()
ActiveDocument.Sections["Query"].Limits[1].SelectedValues.Add(ActiveDocu-
ment.ODSUsername)

Using a Brio Intelligence 6.6 Limit Dialog Box and
Storing Selected Value in Text Box

The script in Example shows how to use a Brio Intelligence 6.6 Limit dialog
box and store the selected value in a text box.

ExecuteBScript("modify limit root.'Pcw Customers'.'Store
Type'.'Store Type'")
var limit = ActiveDocument.Sections["Query"].Lim-
its["Store Type"]
var TextBox = ActiveSection.Shapes["TextBox1"]
if (!limit.Ignore)
{
TextBox.Text = limit.SelectedValues[1]
}
else
{
TextBox.Text =""
}

12-10 JavaScript Examples

Turning off the Page Headers for the First Page in the Report
The script in Example shows how to turn off page headers for the first page in
the report.

if (PageNm==1)
{' '}
else
{"Query Processed: "+ Format(new Date(), "d-mmm-yyyy")}

Including Limit Values in the URL Submitted to the ODS
The script in Example shows how to include limit values in the URL
submitted to the OnDemand Server.

Start Up Script includes:

with (Application)
{passedStore_Id=Session.URL["Store_Id"]};

URL includes:

http://tnicknish/ods-isapi/ods.ods?
Method=getDocument&Docname=Java.bqy-
Java&Store_Id=2&JScript=
enable

EIS button includes:

ActiveDocument.Sections["Query"].Limits[1].CustomVal-
ues.RemoveAll()
ActiveDocument.Sections["Query"].Limits[1].CustomVal-
ues.Add(passedStore_Id)
ActiveDocument.Sections["Query"].Limits[1].SelectedVal-
ues.Add(passedStore_Id)

Turning off the Prompt To Save Dialog Box
The script in Example shows how to shut down the Brio Intelligence
application on an OnShutdown event.

Application.Quit(false)
Turning off the Prompt To Save Dialog Box 12-11

Processing Queries Using “Don’t Prompt For Database Logon”
The script in Example shows you how to process multiple queries against
different databases in the ODS using the Don’t Prompt For Database Logon
option.

In the ODS, your document is registered with a particular OCE. You also
specify whether to prompt the user for a database logon.

When you use the Don’t Prompt For Database Logon option, you use the
connection information stored in the OCEs registered with your ODS.

To use this script, insert Query sections, go to each Query section and connect
each one to a different database. Create a query from that database. You can
add or subtract Query sections as appropriate. This script works with any
number of Query sections.

Register this document to the ODS with the Don’t Prompt For Database Logon
option.

Console.Writeln("Start")
Console.Writeln("Step1a")
for (i = 1; i <=ActiveDocument.Sections.Count ; i++)
{
if (ActiveDocument.Sections[i].Type == bqQuery)
{
Console.Writeln("Step 1b, " + ActiveDocument.Sec-
tions[i].Name + " is a query section")
try
{
ActiveDocument.Sections[i].Process()
}
catch(e)
{
Console.Writeln("Step 1c, " + ActiveDocument.Sec-
tions[i].Name + " failed, produced this error: "+
String(e))
}
Console.Writeln("Step1d, Processed " + ActiveDocu-
ment.Sections[i].Name)
}
else
{
Console.Writeln("Step 1e, " + ActiveDocument.Sec-
tions[i].Name + " is not a query section")
}
}

Console.Writeln("Step2")
ActiveDocument.Sections["Results"].Activate()
Console.Writeln("Step3")
Console.Writeln("End")
12-12 JavaScript Examples

Processing Queries Using “Prompt For Database Logon”
The scripts in Example and Example shows you how to process multiple
queries against different databases in the ODS using the Prompt For Database
Logon option.

In the ODS, your document is registered with a particular OCE. You also
specify whether to prompt the user for a database logon.

When you use the Prompt For Database Logon option, the user must specify
the user name and password for that database. The user can either enter the
information into text boxes within an EIS section, or the information can be
placed directly into the script. The latter option must be used if the logons take
place in a startup document script before the user has a chance to input the
user name and password.

To use this script, insert query sections, go to each Query section and connect
each one to a different database. Create a query from that database. You can
add or subtract Query sections as appropriate. For queries against different
databases with different logon information, you must know in advance for
which database you are supplying the username and password. You must make
sure the right OCE is associated with that Query section when you register the
document to the ODS.
Processing Queries Using “Prompt For Database Logon” 12-13

This script shows you how to connect and process with embedded user IDs and
passwords.

Console.Writeln("Start multi query prompt for db ODS
logon")
//Connect to and Process first Query section
Console.Writeln("Step1")
MyCon = ActiveDocument.Sections["Query"].DataModel.Con-
nection
Console.Writeln("Step2")
MyCon.Username = "query1userid"
Alert("Username set")
Console.Writeln("Step3")
MyCon.SetPassword("query1passwd")
Alert("Password set")
Console.Writeln("Step4a")
try
{
ActiveDocument.Sections["Query"].Process()
Console.Writeln("Step4b, processed section Query")
}
catch(e)
{
Console.Writeln("Step4c, Query section process failed,
produced this error: "+ String(e))
}

//Connect to and Process second Query section

Console.Writeln("Step5")
MyCon2 = ActiveDocument.Sections["Query2"].DataModel.Con-
nection
Console.Writeln("Step6")
MyCon2.Username = "query2userid"
Alert("Username set")
Console.Writeln("Step7")
MyCon2.SetPassword("query2passwd")
Alert("Password set")
Console.Writeln("Step8a")
try
{
ActiveDocument.Sections["Query2"].Process()
Console.Writeln("Step8b, processed section Query")
}
catch(e)
{
Console.Writeln("Step8c, Query2 process failed, produced
this error: "+ String(e))
}

Console.Writeln("Step9")
Console.Writeln("End multi query prompt for db ODS
logon")
12-14 JavaScript Examples

This script shows you how to connect and process with user-supplied user IDs
and passwords. You must include username text and password text.

Console.Writeln("Start multi query prompt for db ODS
logon")

//Connect to and Process first Query section
Console.Writeln("Step1")
MyCon = ActiveDocument.Sections["Query"].DataModel.Con-
nection
Console.Writeln("Step2")
MyCon.Username = UsernameText.Text
Console.Writeln("Step3")
MyCon.SetPassword(PasswordText.Text)
Console.Writeln("Step4")
try
{
ActiveDocument.Sections["Query"].Process()
Console.Writeln("Step4b, processed section Query")
}
catch(e)
{
Console.Writeln("Step4c, " + ActiveDocument.Sec-
tions[i].Name + " failed, produced this error: "+
String(e))
}

//Connect to and Process second Query section
Console.Writeln("Step5")
MyCon = ActiveDocument.Sections["Query"].DataModel.Con-
nection
Console.Writeln("Step6")
MyCon.Username = UsernameText2.Text
Console.Writeln("Step7")
MyCon.SetPassword(PasswordText2.Text)
Console.Writeln("Step8a")
try
{
ActiveDocument.Sections["Query2"].Process()
Console.Writeln("Step8b, processed section Query")
}
catch(e)
{
Console.Writeln("Step8c, " + ActiveDocument.Sec-
tions[i].Name + " failed, produced this error: "+
String(e))
}
ActiveDocument.Sections["Results"].Activate()
Console.Writeln("Step9")
Console.Writeln("End multi query prompt for db ODS
logon")
EIS Properties
Processing Queries Using “Prompt For Database Logon” 12-15

12-16 JavaScript Examples

13 Object Model Map

This appendix provides a detailed map of how objects relate to one another
within the Product Name Variable object model. The object model map is
divided according to these levels and/or sections of the object tree:

■ Object Model Hierarchy

■ Application Level

■ Active Document Level

■ Query Section

■ EIS Section

■ Chart Section

■ Results, Report, and Pivot Sections

■ Table and OLAPQuery Sections
13-1

Object Model Hierarchy
The object model map is an expanded view of selected objects in the object
model hierarchy, as seen in the EIS Script Editor. It starts at the highest level—
the Application level—and drills down through the object hierarchy. The top
levels of the object model heirarchy include:

■ Application Level

■ Active Document Level

■ Sections

Application Level

Active Document Level

Expanded Query Section

Sections
13-2 Object Model Map

Application Level

Application

Documents

Active Document

Active Section

Toolbars

Recent Files

Console

Session

DocName

LastSaved

Sections

Standard

Formatting

Sections

Navigation
Item Number

Form

URL

Cookies
Application Level 13-3

Active Document Level

EIS

Sections

Query

Table

Pivot

OLAPQuery

Report

Results

Chart

DataModel

Active Document
(Doc Name)

Last Saved

Application
13-4 Object Model Map

Query Section

Query Section

Sections

Application

Data Model

Connection

MetaData
Connection

CatalogItems

Topics TopicItems

TopicItemName

Catalog

Joins JoinNumber

TopicItem1

TopicItem2

Limits

Local Results

Local Joins

Requests

Limits

RequestNum

LimitNum

AvailableValues

SelectedValues

CustomValues

SortItems

Query (base)

Query (append)

Requests RequestNum

Limits

AppendQuery

LimitValue

TableName

TopicName

Results

AvailableValues

SelectedValues

CustomValues LimitValueLimitNum
Query Section 13-5

EIS Section

EIS

Sections

Active Document

Shapes

CommandButton

TextBox

DropDown

ListBox

CheckBox

RadioButton

HorizontalLine

TextLabel

VerticalLine

Line

EmbeddedSection

Picture

Font

Font

SelectedList

Rectangle

Fill

Oval

Fill Font

Line

Line

Line

Fill

Fill Font

Application
13-6 Object Model Map

Chart Section

Chart

Sections

Active Document

XCategories(C)

Facts(C)

ZCategories(C)

XLabels

YLabels

ValueAxis

LabelAxis

AreaChart

PieChart

BarLineChart

BarChart

LineChart

Legend

XAxis

YAxis

LeftAxis

Items

RightAxis

LabelValues

ZCategories(O)

Fact(O)

XCategories(O)

Item

Fill

Line

ZLabels

Application
Chart Section 13-7

Results, Report, and Pivot Sections

Results

Sections

Columns Column

Limits

SortItems SortItem

AvailableValues

CustomValuesLimit

SelectedValues

TopLabels

SideLabels

Facts

PivotLabel

LimitValue

CornerLabels

DataLabels

PivotFact

Application

Active Document

Pivots

Reports
13-8 Object Model Map

Table and OLAPQuery Sections

Table

Section

Columns

Limits

SortItems

TopLabels

Connection

SideLabels

Measures

Slicers

SortItemName

SlicerNumber

TopLabelName

SideLabelNum

TopLabelNum

Application

Active Document

OLAP Query
Table and OLAPQuery Sections 13-9

13-10 Object Model Map

P A R T I V

IVGeneral JavaScript Reference

2

14 JavaScript Operators

This chapter provides detailed information on JavaScript operators and
operator precedence. It contains:

■ Arithmetic Operators

■ Assignment Operators

■ Bitwise Operators

■ Comparison Operators

■ Logical Operators

■ String Operators

■ Special Operators
14-1

Arithmetic Operators
Arithmetic operators, described in Table 14-1, take numerical values (either
literals or variables) as their operands and return a single numerical value.

Tab le 14-1 Arithmetic Operators

Operator Description

+ (Addition) Adds 2 numbers.

++ (Increment) Adds one to a variable representing a number (returning either the
new or old value of the variable). The increment operator is used as follows:

var++ or ++var

The increment operator increments (adds one to) its operand and returns a value.
If it is used postfix, with operator after operand (for example, x++), then it returns
the value before incrementing. If it is used prefix with operator before operand (for
example, ++x), then it returns the value after incrementing.

For example, if x is three, then the statement y = x++ sets y to 3 and increments x
to 4. If x is 3, then the statement y = ++x increments x to 4 and sets y to 4.

-- (Decrement) Subtracts one from a variable representing a number (returning either
the new or old value of the variable). The decrement operator is used as follows:

var-- or --var

The decrement operator decrements (subtracts one from) its operand and returns
a value. If it is used postfix (for example, x--), then it returns the value before dec-
rementing. If it is used prefix (for example, --x), then it returns the value after dec-
rementing.

For example, if x is three, then the statement y = x-- sets y to 3 and decrements x
to 2. If x is 3, then the statement y = --x decrements x to 2 and sets y to 2.

- (Unary negation, subtraction) As a unary operator, negates the value of its argu-
ment. As a binary operator, subtracts two numbers.

The unary negation operator precedes its operand and negates it. For example, y
= -x negates the value of x and assigns that to y; that is, if x were 3, y would
get the value -3and x would retain the value 3.
14-2 JavaScript Operators

Assignment Operators
Assignment operators assign a value to a left operand based on the value of a
right operand. The basic assignment operators are described in Table 14-2.The
other assignment operators, described in Table 14-3, are shorthand for
standard operations.

* (Multiplication) Multiplies two numbers.

/ (Division) Divides two numbers.

% (Modulus) Computes the integer remainder of dividing two numbers.The modulus
operator is used as follows:

var1 % var2

The modulus operator returns the first operand modulo the second operand, that
is, var1 modulo var2, in the preceding statement, where var1 and var2 are
variables. The modulo function is the integer remainder of dividing var1 by
var2.

For example, 12 % 5 returns 2.

Tab le 14-2 Assignment Operators

Operator Description

= Assigns the value of the second operand to the first operand.

+= Adds two numbers and assigns the result to the first.

-= Subtracts two numbers and assigns the result to the first.

*= Multiplies two numbers and assigns the result to the first.

/= Divides two numbers and assigns the result to the first.

%= Computes the modulus of two numbers and assigns the result to the first.

&= Performs a bitwise AND and assigns the result to the first operand.

^= Performs a bitwise XOR and assigns the result to the first operand.

Tab le 14-1 Arithmetic Operators (Continued)

Operator Description
Assignment Operators 14-3

|= Performs a bitwise OR and assigns the result to the first operand.

>>= Performs a sign-propagating right shift and assigns the result to the first operand.

>>>= Performs a zero-fill right shift and assigns the result to the first operand.

Tab le 14-3 Shorthand Assignment Operators

Shorthand
Operator Meaning

x += y x = x + y

x -= y x = x – y

x *= y x = x * y

x /= y x = x / y

x %= y x = x % y

x <<= y x = x << y

x >>= y x = x >> y

x >>>= y x = x >>> y

x &= y x = x & y

x ^= y x = x ^ y

x |= y x = x | y

Tab le 14-2 Assignment Operators (Continued)

Operator Description
14-4 JavaScript Operators

Bitwise Operators
Bitwise operators, described in Table 14-4, treat their operands as a set of bits
(zeros and ones), rather than as decimal, hexadecimal, or octal numbers. For
example, the decimal number nine has a binary representation of 1001. Bitwise
operators perform their operations on such binary representations, but they
return standard JavaScript numerical values.

Tab le 14-4 Bitwise Operators

Operator Description

& (Bitwise AND) Returns a one in each bit position if bits of both operands are ones.
The Bitwise AND operator is used as follows:

a & b

Returns a one in each bit position if bits of both operands are ones.

^ (Bitwise XOR) Returns a one in a bit position if bits of one, but not if both oper-
ands are one. The bitwise XOR operator is used as follows:

a ^ b

Returns a one in a bit position if bits of one, but not both operands are one.

| (Bitwise OR) Returns a one in a bit if bits of either operand is one. The Bitwise OR
operator is used as follows:

a | b

Returns a one in a bit if bits of either operand is one.

~ (Bitwise NOT) Flips the bits of its operand. The Bitwise NOT operator is used as fol-
lows:

~ a

Flips the bits of its operand.

<< (Left shift) Shifts its first operand in binary representation the number of bits to the
left specified in the second operand, shifting in zeros from the right. The Left shift
operator is used as follows:

a << b

Shifts a in binary representation b bits to left, shifting in zeros from the right.
Bitwise Operators 14-5

Bitwise Logical Operators
Conceptually, the bitwise logical operators work as follows:

1. The operands are converted to thirty-two-bit integers and expressed by a
series of bits (zeros and ones).

2. Each bit in the first operand is paired with the corresponding bit in the
second operand: first bit to first bit, second bit to second bit, and so on.

3. The operator is applied to each pair of bits, and the result is constructed
bitwise.

For example, the binary representation of nine is 1001, and the binary
representation of fifteen is 1111. So, when the bitwise operators are applied to
these values, the results are as follows:

15 & 9 yields 9 (1111 & 1001 = 1001)
15 | 9 yields 15 (1111 | 1001 = 1111)
15 ^ 9 yields 6 (1111 ^ 1001 = 0110)

>> (Sign-propagating right shift) Shifts the first operand in binary representation the
number of bits to the right specified in the second operand, discarding bits shifted
off. The Sign-propagating right shift operator is used as follows:

a >> b

Shifts a in binary representation b bits to right, discarding bits shifted off.

>>> (Zero-fill right shift) Shifts the first operand in binary representation the number of
bits to the right specified in the second operand, discarding bits shifted off, and
shifting in zeros from the left. The zero-fill right shift operator is used as follows:

a >>> b

Shifts a in binary representation b bits to the right, discarding bits shifted off,
and shifting in zeros from the left.

Tab le 14-4 Bitwise Operators (Continued)

Operator Description
14-6 JavaScript Operators

Bitwise Shift Operators
The bitwise shift operators, described in Table 14-5, take two operands: the
first is a quantity to be shifted, and the second specifies the number of bit
positions by which the first operand is to be shifted. The operator used
controls the direction of the shift operation

Shift operators convert their operands to thirty-two-bit integers and return a
result of the same type as the left operator.

Tab le 14-5 Bitwise Shift Operators

Operator Description

<< (Left Shift) This operator shifts the first operand the specified number of bits to the
left. Excess bits shifted off to the left are discarded. Zero bits are shifted
in from the right.

For example, 9<<2 yields thirty-six, because 1001 shifted two bits to
the left becomes 100100, which is thirty-six.

>> (Sign-Propagating
Right Shift)

This operator shifts the first operand the specified number of bits to the
right. Excess bits shifted off to the right are discarded. Copies of the left-
most bit are shifted in from the left.

For example, 9>>2 yields two, because 1001 shifted two bits to the
right becomes 10, which is two. Likewise, -9>>2 yields -3, because
the sign is preserved.

>>> (Zero-Fill Right
Shift)

This operator shifts the first operand the specified number of bits to the
right. Excess bits shifted off to the right are discarded. Zero bits are
shifted in from the left.

For example, 19>>>2 yields four, because 10011 shifted two bits to
the right becomes 100, which is four. For non-negative numbers, zero-
fill right shift and sign-propagating right shift yield the same result.
Bitwise Operators 14-7

Comparison Operators
A comparison operator compares its operands and returns a logical value
based on whether the comparison is true or not. The operands can be
numerical or string values. When used on string values, the comparisons are
based on the standard lexicographical ordering.

Table 14-6 describes the comparison operators. In the examples in Table 14-6,
assume var1 has been assigned the value 3 and var2 has been assigned the
value 4.

Tab le 14-6 Comparison Operators

Operator Description

== (Equal) Returns true if the operands are equal. For example:

3 == var1

!= (Not equal) Returns true if the operands are not equal. For example:

var1 != 4

> (Greater than) Returns true if left operand is greater than right operand. For exam-
ple:

var2 > var1

>= (Greater than or equal) Returns true if left operand is greater than or equal to right
operand. For example:

var2 >= var1
var1 >= 3

< (Less than) Returns true if left operand is less than right operand. For example:

var1 < var2

<= (Less than or equal) Returns true if left operand is less than or equal to right oper-
and. For example:

var1 <= var2
var2 <= 5
14-8 JavaScript Operators

Logical Operators
Logical operators, described in Table 14-7, take Boolean (logical) values as
operands and return a Boolean value.

Example Consider the following script:

v1 = "Cat";
v2 = "Dog";
v3 = false;

Console.Write("t && t returns " + (v1 && v2));
Console.Write("f && t returns " + (v3 && v1));
Console.Write("t && f returns " + (v1 && v3));
Console.Write("f && f returns " + (v3 && (3 == 4)));

Console.Write("t || t returns " + (v1 || v2));
Console.Write("f || t returns " + (v3 || v1));
Console.Write("t || f returns " + (v1 || v3));
Console.Write("f || f returns " + (v3 || (3 == 4)));

Console.Write("!t returns " + (!v1));
Console.Write("!f returns " + (!v3));

Tab le 14-7 Logical Operators

Operator Description

&& (Logical AND) Returns true if both logical operands are true. Otherwise, returns
false. The Logical AND operator is used as follows:

expr1 && expr2

Returns expr1 if it converts to false. Otherwise, returns expr2.

|| (Logical OR) Returns true if either logical expression is true. If both are false,
returns false. The Logical OR operator is used as follows:

expr1 || expr2

Returns expr1 if it converts to true. Otherwise, returns expr2.

! (Logical negation) If its single operand is true, returns false; otherwise, returns
true.
Logical Operators 14-9

This script displays the following:

t && t returns Dog
f && t returns false
t && f returns false
f && f returns false
t || t returns Cat
f || t returns Cat
t || f returns Cat
f || f returns false
!t returns false
!f returns true

Short-Circuit Evaluation
As logical expressions are evaluated left to right, they are tested for possible
“short-circuit” evaluation using these rules:

false && anything is short-circuit evaluated to false.
true || anything is short-circuit evaluated to true.

The rules of logic guarantee that these evaluations are always correct. Note that
the anything part of the above expressions is not evaluated, so any side
effects of doing so do not take effect.

String Operators
Use the the concatenation operator (+) to concatenate two string values
together and areturn another string that is the union of the two operand
strings. For example, "my " + "string" returns the string "my string".

The shorthand assignment operator += can also be used to concatenate
strings. For example, if the variable mystring has the value “alpha,” then the
expression mystring += "bet" evaluates to “alphabet” and assigns this
value to mystring.

Table 14-8 describes the string operators.

Tab le 14-8 String Operators

Operator Description

+ (String addition) Concatenates two strings.

+= Concatenates two strings and assigns the result to the first operand.
14-10 JavaScript Operators

Special Operators
This section explains the syntax, parameters, and descriptions for the special
operators used in JavaScript, which are listed in Table 14-9.

?: (Conditional operator)
The conditional operator is the only JavaScript operator that takes three
operands. This operator is frequently used as a shortcut for the if statement.

Syntax condition ? expr1 : expr2

Parameters Condition – An expression that evaluates to either true or false.

expr1, expr2 – Expressions with values of any type.

Description If condition is true, the operator returns the value of expr1; otherwise, it
returns the value of expr2. For example, to display a different message based
on the value of the isMember variable, you could use this statement:

Console.Write ("The fee is " + (isMember ? "$2.00" :
"$10.00"))

Tab le 14-9 Special Operators

Operator Description

?: Lets you perform a simple “if...then...else.”

. Evaluates two expressions and returns the result of the second expression.

delete Lets you delete an object property or an element at a specified index in an array.

new Lets you create an instance of a user-defined object type or of one of the built-in
object types.

this Keyword that you can use to refer to the current object.

typeof Returns a string indicating the type of the unevaluated operand.

void Specifies an expression to be evaluated without returning a value.
Special Operators 14-11

, (comma operator)
The comma operator evaluates both of its operands and returns the value of the
second operand.

Syntax expr1, expr2

Parameters expr1, expr2 – Any expressions.

Description You can use the comma operator when you want to include multiple
expressions in a location that requires a single expression. The most common
usage of this operator is to supply multiple parameters in a for loop.

For example, if a is a 2-dimensional array with 10 elements on a side, the
following code uses the comma operator to increment two variables at once.
The code prints the values of the diagonal elements in the array:

for (var i=0, j=10; i <= 10; i++, j--)
Console.Write("a["+i+","+j+"]= " + a[i,j])

delete
The delete operator deletes an object’s property or an element at a specified
index in an array.

Syntax delete objectName.property
delete objectName[index]
delete property

Parameters objectName – The name of an object.

property – An existing property.

index – An integer representing the location of an element in an array.

Description The third form is legal only within a with statement.

If the deletion succeeds, the delete operator sets the property or element to
undefined. delete always returns undefined.
14-12 JavaScript Operators

new
The new operator lets you create an instance of a user-defined object type or of
one of the built-in object types that has a constructor function.

Syntax objectName = new objectType (param1 [,param2]
...[,paramN])

Arguments objectName – Name of the new object instance.

objectType – Must be a function that defines an object type.

param1...paramN – Property values for the object. These properties are
parameters defined for the objecType function.

Description Creating a user-defined object type requires two steps:

1. Define the object type by writing a function.

2. Create an instance of the object with new.

To define an object type, create a function for the object type that specifies its
name, properties, and methods. An object can have a property that is itself
another object. See the examples that follow.

You can always add a property to a previously defined object. For example, the
statement car1.color = "black" adds a property color to car1, and
assigns it a value of black. However, this does not affect any other objects. To
add the new property to all objects of the same type, you must add the
property to the definition of the car object type.

You can add a property to a previously defined object type by using the
Function.prototype property. This defines a property that is shared by all
objects created with that function, rather than by just one instance of the
object type. The following code adds a color property to all objects of type
car, and then assigns a value to the color property of the object car1.

Car.prototype.color=null
car1.color="black"
birthday.description="The day you were born"
Special Operators 14-13

Examples Example 1: object type and object instance. Suppose you want to create an object
type for cars. You want this type of object to be called car, and you want it to
have properties for make, model, and year. To do this, you would write the
following function:

function car(make, model, year) {
this.make = make
this.model = model
this.year = year

}

Now you can create an object called mycar as follows:

mycar = new car("Eagle", "Talon TSi", 1993)
This statement creates mycar and assigns it the specified values for its
properties. Then the value of mycar.make is the string “Eagle,”
mycar.year is the integer 1993, and so on.

You can create any number of car objects by calls to new. For example,

kenscar = new car("Nissan", "300ZX", 1992)

Example 2: object property that is itself another object. Suppose you define an
object called person as follows:

function person(name, age, sex) {
this.name = name
this.age = age
this.sex = sex

}

And then instantiate two new person objects as follows:

rand = new person("Rand McNally", 33, "M")
ken = new person("Ken Jones", 39, "M")

Then you can rewrite the definition of car to include an owner property that
takes a person object, as follows:

function car(make, model, year, owner) {
this.make = make;
this.model = model;
this.year = year;
this.owner = owner;

}

14-14 JavaScript Operators

To instantiate the new objects, you then use the following:

car1 = new car("Eagle", "Talon TSi", 1993, rand);
car2 = new car("Nissan", "300ZX", 1992, ken)

Instead of passing a literal string or integer value when creating the new
objects, the above statements pass the objects rand and ken as the parameters
for the owners. To find out the name of the owner of car2, you can access the
following property:

car2.owner.name

this
A keyword that you can use to refer to the current object. In general, in a
method this refers to the calling object.

Syntax this[.propertyName]

Examples Suppose a function called validate validates an object's value property,
given the object and the high and low values:

function validate(obj, lowval, hival) {
if ((obj.value < lowval) || (obj.value > hival))

Alert("Invalid Value!")
}

typeof
The typeof operator is used in either of the following ways:

■ typeof operand

■ typeof (operand)

The typeof operator returns a string indicating the type of the unevaluated
operand. operand is the string, variable, keyword, or object for which the type
is to be returned. The parentheses are optional.

Suppose you define the following variables:

var myFun = new Function("5+2")
var shape="round"
var size=1
var today=new Date()
Special Operators 14-15

The typeof operator returns these results:

typeof myFun is object
typeof shape is string
typeof size is number
typeof today is object
typeof dontExist is undefined

For the keywords true and null, the typeof operator returns these results:

typeof true is boolean
typeof null is object

For a number or string, the typeof operator returns these results:

typeof 62 is number
typeof 'Hello world' is string

For property values, the typeof operator returns the type of value the
property contains:

typeof document.lastModified is string
typeof window.length is number
typeof Math.LN2 is number

For methods and functions, the typeof operator returns results as follows:

typeof blur is function
typeof eval is function
typeof parseInt is function
typeof shape.split is function

For predefined objects, the typeof operator returns results as follows:

typeof Date is function
typeof Function is function
typeof Math is function
typeof Option is function
typeof String is function

void

The void operator is used in either of the following ways:

■ void (expression)

■ void expression

The void operator specifies an expression to be evaluated without returning a
value. expression is a JavaScript expression to evaluate. The parentheses
surrounding the expression are optional, but it is good style to use them.
14-16 JavaScript Operators

15 Statements

This chapter describes all JavaScript statements. JavaScript statements consist
of keywords used with the appropriate syntax. A single statement may span
multiple lines. Multiple statements may occur on a single line if a semicolon
separates each statement.

Syntax conventions: All keywords in syntax statements are in bold. Words in
italics represent user-defined names or statements. Any portions enclosed in
square brackets, [], are optional. {statements} indicates a block of statements,
which can consist of a single statement or multiple statements delimited by a
curly braces { }.
15-1

Table 15-1 summarizes the JavaScript statements. Detailed descriptions of each
statement follow the table.

Tab le 15-1 JavaScript Statements

Statement Description

break Statement that terminates the current while or for loop and transfers program
control to the statement following the terminated loop.

comment Notations by the author to explain what a script does. The interpreter ignores
comments.

continue Statement that terminates execution of the block of statements in a while or
for loop, and continues execution of the loop with the next iteration.

delete Deletes an object's property or an element of an array.

do...while Executes its statements until the test condition evaluates to false. Statement
is executed at least once.

for Statement that creates a loop that consists of three optional expressions,
enclosed in parentheses and separated by semicolons, followed by a block of
statement executed in the loop.

for...in Statement that iterates a specified variable over all the properties of an
object. For each distinct property, JavaScript executes the specified state-
ments.

function Statement that declares a JavaScript functionnamewith the specified parame-
ters. Acceptable parameters include strings, numbers, and objects.

if...else Statement that executes a set of statement if a specified condition is true. If
the condition is false, another set of statementscan be executed.

labeled Provides an identifier that can be used with break or continue to indicate
where the program should continue execution.

return Statement that specifies the value to be returned by a function.

switch Allows a program to evaluate an expression and attempt to match the expres-
sion's value to a case label.

var Statement that declares a variable, optionally initializing it to a value.

while Statement that creates a loop that evaluates an expression, and if it is true,
executes a block of statements

with Statement that establishes the default object for a set of statements
15-2 Statements

break

Function Terminates the current while or for loop and transfers program control to
the statement following the terminated loop.

Syntax break
break label

Argument label
Identifier associated with the label of the statement.

Description The break statement can now include an optional label that allows the
program to break out of a labeled statement. This type of break must be in a
statement identified by the label used by break.

The statements in a labeled statement can be of any type.

Examples The following function has a break statement that terminates the while loop
when e is 3, and then returns the value 3 * x.

function testBreak(x) {
 var i = 0
 while (i < 6) {
 if (i == 3)
 break
 i++
 }
 return i*x

}

In the following example, a statement labeled checkiandj contains a
statement labeled checkj. If break is encountered, the program breaks out
of the checkj statement and continues with the remainder of the
checkiandj statement. If break had a label of checkiandj, the program
would break out of the checkiandj statement and continue at the statement
following checkiandj.
break 15-3

checkiandj :

 if (4==i) {
 print("You've entered " + i);
 checkj :
 if (2==j) {
 print("You've entered " + j);
 break checkj;
 Console.Write("The sum is " + (i+j));

 }
 Console.Write(i + "-" + j + "=" + (i-j));
 }

See also labeled, switch
15-4 Statements

comment

Function Comments are notes by the author explaining what the script does. The
interpreter ignores comments.

Syntax // comment text
/* multiple line comment text */

Description JavaScript supports Java-style comments:

Comments on a single line are preceded by a double-slash (//).

Comments that span multiple lines are preceded by a /* and followed by a */.

Examples // This is a single-line comment.
/* This is a multiple-line comment. It can be of any length, and
you can put whatever you want here. */
comment 15-5

continue

Function Terminates execution of the block of statements in a while or for loop, and
continues execution of the loop with the next iteration.

Syntax continue
continue label

Argument Label
Identifier associated with the label of the statement.

Description In contrast to the break statement, continue does not terminate the
execution of the loop entirely: instead in a while loop, it jumps back to the
condition; in a for loop, it jumps to the update expression.

The continue statement can now include an optional label that allows the
program to terminate execution of a labeled statement and continue to the
specified labeled statement. This type of continue must be in a looping
statement identified by the label used by continue.

Examples The following example shows a while loop that has a continue statement that
executes when the value of i is 3. Thus, n takes on the values 1, 3, 7, and 12.

i = 0
n = 0
while (i < 5) {
 i++
 if (i == 3)
 continue
 n += i

}

In the following example, a statement labeled checkiandj contains a
statement labeled checkj. If continue is encountered, the program
continues at the top of the checkj statement. Each time continue is
encountered, checkj reiterates until its condition returns false. When false is
returned, the remainder of the checkiandj statement is completed.
checkiandj reiterates until its condition returns false. When false is
returned, the program continues at the statement following checkiandj.
15-6 Statements

If continue had a label of checkiandj, the program would continue at the
top of the checkiandj statement.

checkiandj :
while (i<4) {
 i+=1;
 checkj :
 while (j>4) {
 print(j);

 j-=1;
 if ((j%2)==0)
 continue checkj;
 print(j);
 }
 Console.Write("i = " + i);
 Console.Write("j = " + j);

}

continue 15-7

delete

Function Deletes an object's property or an element at a specified index in an array.

Syntax delete objectName.property
delete objectName[index]
delete property

Arguments Object Name
An object from which to delete the specified property or value.

Property
The property to delete.

Index
An integer index into an array.

Description If the delete operator succeeds, it sets the property of element to
undefined; the operator always returns undefined.

You can only use the delete operator to deleteobject properties and array
entries. You cannot use this operator to deleteobjects or variables.
Consequently, you can only use the third form within a with statement, to
delete a property from the object.
15-8 Statements

do...while

Function Executes its statements until the test condition evaluates to false. Statement is
executed at least once.

Syntax do
 statement

while (condition);

Arguments Statement
Block of statements that is executed at least once and is re-executed each time
the condition evaluates to true.

Condition
Evaluated after each pass through the loop. If condition evaluates to true,
the statements in the preceding block are re-executed. When condition
evaluates to false, control passes to the statement following do while.

Example In the following example, the do loop iterates at least once and reiterates until
i is no longer less than 5.

i=0
do {
i+=1;
Console.Write(i)
}
while (i<5)
do...while 15-9

for

Function Creates a loop that consists of three optional expressions, enclosed in
parentheses and separated by semicolons, followed by a block of statements
executed in the loop.

Syntax for ([initial-expression;] [condition;] [increment-
expression]) {
 statements

}

Arguments Initial expression
Statement or variable declaration. Typically used to initialize a counter
variable. This expression may optionally declare new variables with the var
keyword.

Condition
Evaluated on each pass through the loop. If this condition evaluates to true,
the statements in statements are performed. This conditional test is optional. If
omitted, the condition always evaluates to true.

Increment expression
Generally used to update or increment the counter variable.

Statements
Block of statements that are executed as long as condition evaluates to true.
This can be a single statement or multiple statements. Although not required,
it is good practice to indent these statements from the beginning of the for
statement.

Examples The following for statement starts by declaring the variable i and initializing
it to 0. It checks that i is less than nine, performs the two succeeding
statements, and increments i by 1 after each pass through the loop.

for (var i = 0; i < 9; i++) {
 n += i
 myfunc(n)

}

15-10 Statements

for...in

Function Iterates a specified variable over all the properties of an object. For each
distinct property, JavaScript executes the specified statements.

Syntax for (variable in object) {
 statements}

Arguments Variable
Variable to inerate over every property.

Object
Object for which the properties are iterated.

Statements
Specifies the statements to execute for each property.

Examples The following function takes as its argument an object and the object's name.
It then iterates over all the object's properties and returns a string that lists the
property names and their values.

function dump_props(obj, objName) {
 var result = ""
 for (var i in obj) {
 result += objName + "." + i + " = " + obj[i]
 }
 return result

}

for...in 15-11

function

Function Declares a JavaScript function with the specified parameters. Acceptable
parameters include strings, numbers, and objects.

Syntax function name([param] [, param] [..., param]) {
 statements}

Arguments name
The function name.

param
The name of an argument to be passed to the function. A function can have up
to 255 arguments.

Description To return a value, the function must have a return statement that specifies
the value to return. You cannot nest a function statement in another statement
or in itself.

All parameters are passed to functions, by value. In other words, the value is
passed to the function, but if the function changes the value of the parameter,
this change is not reflected globally or in the calling function.

In addition to defining functions as described here, you can also define
Function objects.

Examples //This function returns the total dollar amount of sales, when
//given the number of units sold of products a, b, and c.
function calc_sales(units_a, units_b, units_c) {
 return units_a*79 + units_b*129 + units_c*699

}

15-12 Statements

if...else

Function Executes a set of statements if a specified condition is true. If the condition is
false, another set of statements can be executed.

Note The if "else statements must be in lowercase. If you type an uppercase “I" or “e", you will
get the “missing syntax error. A then statement is implied for values enclosed in the curly
braces { }. If you type the word then in a statement, an error message will be returned.

Syntax if (condition) {
 statements1}

else {
 statements2}

Arguments condition
Can be any JavaScript expression that evaluates to true or false. Parentheses are
required around the condition. If condition evaluates to true, the statements in
statements1 are executed.

statements 1, statements 2
Can be any JavaScript statements, including further nested if statements.
Multiple statements must be enclosed in braces.

Examples if (cipher_char == from_char) {
 result = result + to_char
 x++}

else {
 result = result + clear_char

}

✏

if...else 15-13

labeled

Function Provides an identifier that can be used with break or continue to indicate
where the program should continue execution.

In a labeled statement, break or continue must be followed with a label,
and the label must be the identifier of the labeled statement containing break
or continue.

Syntax label :
 statement

Arguments statement
Block of statements. break can be used with any labeled statement, and
continue can be used with looping labeled statements.

Example For an example of a labeled statement using break, see break. For an
example of a labeled statement using continue, see continue.

See also break, continue
15-14 Statements

return

Function Specifies the value to be returned by a function.

Syntax return expression

Examples The following function returns the square of its argument, x, where x is a
number.

function square(x) {
 return x * x

}

return 15-15

switch

Function Allows a program to evaluate an expression and attempt to match the
expression's value to a case label.

Syntax switch (expression){
 case label :
 statement;
 break;
 case label :
 statement;
 break;
 ...
 default : statement;

}

Arguments expression
Value matched against label.

label
Identifier used to match against expression

statement
Any statement.

Description If a match is found, the program executes the associated statement.

The program first looks for a label matching the value of expression and then
executes the associated statement. If no matching label is found, the program
looks for the optional default statement, and if found, executes the associated
statement. If no default statement is found, the program continues execution
at the statement following the end of switch. The optional break statement
associated with each case label ensures that the program breaks out of switch
once the matched statement is executed and continues execution at the
statement following switch. If break is omitted, the program continues
execution at the next statement in the switch statement.
15-16 Statements

Example In the following example, if expression evaluates to "Bananas," the program
matches the value with case "Bananas" and executes the associated statement.
When break is encountered, the program breaks out of switch and executes
the statement following switch. If break were omitted, the statement for
case "Cherries" would also be executed.

switch (i) {
 case "Oranges" :
 print("Oranges are $0.59 a pound.");
 break;
 case "Apples" :
 Console.Write("Apples are $0.32 a pound.");
 break;
 case "Bananas" :
 Console.Write("Bananas are $0.48 a pound.");
 break;
 case "Cherries" :
 Console.Write("Cherries are $3.00 a pound.");
 break;
 default :
 Console.Write("Sorry, we are out of " + i + ".");

}
Console.Write("Is there anything else you'd like?");
switch 15-17

var

Function Declares a variable, optionally initializing it to a value.

Syntax var varname [= value] [..., varname [= value]]

Arguments varname
Variable name. It can be any legal identifier.

value
Initial value of the variable. Can be any legal expression.

Description The scope of a variable is the current function or, for variables declared outside
a function, the current application.

Using var outside a function is optional; you can declare a variable by simply
assigning it a value. However, it is good style to use var, and it is necessary in
functions if a global variable of the same name exists.

Examples var num_hits = 0, cust_no = 0
15-18 Statements

while

Function Creates a loop that evaluates an expression, and if it is true, executes a block of
statements. The loop then repeats, as long as the specified condition is true.

Syntax while (condition) {
 statements

}

Arguments condition
Evaluated before each pass through the loop. If this condition evaluates to
true, the statements in the succeeding block are performed. When condition
evaluates to false, execution continues with the statement following
statements.

statements
Block of statements that are executed as long as the condition evaluates to true.
Although not required, it is good practice to indent these statements from the
beginning of the statement.

Examples The following while loop iterates as long as n is less than three.

n = 0
x = 0
while(n < 3) {
 n ++
 x += n

}

Each iteration, the loop increments n and adds it to x. Therefore, x and n take
on the following values:

■ After the first pass: n = 1 and x = 1

■ After the second pass: n = 2 and x = 3

■ After the third pass: n = 3 and x = 6

■ After completing the third pass, the condition n < 3 is no longer true, so
the loop terminates.
while 15-19

with

Function Establishes the default object for a set of statements. Within the set of
statements, any property references that do not specify an object are assumed
to be for the default object.

Syntax with (object){statements}

Arguments object
Specifies the default object to use for the statements. The parentheses around
object are required.

statements
Any block of statements.

Examples The following with statement specifies that the Math object is the default
object. The statements following the with statement refer to the PI property
and the cos and sin methods, without specifying an object. JavaScript
assumes the Math object for these references.

var a, x, y
var r=10
with (Math) {
 a = PI * r * r
 x = r * cos(PI)
 y = r * sin(PI/2)

}

15-20 Statements

16 Core Objects

This chapter provides detailed descriptions of the JavaScript core objects,
which are summarized in Table 16-1.

Tab le 16-1 JavaScript Core Objects

Object Description

Array Represents an array.

Boolean Represents a Boolean value.

Date Represents a date.

Function Specifies a string of JavaScript code to be compiled as a function.

Math Provides basic math constants and functions; for example, its PI property
contains the value of pi.

Number Represents primitive numeric values.

Object Contains the base functionality shared by all JavaScript objects.

String Represents a JavaScript string.

Regular Expression Represents a regular expression; also contains static properties that are
shared among all regular expression objects.
16-1

Array

Function An array allows you to store a list of common elements in a variable as shown
in the following example:

var models = new Array("Ford", "Mazda", "Honda");

You can easily access the elements of an array by using the index number
assigned to each element. Elements are stored in sequential order beginning
with index number 0, proceeding with index number 1, and so on. Since the
index numbering begins with 0, the array's item count will always be one
higher than the highest value of the array. The element's index number is
enclosed in square brackets and constitutes its location in the array. The Array
is a core object.

To set the first element of the array in the example shown above, you would
type:

models[0];

When you execute the JavaScript, the variable will contain the "Ford" string.

Created by The Array object constructor:

new Array(arrayLength);
new Array(element0, element1, ..., elementN);

Parameters arrayLength
(Optional) The initial length of the array. You can access this value using the
length property.

element
(Optional) A list of values for the array's elements. When this form is specified,
the array is initialized with the specified values as its elements, and the array's
length property is set to the number of arguments.

Description An array's length increases if you assign a value to an element higher than the
current length of the array. The following code creates an array of length 0,
then assigns a value to element 99. This changes the length of the array to 100.

colors = new Array()
colors[99] = "midnightblue"
16-2 Core Objects

You can construct a dense array of two or more elements starting with index 0
if you define initial values for all elements. A dense array is one in which each
element has a value. The following code creates a dense array with three
elements:

myArray = new Array("Hello", myVar, 3.14159)

The result of a match between a regular expression and a string can create an
array. This array has properties and elements that provide information about
the match. An array is the return value of RegExp.exec, String.match,
and String.replace.

To help explain these properties and elements, look at the following example
and then refer to the table below:

//Match one d followed by one or more b's followed by one d
//Remember matched b's and the following d
//Ignore case
myRe=/d(b+)(d)/i;
myArray = myRe.exec("cdbBdbsbz");

Table 16-2 lists the properties and elements returned from this match.

Tab le 16-2 Properties and Elements

Property/Element Description Example

Input A read-only property that reflects the
original string against which the regular
expression was matched.

CdbBdbsbz

Index A read-only property that is the zero-
based index of the match in the string.

1

[0] A read-only element that specifies the
last matched characters.

DbBd

[1], ...[n] Read-only elements that specify the
parenthesized substring matches, if
included in the regular expression. The
number of possible parenthesized sub-
strings is unlimited.

[1]=bB
[2]=d
Array 16-3

Examples The following example creates an array, msgArray, with a length of 0, then
assigns values to msgArray[0] and msgArray[99], changing the length of
the array to 100.

msgArray = new Array()
msgArray [0] = "Hello"
msgArray [99] = "world"
// The following statement is true,
// because defined msgArray [99] element.
if (msgArray.length == 100)
 Console.Write("The length is 100.")

The following code creates a two-dimensional array and displays the results.

a = new Array(4)
for (i=0; i < 4; i++) {a[i] = new Array(4)
for (j=0; j < 4; j++)
{a[i][j] = "["+i+","+j+"]"}
}
for (i=0; i < 4; i++)
{str = "\r\nRow "+i+":"
for (j=0; j < 4; j++)
{str += a[i][j]}
Console.Write(str)
}

This example displays the following results:

Multidimensional array test
Row 0:[0,0][0,1][0,2][0,3]
Row 1:[1,0][1,1][1,2][1,3]
Row 2:[2,0][2,1][2,2][2,3]
Row 3:[3,0][3,1][3,2][3,3]
16-4 Core Objects

Array Properties
Table 16-3 displays a summary of the array properties. Detailed descriptions of
each property follow the table.

index

Property of Array

Description For an array created by a regular expression match, the zero-based index of the
match in the string. The index property is static.

input

Property of Array

Description For an array created by a regular expression mathc, reflects the original string
against which the regular expression was matched. The input property is
static.

Tab le 16-3 Array Properties

index For an array created by a regular expression match, the zero-based index of
the match in the string.

input For an array created by a regular expression match, reflects the original string
against which the regular expression was matched.

length Reflects the number of elements in an array.

prototype Allows the addition of properties to an Array object.
Array 16-5

length

Property of Array

Description An integer that specifies the number of elements in an array. You can set the
length property to truncate an array at any time. You cannot extend an array;
for example, if you set length to 3 when it is currently 2, the array will still
contain only 2 elements. The length property is static.

Examples In the following example, the getChoice function uses the length property
to iterate over every element in the musicType array. musicType is a
select element on the musicForm form.

function getChoice() {
 for (var i = 0; i < document.musicForm.musicType.length; i++)
{
 if (document.musicForm.musicType.options[i].selected
== true) {
 return
document.musicForm.musicType.options[i].text
 }
 }
}

The following example shortens the array statesUS to a length of 50 if the
current length is greater than 50.

if (statesUS.length > 50) {
 statesUS.length=50
 alert("The U.S. has only 50 states. New length is " +

statesUS.length)
}

prototype

Property of Array

Description Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class.
16-6 Core Objects

Array Methods
Table 16-4 displays a a summary of the array methods. Detailed descriptions of
each method follow the table.

Tab le 16-4 Array Methods

concat Joins two arrays and returns a new array.

join Joins all elements of an array into a string.

pop Removes the last element from an array and returns that element.

push Adds one or more elements to the end of an array and returns that last
element added.

reverse Transposes the elements of an array: the first array element becomes the last
and the last becomes the first.

shift Removes the first element from an array and returns that element.

slice Extracts a section of an array and returns a new array.

splice Adds and/or removes elements from an array.

sort Sorts the elements of an array.

toString Returns a string representing the specified object.

unshift Adds one or more elements to the front of an array and returns the new length
of the array.
Array 16-7

concat
Joins two arrays and returns a new array.

Applies to Array

Syntax concat(arrayName2)

Parameters ArrayName2
Name of the array to concatenate to this array.

Description concat does not alter the original arrays, but returns a one level deep copy that
contains copies of the same elements combined from the original arrays.
Elements of the original arrays are copied into the new array as follows:

Object references (and not the actual object) — concat copies object
references into the new array. Both the original and new array refer to the same
object. If a referenced object changes, the changes are visible to both the new
and original arrays.

Strings and numbers (not String and Number objects) — concat copies
strings and numbers into the new array. Changes to the string or number in
one array do not affect the other arrays.

If a new element is added to either array, the other array is not affected.
16-8 Core Objects

join
Joins all elements of an array into a string.

Applies to Array

Syntax join(separator)

Parameters separator
Specifies a string to separate each element of the array. The separator is
converted to a string if necessary. If omitted, the array elements are separated
with a comma.

Description The string conversion of all array elements are joined into one string.

Examples The following example creates an array with three elements, then joins the
array three times: using the default separator, then a comma and a space, and
then a plus.

a = new Array("Wind","Rain","Fire")
Console.Write(a.join())
Console.Write(a.join(", "))
Console.Write(a.join(" + "))

This code produces the following output:

Wind,Rain,Fire
Wind, Rain, Fire
Wind + Rain + Fire

See also Array: reverse
Array 16-9

pop
Removes the last element from an array and returns that element. This method
changes the length of the array.

Applies to Array

Syntax pop()

Parameters None

Example The following code displays the myFish array before and after removing its
last element. It also displays the removed element:

myFish = ["angel", "clown", "mandarin", "surgeon"];
Console.Write("\r\nmyFish before: " + myFish);
popped = myFish.pop();
Console.Write("\r\nmyFish after: " + myFish);
Console.Write("\r\npopped this element: " + popped);

This example displays the following:

myFish before: ["angel", "clown", "mandarin", "surgeon"]
myFish after: ["angel", "clown", "mandarin"]
popped this element: surgeon

See also Array: push, Array: shift, Array: unshift
16-10 Core Objects

push
Adds one or more elements to the end of an array and returns that last element
added. This method changes the length of the array.

Applies to Array

Syntax push(elt1, ..., eltN)

Parameters elt1,...eltN
The elements to add to the end of the array.

Description The behavior of the push method is analogous to the push function in Perl 4.
Note that this behavior is different in Perl 5.

Example The following code displays the myFish array before and after adding
elements to its end. It also displays the last element added:

myFish = ["angel", "clown"];
Console.Write("myFish before: " + myFish);
pushed = myFish.push("drum", "lion");
Console.Write("myFish after: " + myFish);
Console.Write("pushed this element last: " + pushed);

This example displays the following:

myFish before: ["angel", "clown"]
myFish after: ["angel", "clown", "drum", "lion"]
pushed this element last: lion

See also Array: pop, Array: shift, Array: unshift
Array 16-11

reverse
Transposes the elements of an array: the first array element becomes the last
and the last becomes the first.

Applies to Array

Syntax reverse()

Parameters None

Description The reverse method transposes the elements of the calling array object.

Examples The following example creates an array myArray, containing three elements,
then reverses the array.

myArray = new Array("one", "two", "three")
myArray.reverse()

The output is as follows

myArray[0] is "three"
myArray[1] is "two"
myArray[2] is "one"

See also Array: join, Array: sort
16-12 Core Objects

shift
Removes the first element from an array and returns that element. This
method changes the length of the array.

Applies to Array

Syntax shift()

Parameters None

Example The following code displays the myFish array before and after removing its
first element. It also displays the removed element:

myFish = ["angel", "clown", "mandarin", "surgeon"];
Console.Write("myFish before: " + myFish);
shifted = myFish.shift();
Console.Write("myFish after: " + myFish);
Console.Write("Removed this element: " + shifted);

This example displays the following:

myFish before: ["angel", "clown", "mandarin", "surgeon"]
myFish after: ["clown", "mandarin", "surgeon"]
Removed this element: angel

See also Array: pop, Array: push, Array: unshift
Array 16-13

slice
Extracts a section of an array and returns a new array.

Applies to Array

Syntax slice(begin,end)

Parameters Begin
Zero-based index at which to begin extraction.

End
(Optional) Zero-based index at which to end extraction. slice extracts up to
but not including end. slice(1,4) extracts the second element through
the fourth element (elements indexed 1, 2, and 3). As a negative index, end
indicates an offset from the end of the sequence. slice(2,-1) extracts the
third element through the second to last element in the sequence. If end is
omitted, slice extracts to the end of the sequence.

Description slice does not alter the original array, but returns a new "one level deep"
copy that contains copies of the elements sliced from the original array.
Elements of the original array are copied into the new array as follows:

Object references (and not the actual object) -- slice copies object
references into the new array. Both the original and new array refer to the same
object. If a referenced object changes, the changes are visible to both the new
and original arrays.

Strings and numbers (not String and Number objects)-- slice copies
strings and numbers into the new array. Changes to the string or number in
one array does not affect the other array.

If a new element is added to either array, the other array is not affected.
16-14 Core Objects

Example In the following example, slice creates a new array, newCar, from myCar.
Both include a reference to the object myHonda. When the color of myHonda
is changed to purple, both arrays reflect the change.

//Using slice, create newCar from myCar.
myHonda = {color:"red",wheels:4,engine:{cylinders:4,size:2.2}}
myCar = [myHonda, 2, "cherry condition", "purchased 1997"]
newCar = myCar.slice(0,2)
//Write the values of myCar, newCar, and the color of myHonda
// referenced from both arrays.
Console.Write("myCar = " + myCar)
Console.Write("newCar = " + newCar)
Console.Write("myCar[0].color = " + myCar[0].color)
Console.Write("newCar[0].color = " + newCar[0].color)
//Change the color of myHonda.
myHonda.color = "purple"
Console.Write("The new color of my Honda is " + myHonda.color)
//Write the color of myHonda referenced from both arrays.
Console.Write("myCar[0].color = " + myCar[0].color)
Console.Write("newCar[0].color = " + newCar[0].color)

This script writes:

myCar = [{color:"red", wheels:4, engine:{cylinders:4,
size:2.2}}, 2
 "cherry condition", "purchased 1997"]

newCar = [{color:"red", wheels:4, engine:{cylinders:4,
size:2.2}}, 2]
myCar[0].color = red newCar[0].color = red
The new color of my Honda is purple
myCar[0].color = purple
newCar[0].color = purple
Array 16-15

splice
Changes the content of an array, adding new elements while removing old
elements.

Applies to Array

Syntax splice(index, howMany, newElt1, ..., newEltN)

Parameters index
Index at which to start changing the array.

howMany
An integer indicating the number of old array elements to remove. If howMany
is 0, no elements are removed. In this case, you should specify at least one new
element.

newElt1...newEltN
(Optional) The elements to add to the array. If you don't specify any elements,
splice simply removes elements from the array.

Description If you specify a different number of elements to insert than the number you're
removing, the array will have a different length at the end of the call. If
howMany is 1, this method returns the single element that it removes. If
howMany is more than 1, the method returns an array containing the removed
elements.

Examples The following script illustrates the use of the splice:

myFish = ["angel", "clown", "mandarin", "surgeon"];
Console.Write("myFish: " + myFish);

removed = myFish.splice(2, 0, "drum");
Console.Write("After adding 1: " + myFish);
Console.Write("removed is: " + removed);

removed = myFish.splice(3, 1)
Console.Write("After removing 1: " + myFish);
Console.Write("removed is: " + removed);

removed = myFish.splice(2, 1, "trumpet")
Console.Write("After replacing 1: " + myFish);
Console.Write("removed is: " + removed);

removed = myFish.splice(0, 2, "parrot", "anemone", "blue")
Console.Write("After replacing 2: " + myFish);
Console.Write("removed is: " + removed);
16-16 Core Objects

This script displays:

myFish: ["angel", "clown", "mandarin", "surgeon"]

After adding 1: ["angel", "clown", "drum", "mandarin",
"surgeon"]
removed is: undefined

After removing 1: ["angel", "clown", "drum", "surgeon"]
removed is: mandarin

After replacing 1: ["angel", "clown", "trumpet", "surgeon"]
removed is: drum

After replacing 2: ["parrot", "anemone", "blue", "trumpet",
"surgeon"]
removed is: ["angel", "clown"]
Array 16-17

sort
Sorts the elements of an array.

Applies to Array

Syntax sort(compareFunction)

Parameters compareFunction
Specifies a function that defines the sort order. If omitted, the array is sorted
lexicographically (in dictionary order) according to the string conversion of
each element.

Description If compareFunction is not supplied, elements are sorted by converting
them to strings and comparing strings in lexicographic ("dictionary" or
"telephone book," not numerical) order. For example, "80" comes before "9" in
lexicographic order, but in a numeric sort 9 comes before 80.

If compareFunction is supplied, the array elements are sorted according to
the return value of the compare function. If a and b are two elements being
compared, then:

■ If compareFunction(a, b) is less than 0, sort b to a lower index than a.

■ If compareFunction(a, b) returns 0, leave a and b unchanged with
respect to each other, but sorted with respect to all different elements.

■ If compareFunction(a, b) is greater than 0, sort b to a higher index
than a.

So, the compare function has the following form:

function compare(a, b) {
 if (a is less than b by some ordering criterion)
 return -1
 if (a is greater than b by the ordering criterion)
 return 1
 // a must be equal to b
 return 0

}

To compare numbers instead of strings, the compare function can simply
subtract b from a:

function compareNumbers(a, b) {
 return a - b

}

16-18 Core Objects

Array 16-19

JavaScript uses a stable sort: the index partial order of a and b does not change
if a and b are equal. If a's index was less than b's before sorting, it will be after
sorting, no matter how a and b move due to sorting.

a = new Array();
a[0] = "Ant";
a[5] = "Zebra";

function writeArray(x) {
 for (i = 0; i < x.length; i++) {
 Console.Write(x[i]);
 if (i < x.length-1) Console.Write(", ");
 }

}

writeArray(a);
a.sort();
Console.Write();
writeArray(a);

ant, undefined, undefined, undefined, undefined, zebra
ant, zebra, undefined, undefined, undefined, undefined

Examples The following example creates four arrays and displays the original array, then
the sorted arrays. The numeric arrays are sorted without, then with, a compare
function.

stringArray = new Array("Blue","Humpback","Beluga")
numericStringArray = new Array("80","9","700")
numberArray = new Array(40,1,5,200)
mixedNumericArray = new Array("80","9","700",40,1,5,200)
function compareNumbers(a, b) {
 return a - b

}

Console.Write("stringArray:" + stringArray.join())
Console.Write("Sorted:" + stringArray.sort())

Console.Write("numberArray:" + numberArray.join())
Console.Write("Sorted without a compare function:" +
numberArray.sort())
Console.Write("Sorted with compareNumbers:" +
numberArray.sort(compareNumbers))
Console.Write("numericStringArray:" +
numericStringArray.join())
Console.Write("Sorted without a compare function:" +
numericStringArray.sort())
Console.Write("Sorted with compareNumbers:" +
numericStringArray.sort(compareNumbers))

Console.Write("mixedNumericArray:" + mixedNumericArray.join())
Console.Write("Sorted without a compare function:" +
mixedNumericArray.sort())
Console.Write("Sorted with compareNumbers: " +
mixedNumericArray.sort(compareNumbers))

This example produces the following output. As the output shows, when a
compare function is used, numbers sort correctly whether they are numbers or
numeric strings.

stringArray: Blue,Humpback,Beluga
Sorted: Beluga,Blue,Humpback

numberArray: 40,1,5,200
Sorted without a compare function: 1,200,40,5
Sorted with compareNumbers: 1,5,40,200

numericStringArray: 80,9,700
Sorted without a compare function: 700,80,9
Sorted with compareNumbers: 9,80,700

mixedNumericArray: 80,9,700,40,1,5,200
Sorted without a compare function: 1,200,40,5,700,80,9
Sorted with compareNumbers: 1,5,9,40,80,200,700

See also Array: join, Array: reverse
16-20 Core Objects

toString
Returns a string representing the specified object.

Applies to Array

Syntax toString()

Parameters None

Description Every object has a toString method that is automatically called when it is to
be represented as a text value or when an object is referred to in a string
concatenation.

You can use toString within your own code to convert an object into a
string, and you can create your own function to be called in place of the default
toString method.

For Array objects, the built-in toString method joins the array and
returns one string containing each array element separated by commas. For
example, the following code creates an array and uses toString to convert
the array to a string while writing output.

var monthNames = new Array("Jan","Feb","Mar","Apr")
Console.Write("monthNames.toString() is " +
monthNames.toString())

The output is as follows:

monthNames.toString() is Jan,Feb,Mar,Apr

For information on defining your own toString method, see the Object:
toString method.
Array 16-21

unshift
Adds one or more elements to the beginning of an array and returns the new
length of the array.

Applies to Array

Syntax arrayName.unshift(elt1,..., eltN)

Parameters elt1...eltN
The elements to add to the front of the araray.

Example The following code displays the myFish array before and after adding
elements to it.

myFish = ["angel", "clown"];
Console.Write("myFish before: " + myFish);
unshifted = myFish.unshift("drum", "lion");
Console.Write("myFish after: " + myFish);
Console.Write("New length: " + unshifted);

This example displays the following:

myFish before: ["angel", "clown"]
myFish after: ["drum", "lion", "angel", "clown"]
New length: 4

See also Array: pop, Array: push, Array: shift
16-22 Core Objects

Boolean

The Boolean object is an object wrapper for a boolean value. The Boolean
object is a core object.

Created by The Boolean constructor:

new Boolean(value)

Parameters value
The initial value of the Boolean object. The value is converted to a boolean
value, if necessary. If value is omitted or is 0, null, false, or the empty string
(""), the object has an initial value of false. All other values, including the string
"false", create an object with an initial value of true.

Description Use a Boolean object when you need to convert a non-boolean value to a
boolean value. You can use the Boolean object any place JavaScript expects a
primitive boolean value. JavaScript returns the primitive value of the Boolean
object by automatically invoking the valueOf method.

Examples The following examples create Boolean objects with an initial value of false:

bNoParam = new Boolean()
bZero = new Boolean(0)
bNull = new Boolean(null)
bEmptyString = new Boolean("")
bfalse = new Boolean(false)

The following examples create Boolean objects with an initial value of true:

btrue = new Boolean(true)
btrueString = new Boolean("true")
bfalseString = new Boolean("false")
bSuLin = new Boolean("Su Lin")
Boolean 16-23

Boolean Properties
Table 16-5 displays the boolean property. A detailed description of the
property follows the table.

prototype

Property of Boolean

Description Represents the prototype for this class. You can use the prototype to add
preoprties or methods toa ll instances of a class.

Tab le 16-5 Boolean Property

Prototype Defines a property that is shared by all Boolean objects.
16-24 Core Objects

Boolean Methods
Table 16-6 displays the boolean method. A detailed description of the method
follows the table.

toString
Returns a string representing the specified object.

Applies to: Boolean

Syntax toString()

Parameters None

Description Every object has a toString method that is automatically called when it is to
be represented as a text value or when an object is referred to in a string
concatenation.

You can use toString within your own code to convert an object into a
string, and you can create your own function to be called in place of the default
toString method.

For Boolean objects and values, the built-in toString method returns "true" or
"false" depending on the value of the boolean object. In the following code,
flag.toString returns "true".

flag = new Boolean(true)
Console.Write("flag.toString() is " + flag.toString())

For information on defining your own toString method, see the Object:
toString method.

Tab le 16-6 Boolean Method

toString Returns a string representing the specified object.
Boolean 16-25

Date

Lets you work with dates and times. Date is a core object.

Created by The Date constructor:

new Date()
new Date("month day, year hours:minutes:seconds")
new Date(yr_num, mo_num, day_num)
new Date(yr_num, mo_num, day_num, hr_num, min_num,
sec_num)

Parameters month, day, year, hours, minutes, seconds
String values representing part of a date.

yr_num, mo_num, day_num, hr_num, min_num, sec_num
Integer values representing part of a date. As an integer value, the month is
represented by 0 to 11 with 0=January and 11=December.

Description If you supply no arguments, the constructor creates a Date object for
today's date and time. If you supply some arguments, but not others, the
missing arguments are set to 0. If you supply any arguments, you must supply
at least the year, month, and day. You can omit the hours, minutes, and
seconds.

The way JavaScript handles dates is very similar to the way Java handles dates:
both languages have many of the same date methods, and both store dates
internally as the number of milliseconds since January 1, 1970 00:00:00. Dates
prior to 1970 are not allowed.

Examples The following examples show several ways to assign dates:

today = new Date()
birthday = new Date("December 17, 1995 03:24:00")
birthday = new Date(95,11,17)
birthday = new Date(95,11,17,3,24,0)
16-26 Core Objects

Date Properties
Table 16-7 displays the date property. A detailed description of the property
follows the tabe.

prototype

Property of Date

Description Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class.

Date Methods
Table 16-8 displays a summary of the date methods. Detailed descriptions of
each method follow the table.

Tab le 16-7 Date Property

Prototype Allows the addition of properties to a Date object.

Tab le 16-8 Date Methods

getDate Returns the day of the month for the specified date.

getDay Returns the day of the week for the specified date.

getHours Returns the hour in the specified date.

getMinutes Returns the minutes in the specified date.

getMonth Returns the month in the specified date.

getSeconds Returns the seconds in the specified date.

getTime Returns the numeric value corresponding to the time for the specified date.

GetTimezone-
Offset

Returns the time-zone offset in minutes for the current locale.

GetFullYear Returns the year in the specified date.
Date 16-27

getDate
Returns the day of the month for the specified date.

Applies to: Date

Syntax getDate()

Parameters None

Description The value returned by getDate is an integer between 1 and 31.

Examples The second statement below assigns the value 25 to the variable day, based on
the value of the Date object Xmas95.

Xmas95 = new Date("December 25, 1995 23:15:00")
day = Xmas95.getDate()

See also Date: setDate

parse Returns the number of milliseconds in a date string since January 1, 1970,
00:00:00, local time.

setDate Sets the day of the month for a specified date.

setHours Set the hours for a specified date.

setMinutes Sets the minutes for a specified date.

setMonth Sets the month for a specified date.

setSeconds Sets the seconds for a specified date.

Tab le 16-8 Date Methods (Continued)
16-28 Core Objects

getDay
Returns the day of the week for the specified date.

Applies to Date

Syntax getDay()

Parameters None

Description The value returned by getDay is an integer corresponding to the day of the
week: 0 for Sunday, 1 for Monday, 2 for Tuesday, and so on.

Examples The second statement below assigns the value 1 to weekday, based on the
value of the Date object Xmas95. December 25, 1995, is a
Monday.

Xmas95 = new Date("December 25, 1995 23:15:00")
weekday = Xmas95.getDay()

getHours
Returns the hour for the specified date.

Applies to Date

Syntax getHours()

Parameters None

Description The value returned by getHours is an integer between 0 and 23.

Examples The second statement below assigns the value 23 to the variable hours, based
on the value of the Date object Xmas95.

Xmas95 = new Date("December 25, 1995 23:15:00")
hours = Xmas95.getHours()

See also Date: setHours
Date 16-29

getMinutes
Returns the minutes in the specified date.

Applies to Date

Syntax getMinutes()

Parameters None

Description The value returned by getMinutes is an integer between 0 and 59.

Examples The second statement below assigns the value 15 to the variable minutes,
based on the value of the Date object Xmas95.

Xmas95 = new Date("December 25, 1995 23:15:00")
minutes = Xmas95.getMinutes()

See also Date: setMinutes

getMonth
Returns the month in the specified date.

Applies to Date

Syntax getMonth()

Parameters None

Description The value returned by getMonth is an integer between 0 and 11. 0
corresponds to January 1 to February, and so on.

Examples The second statement below assigns the value 11 to the variable month, based
on the value of the Date object Xmas95.

Xmas95 = new Date("December 25, 1995 23:15:00")
month = Xmas95.getMonth()

See also Date: setMonth
16-30 Core Objects

Date 16-31

getSeconds
Returns the seconds in the current time.

Applies to Date

Syntax getSeconds()

Parameters None

Description The value returned by getSeconds is an integer between 0 and 59.

Examples The second statement below assigns the value 30 to the variable secs, based
on the value of the Date object Xmas95.

Xmas95 = new Date("December 25, 1995 23:15:30")
secs = Xmas95.getSeconds()

See also Date: setSeconds

getTime
Returns the numeric value corresponding to the time for the specified date.

Applies to Date

Syntax getTime()

Parameters None

Description The value returned by the getTime method is the number of milliseconds
since 1 January 1970 00:00:00. You can use this method to help assign a date
and time to another Date object.

Examples The following example assigns the date value of theBigDay to
sameAsBigDay:

theBigDay = new Date("July 1, 1999")
sameAsBigDay = new Date()
sameAsBigDay.setTime(theBigDay.getTime())

See also Date: setTime

getTimezoneOffset
Returns the time-zone offset in minutes for the current locale.

Applies to Date

Syntax getTimezoneOffset()

Parameters None

Description The time-zone offset is the difference between local time and Greenwich Mean
Time (GMT). Daylight savings time prevents this value from being a constant.

Examples x = new Date()
currentTimeZoneOffsetInHours = x.getTimezoneOffset()/60

getFullYear
Returns the year in the specified date.

Applies to Date

Syntax getFullYear()

Parameters None

Description The value returned by getFullYear is the four-digit year. For example, if
the year is 1856, the value returned is 1856. If the year is 2026, the value
returned is 2026.

Examples The second statement assigns the value 1995 to the variable year.

Xmas = new Date("December 25, 1995 23:15:00")
year = Xmas.getFullYear()

The second statement assigns the value 2000 to the variable year.

Xmas = new Date("December 25, 2000 23:15:00")
year = Xmas.getFullYear()
16-32 Core Objects

The second statement assigns the value 95 to the variable year, representing
the year 1995.

Xmas.setYear(95)
year = Xmas.getFullYear()

See also Date: setYear

parse
Returns the number of milliseconds in a date string since January 1, 1970,
00:00:00, local time. The parse method is static, read only.

Applies to: Date

Syntax Date.parse(dateString)

Parameters dateString
A string representing a date.

Description The parse method takes a date string (such as "Dec 25, 1995") and
returns the number of milliseconds since January 1, 1970, 00:00:00 (local
time). This function is useful for setting date values based on string values, for
example in conjunction with the setTime method and the Date object.

Given a string representing a time, parse returns the time value. It accepts the
IETF standard date syntax: "Mon, 25 Dec 1995 13:30:00 GMT." It
understands the continental US time-zone abbreviations, but for general use,
use a time-zone offset, for example, "Mon, 25 Dec 1995 13:30:00
GMT+0430" (4 hours, 30 minutes west of the Greenwich meridian). If you do
not specify a time zone, the local time zone is assumed. GMT and UTC are
considered equivalent.

Because parse is a static method of Date, you always use it as
Date.parse(), rather than as a method of a Date object you created.

Examples If IPOdate is an existing Date object, then you can set it to August 9, 1995 as
follows:

IPOdate.setTime(Date.parse("Aug 9, 1995"))
Date 16-33

setDate
Sets the day of the month for a specified date.

Applies to: Date

Syntax setDate(dayValue)

Parameters datValue
An integer from 1 to 31, representing the day of the month.

Examples The second statement below changes the day for theBigDay to July 24 from
its original value.

theBigDay = new Date("July 27, 1962 23:30:00"
theBigDay.setDate(24)

See also Date: getDate

setHours
Sets the hours for a specified date.

Applies to: Date

Syntax setHours(hoursValue)

Parameters hoursValue
An integer between 0 and 23, representing the hour.

Examples theBigDay.setHours(7)
16-34 Core Objects

setMinutes
Sets the minutes for a specified date.

Applies to: Date

Syntax setMinutes(minutesValue)

Parameters mintuesValue
An integer between 0 and 59, representing the minutes.

Examples theBigDay.setMinutes(45)

See also Date: getMinutes

setMonth
Sets the month for a specified date.

Applies to: Date

Syntax setMonth(monthValue)

Parameters monthValue
An integer between 0 and 11, representing the months January through
December.

Examples theBigDay.setMonth(6)

See also Date: getMonth
Date 16-35

setSeconds
Sets the seconds for a specified date.

Applies to: Date

Syntax setSeconds(secondsValue)

Parameters secondsValue
An integer between 0 and 59.

Examples theBigDay.setSeconds(30)

See also Date: getSeconds

setTime
Sets the value of a Date object.

Applies to: Date

Syntax setTime(timevalue)

Parameters timevalue
An integer representing the number of milliseconds since 1 January 1970
00:00:00.

Description Use the setTime method to help assign a date and time to another Date
object.

Examples theBigDay = new Date("July 1, 1999")
sameAsBigDay = new Date()
sameAsBigDay.setTime(theBigDay.getTime())
16-36 Core Objects

setYear
Sets the year for a specified date.

Applies to Date

Syntax setYear(yearValue)

Parameters yearValue
An integer.

Description If yearValue is a number between 0 and 99 (inclusive), then the year for
dateObjectName is set to 1900 + yearValue. Otherwise, the year for
dateObjectName is set to yearValue.

Examples Note that there are two ways to set years in the 20th century.

■ The year is set to 1996.

theBigDay.setYear(96)

■ The year is set to 1996.

theBigDay.setYear(1996)

■ The year is set to 2000.

theBigDay.setYear(2000)

See also Date: getFullYear
Date 16-37

toGMTString
Converts a date to a string, using the Internet GMT conventions.

Applies to: Date

Syntax toGMTString()

Parameters None

Description The exact format of the value returned by toGMTString varies according to
the platform.

Examples In the following example, today is a Date object:

today.toGMTString()

In this example, the toGMTString method converts the date to GMT (UTC)
using the operating system's time-zone offset and returns a string value that is
similar to the following form. The exact format depends on the platform.

Mon, 18 Dec 1995 17:28:35 GMT

See also Date: toLocaleString
16-38 Core Objects

toLocaleString
Converts a date to a string, using the current locale's conventions.

Applies to: Date

Syntax toLocaleString()

Parameters None

Description If you pass a date using toLocaleString, be aware that different platforms
assemble the string in different ways. Using methods such as getHours,
getMinutes, and getSeconds gives more portable results.

Examples In the following example, today is a Date object:

today = new Date(95,11,18,17,28,35) //months are represented by
0 to 11
today.toLocaleString()

In this example, toLocaleString returns a string value that is similar to the
following form. The exact format depends on the platform.

12/18/95 17:28:35

See also Date: toGMTString
Date 16-39

UTC
Returns the number of milliseconds in a Date object since January 1, 1970,
00:00:00, Universal Coordinated Time (GMT). UTC is static, read only.

Applies to Date

Syntax Date.UTC(year, month, day, hrs, min, sec)

Parameters year
A year after 1900.

month
A month between 0 and 11.

date
A day of the month between 1 and 31.

hrs
(Optional) A number of hours between 0 and 23.

min
(Optional) A number of minutes between 9 and 59.

sec
(Optional) A number of seconds between 0 and 59.

Description UTC takes comma-delimited date parameters and returns the number of
milliseconds since January 1, 1970, 00:00:00, Universal Coordinated Time
(GMT).

Because UTC is a static method of Date, you always use it as Date.UTC(),
rather than as a method of a Date object you created.

Examples The following statement creates a Date object using GMT instead of local
time:

gmtDate = new Date(Date.UTC(96, 11, 1, 0, 0, 0))
16-40 Core Objects

Function

Specifies a string of JavaScript code to be compiled as a function. Function is a
core object.

Created by The Function constructor:

new Function (arg1, arg2, ... argN, functionBody)

Parameters arg1, arg2,...argn
(Optional) Names to be used by the function as formal argument names. Each
must be a string that corresponds to a valid JavaScript identifier; for example
"x" or "theForm".

functionBody
A string containing the JavaScript statements comprising the function
definition.

Description Function objects are evaluated each time they are used. This is less efficient
than declaring a function and calling it within your code, because declared
functions are compiled.

In addition to defining functions as described here, you can also use the
function statement, as described in the JavaScript Guide.

Examples ■ Specifying a variable value with a Function object

The following code assigns a function to the variable
activeSection.name. This function sets the current document's section
name.

var changeName = new Function("activeSection.name='sales'")

To call the Function object, you can specify the variable name as if it
were a function. The following code executes the function specified by the
changeName variable:

var newName="sales"

if (newName=="sales") {newName()}
function changeName() {

 activeSection.name='sales'
}

Function 16-41

Assigning a function to a variable is similar to declaring a function, but they
have differences:

When you assign a function to a variable using var changeName = new
Function("..."), changeName is a variable for which the current
value is a reference to the function created with new Function().

When you create a function using function changeName() {...},
changeName is not a variable, it is the name of a function

■ Specifying arguments in a Function object

The following code specifies a Function object that takes two arguments.

var multFun = new Function("x", "y", "return x * y")

The string arguments "x" and "y" are formal argument names that are
used in the function body, "return x * y".

The following code shows a way to call the function multFun:

var theAnswer = multFun(7,6)
Console.Write("15*2 = " + multFun(15,2))

Function Properties
Table 16-9 displays a summary of the function properties. Detailed
descriptions of each property follow the table.

Tab le 16-9 Function Properties

Arguments An array corresponding to the arguments passed to a function.

Arity Indicates the number of arguments expected by the function.

Caller Specifies which function called the current function.

Prototype Allows the addition of properties to a Function object.
16-42 Core Objects

arguments
An array corresponding to the arguments passed to a function.

Property of Function

Description You can call a function with more arguments than it is formally declared to
accept by using the arguments array. This technique is useful if a function
can be passed a variable number of arguments. You can use
arguments.length to determine the number of arguments passed to the
function, and then treat each argument by using the arguments array.

The arguments array is available only within a function declaration.
Attempting to access the arguments array outside a function declaration
results in an error.

The this keyword does not refer to the currently executing function, so you
must refer to functions and Function objects by name, even within the
function body.

In JavaScript 1.2, arguments includes these additional properties:

■ formal arguments – Each formal argument of a function is a property of the
arguments array.

■ local variables – Each local variable of a function is a property of the
arguments array.

■ caller – A property whose value is the arguments array of the outer
function. If there is no outer function, the value is undefined.

■ callee – A property whose value is the function reference.

For example, the following script demonstrates several of the arguments
properties:

function b(z) {
 Console.Write(arguments.z)
 Console.Write (arguments.caller.x)
 return 99

}
function a(x, y) {
 return b(534)

}
Console.Write (a(2,3))
This displays:
534
2
Function 16-43

99
534 is the actual parameter to b, so it is the value of arguments.z. 2 is a's
actual x parameter, so (viewed within b) it is the value of
arguments.caller.x. 99 is what a(2,3) returns.

Examples This example defines a function that creates test lists. The only formal
argument for the function is a string that changes the appearance of the list. To
create a bullet list (also called an "unordered list"), use "U". To create a
numbered list (also called an "ordered list"), use "O". The function is defined
as follows:

function list(type) {
 Console.Write(type)
 for (var i=1; i<list.arguments.length; i++) {
 Console.Write(list.arguments[i])
 Console.Write(type)
 }

}

You can pass any number of arguments to this function, and it displays each
argument as an item in the type of list indicated. For example, the following
call to the function:

list("U", "One", "Two", "Three")
results in this output:
One
Two
Three

arity
Indicates the number of arguments expected by the function.

Description arity is external to the function, and indicates how many arguments the
function expects. By contrast, arguments.length provides the number of
arguments actually passed to the function.

Example The following example demonstrates the use of arity and
arguments.length.

function addNumbers(x,y){
 Console.Write("length = " + arguments.length)
 z = x + y

}
Console.Write("arity = " + addNumbers.arity)
addNumbers(3,4,5)
16-44 Core Objects

Function 16-45

This script writes:

arity = 2
length = 3

caller
Returns the name of the function that invoked the currently executing
function.

Property of Function

Description The caller property is available only within the body of a function. If used
outside a function declaration, the caller property is null.

If the currently executing function was invoked by the top level of a JavaScript
program, the value of caller is null.

The this keyword does not refer to the currently executing function, so you
must refer to functions and Function objects by name, even within the
function body.

The caller property is a reference to the calling function, so if you use it in a
string context, you get the result of calling functionName.toString. That
is, the decompiled canonical source form of the function.

You can also call the calling function, if you know what arguments it might
want. Thus, a called function can call its caller without knowing the name of
the particular caller, provided it knows that all of its callers have the same form
and fit, and that they will not call the called function again unconditionally
(which would result in infinite recursion).

Examples The following code checks the value of a function's caller property.

function myFunc() {
 if (myFunc.caller == null) {
 alert("The function was called from the top!")
 } else alert("This function's caller was " +

myFunc.caller)
}

See also Function: arguments

prototype
A value from which instances of a particular class are created. Every object that
can be created by calling a constructor function has an associated prototype
property.

Property of Object

Description You can add new properties or methods to an existing class by adding them to
the prototype associated with the constructor function for that class. The
syntax for adding a new property or method is:

fun.prototype.name = value

where

If you add a new property to the prototype for an object, then all objects
created with that object's constructor function will have that new property,
even if the objects existed before you created the new property. For example,
assume you have the following statements:

var array1 = new Array();
var array2 = new Array(3);
Array.prototype.description=null;
array1.description="Contains some stuff"
array2.description="Contains other stuff"

After you set a property for the prototype, all subsequent objects created with
Array will have the property:

anotherArray=new Array()
anotherArray.description="Currently empty"

Example The following example creates a method, str_rep, and uses the statement
String.prototype.rep = str_rep to add the method to all String
objects. All objects created with new String() then have that method, even
objects already created. The example then creates an alternate method and
adds that to one of the String objects using the statement s1.rep =
fake_rep. The str_rep method of the remaining String objects is not
altered.

fun The name of the constructor function object you want to change.
name The name of the property or method to be created.
value The value initially assigned to the new property or method.
16-46 Core Objects

var s1 = new String("a")
var s2 = new String("b")
var s3 = new String("c")

// Create a repeat-string-N-times method for all String objects
function str_rep(n) {
var s = "", t = this.toString()
while (--n >= 0) s += t
return s
}
String.prototype.rep = str_rep

// Display the results
Console.Write("s1.rep(3) is " + s1.rep(3)) // "aaa"
Console.Write("s2.rep(5) is " + s2.rep(5)) // "bbbbb"
Console.Write("s3.rep(2) is " + s3.rep(2)) // "cc"

// Create an alternate method and assign it to only one String
variable
function fake_rep(n) {
 return "repeat " + this + n + " times."
}
s1.rep = fake_rep
Console.Write("s1.rep(1) is " + s1.rep(1)) // "repeat a 1
times."
Console.Write("s2.rep(4) is " + s2.rep(4)) // "bbbb"
Console.Write("s3.rep(6) is " + s3.rep(6)) // "cccccc"

This example produces the following output:

s1.rep(3) is aaa

s2.rep(5) is bbbbb
s3.rep(2) is cc
s1.rep(1) is repeat a1 times.
s2.rep(4) is bbbb
s3.rep(6) is cccccc

The function in this example also works on String objects not created with
the String constructor. The following code returns "zzz".

"z".rep(3)
Function 16-47

Function Methods
Table 16-10 displays the function method. A detailed description of the
method follows the table.

toString
Returns a string representing the specified object.

Applies to Function

Syntax toString()

Parameters None

Description Every object has a toString method that is automatically called when it is
to be represented as a text value or when an object is referred to in a string
concatenation.

You can use toString within your own code to convert an object into a
string, and you can create your own function to be called in place of the default
toString method.

For Function objects, the built-in toString method decompiles the
function back into the JavaScript source that defines the function This string
includes the function keyword, the argument list, curly braces, and function
body.

Tab le 16-10 Function Method

toString Returns a string representing the specified object.
16-48 Core Objects

For example, assume you have the following code that defines the Dog object
type and creates theDog, an object of type Dog:

function Dog(name,breed,color,sex) {
 this.name=name
 this.breed=breed
 this.color=color
 this.sex=sex

}
theDog = new Dog("Gabby","Lab","chocolate","girl")

Any time Dog is used in a string context, JavaScript automatically calls the
toString function, which returns the following string:

function Dog(name, breed, color, sex) { this.name = name;
this.breed = breed; this.color = color; this.sex = sex; }

For information on defining your own toString method, see the Object:
toString method.
Function 16-49

Math

A built-in object that has properties and methods for mathematical constants
and functions. For example, the Math object's PI property has the value of pi.
Math is a core object.

Created by The Math object is a top-level, predefined JavaScript object. You can
automatically access it without using a constructor or calling a method.

Description All properties and methods of Math are static. You refer to the constant PI as
Math.PI and you call the sine function as Math.sin(x), where x is the
method's argument. Constants are defined with the full precision of real
numbers in JavaScript.

It is often convenient to use the with statement when a section of code uses
several Math constants and methods, so you don't have to type "Math"
repeatedly. For example:

with (Math) {
 a = PI * r*r
 y = r*sin(theta)
 x = r*cos(theta)

}

16-50 Core Objects

Math Properties
Table 16-11 displays a summary of the math properties. Detailed descriptions
of each property follow the table.

E
Euler's constant and the base of natural logarithms, approximately 2.718. Math
is static, read-only.

Property of Math

Examples The following function returns Euler's constant:

function getEuler() {
 return Math.E

}

Description Because E is a static property of Math, you always use it as Math.E, rather
than as a property of a Math object you created.

Tab le 16-11 Math Properties

E Euler's constant and the base of natural logarithms, approximately 2.718.

LN10 Natural logarithm of 10, approximately 2.302.

LN2 Natural logarithm of 2, approximately 0.693.

LOG10E Base 10 logarithm of E (approximately 0.434).

LOG2E Base 2 logarithm of E (approximately 1.442).

PI Ratio of the circumference of a circle to its diameter, approximately 3.14159.

SORT1_2 Square root of �; equivalently, 1 over the square root of 2, approximately
0.707.

SORT2 Square root of 2, approximately 1.414.
Math 16-51

LN10
The natural logarithm of 10, approximately 2.302. LN10 is static, read-only.

Property of Math

Example The following function returns the natural log of 10:

function getNatLog10() {
 return Math.LN10

}

Description Because LN10 is a static property of Math, you always use it as Math.LN10,
rather than as a property of a Math object you created.

LN2
The natural logarithm of 2, approximately 0.693. LN2 is static, read-only.

Property of Math

Examples The following function returns the natural log of 2:

function getNatLog2() {
 return Math.LN2

}

Description Because LN2 is a static property of Math, you always use it as Math.LN2,
rather than as a property of a Math object you created.

LOG10E
The base 10 logarithm of E (approximately 0.434). LOG10E is static, read-
only.

Property of Math

Example The following function returns the base 10 logarithm of E:

function getLog10e() {
 return Math.LOG10E

}

Description Because LOG10E is a static property of Math, you always use it as
Math.LOG10E, rather than as a property of a Math object you created.
16-52 Core Objects

LOG2E
The base 2 logarithm of E (approximately 1.442). LOG2E is static, read-only.

Property of Math

Examples The following function returns the base 2 logarithm of E:

function getLog2e() {
 return Math.LOG2E

}

Description Because LOG2E is a static property of Math, you always use it as
Math.LOG2E, rather than as a property of a Math object you created.

PI
The ratio of the circumference of a circle to its diameter, approximately
3.14159. PI is static, read-only.

Property of Math

Examples The following function returns the value of pi:

function getPi() {
 return Math.PI

}

Description Because PI is a static property of Math, you always use it as Math.PI, rather
than as a property of a Math object you created.

SQRT1_2
The square root of �; equivalently, 1 over the square root of 2, approximately
0.707. SQRT1_2 is static, read-only.

Property of Math

Example The following function returns 1 over the square root of 2:

function getRoot1_2() {
 return Math.SQRT1_2

}

Math 16-53

Description Because SQRT1_2 is a static property of Math, you always use it as
Math.SQRT1_2, rather than as a property of a Math object you created.

SQRT2
The square root of 2, approximately 1.414. SQRT2 is static, read-only.

Property of Math

Example The following function returns the square root of 2:

function getRoot2() {
 return Math.SQRT2

}

Description Because SQRT2 is a static property of Math, you always use it as Math.SQRT2,
rather than as a property of a Math object you created.
16-54 Core Objects

Math Methods
Table 16-12 displays a summary of the math methods. Detailed descriptions of
each method follow the table.

Tab le 16-12 Math Methods

abs Returns the absolute value of a number.

acos Returns the arccosine (in radians) of a number.

asin Returns the arcsine (in radians) of a number.

atan Returns the arctangent (in radians) of a number.

atan2 Returns the arctangent of the quotient of its arguments.

ceil Returns the smallest integer greater than or equal to a number.

cos Returns the cosine of a number.

exp Returns Enumber, where number is the argument, and E is Euler's constant, the
base of the natural logarithms.

floor Returns the largest integer less than or equal to a number.

log Returns the natural logarithm (base E) of a number.

max Returns the greater of two numbers.

min Returns the lesser of two numbers.

pow Returns base to the exponent power, that is, baseexponent.

random Returns a pseudo-random number between 0 and 1.

round Returns the value of a number rounded to the nearest integer.

sin Returns the sine of a number.

sqrt Returns the square root of a number.

tan Returns the tangent of a number.
Math 16-55

abs
Returns the absolute value of a number.

Applies to Math

Syntax abs(x)

Parameters x
A number.

Example The following function returns the absolute value of the variable x:

function getAbs(x) {
 return Math.abs(x)

}

Description abs is a static method of Math. As a result, you always use it as Math.abs(),
rather than as a method of a Math object you create.

acos
Returns the arccosine (in radians) of a number.

Applies to Math

Syntax acos(x)

Parameters x
A number.

Description The acos method returns a numeric value between 0 and pi radians. If the
value of number is outside this range, it returns 0.

acos is a static method of Math. As a result, you always use it as
Math.acos(), rather than as a method of a Math object you create.

Example The following function returns the arccosine of the variable x:

function getAcos(x) {
 return Math.acos(x)

}

16-56 Core Objects

If you pass -1 to getAcos, it returns 3.141592653589793; if you pass 2, it
returns 0 because 2 is out of range.

See also Math:asin, Math:atan, Math:atan2, Math:cos, Math:sin,
Math:tan

asin
Returns the arcsine (in radians) of a number.

Applies to Math

Syntax asin(x)

Parameters x
A number.

Description The asin method returns a numeric value between -pi/2 and pi/2 radians. If
the value of number is outside this range, it returns 0.

asin is a static method of Math. As a result, you always use it as
Math.asin(), rather than as a method of a Math object you create.

Examples The following function returns the arcsine of the variable x:

function getAsin(x) {
 return Math.asin(x)

}

If you pass getAsin the value 1, it returns 1.570796326794897 (pi/2); if you
pass it the value 2, it returns 0 because 2 is out of range.

See also Math:acos, Math:atan, Math:atan2, Math:cos, Math:sin,
Math:tan
Math 16-57

atan
Returns the arctangent (in radians) of a number.

Applies to Math

Syntax atan(x)

Parameters x
A number.

Description The atan method returns a numeric value between -pi/2 and pi/2 radians.

atan is a static method of Math. As a result, you always use it as
Math.atan(), rather than as a method of a Math object you create.

Example The following function returns the arctangent of the variable x:

function getAtan(x) {
 return Math.atan(x)

}

If you pass getAtan the value 1, it returns 0.7853981633974483; if you pass it
the value .5, it returns 0.4636476090008061.

See also Math.acos, Math.asin, Math.atan2, Math.cos, Math.sin,
Math.tan
16-58 Core Objects

atan2
Returns the arctangent of the quotient of its arguments.

Applies to Math

Syntax atan2(y, x)

Parameters y,x
A number.

Description The atan2 method returns a numeric value between -pi and pi representing
the angle theta of an (x,y) point. This is the counterclockwise angle, measured
in radians, between the positive X axis, and the point (x,y). Note that the
arguments to this function pass the y-coordinate first and the x-coordinate
second.

atan2 is passed separate x and y arguments, and atan is passed the ratio of
those two arguments.

atan2 is a static method of Math. As a result, you always use it as
Math.atan2(), rather than as a method of a Math object you create.

Example The following function returns the angle of the polar coordinate:

function getAtan2(x,y) {
 return Math.atan2(x,y)

}

If you pass getAtan2 the values (90,15), it returns 1.4056476493802699; if
you pass it the values (15,90), it returns 0.16514867741462683.

See also Math.acos, Math.asin, Math.atan, Math.cos, Math.sin,
Math.tan
Math 16-59

ceil
Returns the smallest integer greater than or equal to a number.

Applies to Math

Syntax ceil(x)

Parameters x
A number.

Description ceil is a static method of Math. As a result, you always use it as
Math.ceil(), rather than as a method of a Math object you create.

Example The following function returns the ceil value of the variable x:

function getCeil(x) {
 return Math.ceil(x)

}

If you pass 45.95 to getCeil, it returns 46; if you pass -45.95, it returns -45.

See also Math:floor
16-60 Core Objects

cos
Returns the cosine of a number.

Applies to Math

Syntax cos(x)

Parameters x
A number.

Description The cos method returns a numeric value between -1 and 1, which represents
the cosine of the angle.

cos is a static method of Math. As a result, you always use it as Math.cos(),
rather than as a method of a Math object you create.

Examples The following function returns the cosine of the variable x:

function getCos(x) {
 return Math.cos(x)

}

If x equals Math.PI/2, getCos returns 6.123031769111886e-017; if x equals
Math.PI, getCos returns -1.

See also Math:acos, Math.asin, Math.atan, Math.atan2, Math.sin,
Math.tan
Math 16-61

exp
Returns Ex, where x is the argument, and E is Euler's constant, the base of the
natural logarithms.

Applies to Math

Syntax exp(x)

Parameters x
A number.

Description exp is a static method of Math. As a result, you always use it as Math.exp(),
rather than as a method of a Math object you create.

Examples The following function returns the exponential value of the variable x:

function getExp(x) {
 return Math.exp(x)

}

If you pass getExp the value 1, it returns 2.718281828459045.

See also Math:E, Math:log, Math:pow
16-62 Core Objects

floor
Returns the largest integer less than or equal to a number.

Applies to Math

Syntax floor(x)

Parameters x
A number.

Description floor is a static method of Math. As a result, you always use it as
Math.floor(), rather than as a method of a Math object you create.

Examples The following function returns the floor value of the variable x:

function getFloor(x) {
 return Math.floor(x)

}

If you pass 45.95 to getFloor, it returns 45; if you pass -45.95, it returns -46.

See also Math:ceil
Math 16-63

log
Returns the natural logarithm (base E) of a number.

Applies to Math

Syntax log(x)

Parameters x
A number.

Description If the value of number is outside the suggested range, the return value is always
-1.797693134862316e+308.

log is a static method of Math. As a result, you always use it as Math.log(),
rather than as a method of a Math object you create.

Examples The following function returns the natural log of the variable x:

function getLog(x) {
 return Math.log(x)

}

If you pass getLog the value 10, it returns 2.302585092994046; if you pass it
the value 0, it returns -1.797693134862316e+308 because 0 is out of range.

See also Math.exp, Math.pow
16-64 Core Objects

max
Returns the larger of two numbers.

Applies to Math

Syntax max(x,y)

Parameters x,y
Numbers.

Description max is a static method of Math. As a result, you always use it as Math.max(),
rather than as a method of a Math object you create.

Examples The following function evaluates the variables x and y:

function getMax(x,y) {
 return Math.max(x,y)

}

If you pass getMax the values 10 and 20, it returns 20; if you pass it the values
-10 and -20, it returns -10.

See also Math.min
Math 16-65

min
Returns the smaller of two numbers.

Applies to Math

Syntax min(x,y)

Parameters x,y
Numbers.

Description min is a static method of Math. As a result,you always use it as
Math.min(), rather than as a method of a Math object you create.

Examples The following function evaluates the variables x and y:

function getMin(x,y) {
 return Math.min(x,y)

}

If you pass getMin the values 10 and 20, it returns 10; if you pass it the values
-10 and -20, it returns -20.

See also Math.max
16-66 Core Objects

pow
Returns base to the exponent power, that is, baseexponent.

Applies to Math

Syntax pow(x,y)

Parameters base
The base number.

exponent
The exponent to which to raise base.

Description pow is a static method of Math. As a result, you always use it as Math.pow(),
rather than as a method of a Math object you create.

Examples function raisePower(x,y) {
 return Math.pow(x,y)

}

If x is 7 and y is 2, raisePower returns 49 (7 to the power of 2).

See also Math.exp, Math.log
Math 16-67

random
Returns a pseudo-random number between 0 and 1. The random number
generator is seeded from the current time, as in Java.

Applies to Math

Syntax random()

Parameters None

Description random is a static method of Math. As a result, you always use it as
Math.random(), rather than as a method of a Math object you create.

Examples //Returns a random number between 0 and 1
function getRandom() {
 return Math.random()

}

round
Returns the value of a number rounded to the nearest integer.

Applies to Math

Syntax round(x)

Parameters x
A number.

Description If the fractional portion of number is .5 or greater, the argument is rounded to
the next highest integer. If the fractional portion of number is less than .5, the
argument is rounded to the next lowest integer.

round is a static method of Math. As a result, you always use it as
Math.round(), rather than as a method of a Math object you create.

Examples //Displays the value 20
Console.Write("The rounded value is " + Math.round(20.49))

//Displays the value 21
Console.Write("The rounded value is " + Math.round(20.5))

//Displays the value -20
16-68 Core Objects

Console.Write("The rounded value is " + Math.round(-20.5))

//Displays the value -21
Console.Write("The rounded value is " + Math.round(-20.51))

sin
Returns the sine of a number.

Applies to Math

Syntax sin(x)

Parameters x
A number.

Description The sin method returns a numeric value between -1 and 1, which represents
the sine of the argument.

sin is a static method of Math. As a result, you always use it as Math.sin(),
rather than as a method of a Math object you create.

Examples The following function returns the sine of the variable x:

function getSine(x) {
 return Math.sin(x)

}

If you pass getSine the value Math.PI/2, it returns 1.

See also Math:acos, Math:asin, Math:atan, Math:atan2, Math:cos,
Math:tan
Math 16-69

sqrt
Returns the square root of a number.

Applies to Math

Syntax sqrt(x)

Parameters x
A number.

Description If the value of number is outside the required range, sqrt returns 0.

sqrt is a static method of Math. As a result, you always use it as
Math.sqrt(), rather than as a method of a Math object you create.

Examples The following function returns the square root of the variable x:

function getRoot(x) {
 return Math.sqrt(x)

}

If you pass getRoot the value 9, it returns 3; if you pass it the value 2, it
returns 1.414213562373095.
16-70 Core Objects

tan
Returns the tangent of a number.

Applies to Math

Syntax tan(x)

Parameters x
A number.

Description The tan method returns a numeric value that represents the tangent of the
angle.

tan is a static method of Math. As a result, you always use it as Math.tan(),
rather than as a method of a Math object you create.

Examples The following function returns the tangent of the variable x:

function getTan(x) {
 return Math.tan(x)

}

If you pass Math.PI/4 to getTan, it returns 0.9999999999999999.
Math 16-71

Number

Lets you work with numeric values. The Number object is an object wrapper
for primitive numeric values and a core object.

Created by The Number constructor.

Syntax new Number(value);

Parameters value
The numeric value of the object being created.

Description The primary uses for the Number object are:

■ To access its constant properties, which represent the largest and smallest
representable numbers, positive and negative infinity, and the Not-a-
Number value

■ To create numeric objects that you can add properties to. Most likely, you
will rarely need to create a Number object.

The properties of Number are properties of the class itself, not of individual
Number objects.

Number(x) now produces NaN rather than an error if x is a string that does
not contain a well-formed numeric literal. For example:

x=Number("three");
Console.Write(x);
prints NaN

Examples The following example uses the Number object's properties to assign values to
several numeric variables:

biggestNum = Number.MAX_VALUE
smallestNum = Number.MIN_VALUE
infiniteNum = Number.POSITIVE_INFINITY
negInfiniteNum = Number.NEGATIVE_INFINITY
notANum = Number.NaN
16-72 Core Objects

The following example creates a Number object, myNum, then adds a
description property to all Number objects. Then a value is assigned to the
myNum object's description property.

myNum = new Number(65)
Number.prototype.description=null
myNum.description="wind speed"

Number Properties
Table 16-13 displays a summary of the number properties. Detailed
descriptions of each property follow the table.

Tab le 16-13 Number Properties

MAX VALUE The largest representable number.

MIN VALUE The smallest representable number.

NaN Special "not a number" value.

NEGATIVE_INFINITY Special infinite value; returned on overflow.

POSITIVE INFINITY Special negative infinite value; returned on overflow.

Prototype Allows the addition of properties to a Number object.
Number 16-73

MAX_VALUE
The maximum numeric value representable in JavaScript.

Property of Number

Description The MAX_VALUE property has a value of approximately 1.79E+308. Values
larger than MAX_VALUE are represented as Infinity.

MAX_VALUE is a static, read-only property of Number. As a result, you always
use it as Number.MAX_VALUE, rather than as a property of a Number object
you create.

Example The following code multiplies two numeric values. If the result is less than or
equal to MAX_VALUE, the func1 function is called; otherwise, the func2
function is called.

if (num1 * num2 <= Number.MAX_VALUE)
 func1()

else
 func2()

MIN_VALUE
The smallest positive numeric value that can be represented in JavaScript.

Property of Number

Description The MIN_VALUE property is the number closest to 0, not the most negative
number, that JavaScript can represent.

MIN_VALUE has a value of approximately 2.22E-308. Values smaller than
MIN_VALUE ("underflow values") are converted to 0.

MIN_VALUE is a static, read-only property of Number. As a result, you always
use it as Number.MIN_VALUE, rather than as a property of a Number object
you create.

Example The following code divides two numeric values. If the result is greater than or
equal to MIN_VALUE, the func1 function is called; otherwise, the func2
function is called.

if (num1 / num2 >= Number.MIN_VALUE)
 func1()

else
 func2()
16-74 Core Objects

NaN
A special value representing Not-A-Number. This value is represented as the
unquoted literal NaN. NaN is a read-only property.

Property of Number

Description JavaScript prints the value Number.NaN as NaN.

NaN is always unequal to any other number, including NaN itself; you cannot
check for the not-a-number value by comparing to Number.NaN. Use the
isNaN function instead.

You might use the NaN property to indicate an error condition for a function
that should return a valid number.

Example In the following example, if month has a value greater than 12, it is assigned
NaN, and a message is displayed indicating valid values.

var month = 13
if (month < 1 || month > 12) {
 month = Number.NaN
 alert("Month must be between 1 and 12.")

}

NEGATIVE_INFINITY
A special numeric value representing negative infinity. This value is displayed
as -Infinity.

Property of: Number

Description This value behaves mathematically like infinity; for example, anything
multiplied by infinity is infinity, and anything divided by infinity is 0.

NEGATIVE_INFINITY is a static, read-only property of Number. As a result,
you always use it as Number.NEGATIVE_INFINITY, rather than as a property
of a Number object you create.

Examples In the following example, the variable smallNumber is assigned a value that is
smaller than the minimum value. When the if statement executes,
smallNumber has the value -Infinity, so the func1 function is called.

var smallNumber = -Number.MAX_VALUE*10
if (smallNumber == Number.NEGATIVE_INFINITY)
Number 16-75

 func1()
else
 func2()

POSITIVE_INFINITY
A special numeric value representing infinity. This value is displayed as
Infinity.

Property of Number

Description This value behaves mathematically like infinity; for example, anything
multiplied by infinity is infinity, and anything divided by infinity is 0.

JavaScript does not have a literal for Infinity.

POSITIVE_INFINITY is a static, read-only property of Number. As a result,
you always use it as Number.POSITIVE_INFINITY, rather than as a property
of a Number object you create.

Example In the following example, the variable bigNumber is assigned a value that is
larger than the maximum value. When the if statement executes, bigNumber
has the value Infinity, so the func1 function is called.

var bigNumber = Number.MAX_VALUE * 10
if (bigNumber == Number.POSITIVE_INFINITY)
 func1()

else
 func2()

Prototype

Description Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For information on
prototypes, see Function.prototype.

Property of Number
16-76 Core Objects

Number Methods
Table 16-14 displays the number method. A detailed description of this
method follows the table.

toString
Returns a string representing the specified object.

Applies to Number

Syntax toString()
toString(radix)I I

Parameters radix
(Optional) An integer between 2 and 16 specifying the base to use for
representing numeric values.

Description Every object has a toString method that is automatically called when it is to
be represented as a text value or when an object is referred to in a string
concatenation.

You can use toString within your own code to convert an object into a
string, and you can create your own function to be called in place of the default
toString method.

You can use toString on numeric values, but not on numeric heliterals:

// The next two lines are valid
var howMany=10
 ("howMany.toString() is " + howMany.toString())
// The next line causes an error
 ("45.toString() is " + 45.toString())

For information on defining your own toString method, see the
Object.toString method.

Tab le 16-14 Number Method

tostring Returns a string representing the specified object.
Number 16-77

Object

Object is the primitive JavaScript object type. All JavaScript objects are
descended from Object. That is, all JavaScript objects have the methods
defined for Object.

Created by The Object constructor

Syntax new Object();

Parameters None

Object Properties
Table 16-15 displays a summary of the object properties. Detailed descriptions
of each property follow the table.

Tab le 16-15 Object Properties

Constructor Specifies the function that creates an object's prototype.

Prototype Allows the addition of properties to all objects.
16-78 Core Objects

constructor
Specifies the function that creates an object's prototype. Note that the value of
this property is a reference to the function itself, not a string containing the
function's name.

Property of: Object

Description All objects inherit a constructor property from their prototype:

o = new Object // or o = {}
o.constructor == Object
a = new Array // or a = []
a.constructor == Array
n = new Number(3)
n.constructor == Number

Example The following example creates a prototype, Tree, and an object of that type,
theTree. The example then displays the constructor property for the
object theTree.

function Tree(name) {
 this.name=name

}
theTree = new Tree("Redwood")

Console.Write("theTree.constructor is" +
theTree.constructor)

This example displays the following output:

theTree.constructor is function Tree(name) { this.name = name; }

Prototype
Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For more information, see
“prototype” on page 16-46.

Property of Object
Object 16-79

Object Methods
Table 16-16 displays a summary of the object methods. Detailed descriptions
of each method follow the table.

eval
Evaluates a string of JavaScript code in the context of this object.

Property of Object

Syntax eval(string)

Parameters string
Any string representing a JavaScript expression, statement, or sequence of
statements. The expression can include variables and properties of existing
objects.

Description The argument of the eval method is a string. If the string represents an
expression, eval evaluates the expression. If the argument represents one or
more JavaScript statements, eval performs the statements. Do not call eval
to evaluate an arithmetic expression; JavaScript evaluates arithmetic
expressions automatically.

If you construct an arithmetic expression as a string, you can use eval to
evaluate it at a later time. For example, suppose you have a variable x. You can
postpone evaluation of an expression involving x by assigning the string value
of the expression, say "3 * x + 2", to a variable, and then calling eval at a
later point in your script.

eval is also a global function, not associated with any object.

Tab le 16-16 Object Methods

eval Evaluates a string of JavaScript code in the context of the specified
object.

toString Returns a string representing the specified object.

uwatch Removes a watchpoint from a property of the object.

valueOf Returns the primitive value of the specified object.

watch Adds a watchpoint to a property of the object.
16-80 Core Objects

Examples The following example creates breed as a property of the object myDog, and
also as a variable. The first write statement uses eval('breed') without
specifying an object; the string “breed” is evaluated without regard to any
object, and the write method displays Shepherd, which is the value of the
breed variable.

The second write statement uses myDog.eval('breed') which specifies
the object myDog; the string “breed" is evaluated with regard to the myDog
object, and the write method displays "Lab", which is the value of the
breed property of the myDog object.

function Dog(name,breed,color) {
 this.name=name
 this.breed=breed
 this.color=color

}
myDog = new Dog("Gabby")
myDog.breed="Lab"
var breed='Shepherd'
Console.Write(eval('breed'))
Console.Write(myDog.eval('breed'))

The following example uses eval within a function that defines an object
type, stone. The statement flint = new stone("x=42") creates the
object flint with the properties x, y, z, and z2. The write statements
display the values of these properties as 42, 43, 44, and 45, respectively.

function stone(str) {
 this.eval("this."+str)
 this.eval("this.y=43")
 this.z=44
 this["z2"] = 45

}

flint = new stone("x=42")

Console.Write(flint.x is " + flint.x)

Console.Write(flint.y is " + flint.y)

Console.Write(flint.z is " + flint.z)

Console.Write(flint.z2 is " + flint.z2)
Object 16-81

toString
Returns a string representing the specified object.

Applies to Object

Syntax toString()
toString(radix)

Parameters radix
(Optional) An integer between 2 and 16 specifying the base to use for
representing numeric values.

Description Every object has a toString method that is automatically called when it is
to be represented as a text value or when an object is referred to in a string
concatenation. For example, the following examples require theDog to be
represented as a string:

Console.Write(theDog)
Console.Write("The dog is " + theDog)
You can use toString within your own code to convert an object into a
string, and you can create your own function to be called in place of the default
toString method.

■ Built-in toString methods

Every object type has a built-in toString method, which JavaScript calls
whenever it needs to convert an object to a string. If an object has no string
value and no user-defined toString method, toString returns
[object type], where type is the object type or the name of the
constructor function that created the object.

Some built-in classes have special definitions for their toString methods.
See the descriptions of this method for these objects:

■ User-defined toString methods

You can create a function to be called in place of the default toString
method. The toString method takes no arguments and should return a
string. The toString method you create can be any value you want, but it
will be most useful if it carries information about the object.

The following code defines the Dog object type and creates theDog, an
object of type Dog:

function Dog(name,breed,color,sex) {
 this.name=name
16-82 Core Objects

 this.breed=breed
 this.color=color
 this.sex=sex

}
theDog = new Dog("Gabby","Lab","chocolate","girl")

The following code creates dogToString, the function that will be used
in place of the default toString method. This function generates a string
containing each property, of the form property = value;.

function dogToString() {
 var ret = "Dog " + this.name + " is ["
 for (var prop in this)
 ret += " " + prop + " is " + this[prop] + ";"
 return ret + "]"

}

The following code assigns the user-defined function to the object's
toString method:

Dog.prototype.toString = dogToString

With the preceding code in place, any time theDog is used in a string
context, JavaScript automatically calls the dogToString function, which
returns the following string:

Dog Gabby is [name is Gabby; breed is Lab; color is
chocolate; sex is girl; toString is function dogToString() {
var ret = "Object " + this.name + " is ["; for (var prop in
this) { ret += " " + prop + " is " + this[prop] + ";"; }
return ret + "]"; } ;]

An object's toString method is usually invoked by JavaScript, but you
can invoke it yourself as follows:

alert(theDog.toString())

Examples The following example prints the string equivalents of the numbers 0 through
9 in decimal and binary.

for (x = 0; x < 10; x++) {
 ("Decimal: ", x.toString(10), " Binary: ",

Console.write
 x.toString(2))

}

The preceding example produces the following output:

Decimal: 0 Binary: 0
Decimal: 1 Binary: 1
Decimal: 2 Binary: 10
Decimal: 3 Binary: 11
Object 16-83

Decimal: 4 Binary: 100
Decimal: 5 Binary: 101
Decimal: 6 Binary: 110
Decimal: 7 Binary: 111
Decimal: 8 Binary: 1000
Decimal: 9 Binary: 1001

See also Object.valueOf

unwatch
Removes a watchpoint set with the watch method.

Applies to Object

Syntax unwatch(prop)

Parameters prop
The name of a property of the object.

Example See: Object:watch

valueOf
Returns the primitive value of the specified object.

Applies to Object

Syntax valueOf()

Parameters None

Description Every object has a valueOf method that is automatically called when it is to
be represented as a primitive value. If an object has no primitive value,
valueOf returns the object itself.

You can use valueOf within your own code to convert an object into a
primitive value, and you can create your own function to be called in place of
the default valueOf method.

Every object type has a built-in valueOf method, which JavaScript calls
whenever it needs to convert an object to a primitive value.
16-84 Core Objects

You rarely need to invoke the valueOf method yourself. JavaScript
automatically invokes it when encountering an object where a primitive value
is expected.

Table 16-17 shows object types for which the valueOf method is most
useful. Most other objects have no primitive value.

You can create a function to be called in place of the default valueOf method.
Your function must take no arguments.

Suppose you have an object type myNumberType and you want to create a
valueOf method for it. The following code assigns a user-defined function to
the object's valueOf method:

myNumberType.prototype.valueOf = new Function(functionText)

With the preceding code in place, any time an object of type myNumberType
is used in a context where it is to be represented as a primitive value, JavaScript
automatically calls the function defined in the preceding code.

An object's valueOf method is usually invoked by JavaScript, but you can
invoke it yourself as follows:

myNumber.valueOf()

Tip Objects in string contexts convert via the toString method, which is
different from String objects converting to string primitives using valueOf.
All string objects have a string conversion, if only [object type]. But many
objects do not convert to number, boolean, or function.

Tab le 16-17 Object Types for the valueOf Method

Object Type Value Returned by valueOf

Number Primitive numeric value associated with the object.

Boolean Primitive boolean value associated with the object.

String String associated with the object.

Function Function reference associated with the object. For example, typeof
funObj returns object, but typeof funObj.valueOf()
returns function.

✰

Object 16-85

watch
Watches for a property to be assigned a value and runs a function when that
occurs.

Applies to Object

Syntax watch(prop, handler)

Parameters prop
The name of a property of the object.

handler
A function to call.

Description Watches for assignment to a property named prop in this object, calling
handler(prop, oldval, newval) whenever prop is set and storing
the return value in that property. A watchpoint can filter (or nullify) the value
assignment, by returning a modified newval (or oldval).

If you delete a property for which a watchpoint has been set, that watchpoint
does not disappear. If you later recreate the property, the watchpoint is still in
effect.

To remove a watchpoint, use the unwatch method.

Example o = {p:1}
o.watch("p",
 function (id,oldval,newval) {
 Console.Write("o." + id + " changed from "
 + oldval + " to " + newval)
 return newval
 })

o.p = 2
o.p =
delete o.p

o.p = 4

o.unwatch('p')

o.p = 5

This script displays the following:

o.p changed from 1 to 2
o.p changed from 2 to 3
o.p changed from 3 to 4
16-86 Core Objects

String

An object representing a series of characters in a string. String is a core object.

Created by The String constructor:

new String(string);

Parameters string
Any string.

Description The String object is a built-in JavaScript object. You an treat any JavaScript
string as a String object.

A string can be represented as a literal enclosed by single or double quotation
marks; for example, "Brio" or 'Brio'.

Examples ■ String Variable

The following statement creates a string variable:

var last_name = "Schaefer"

■ String Object Properties

The following statements evaluate to 8, "SCHAEFER," and "schaefer":

last_name.length
last_name.toUpperCase()
last_name.toLowerCase()

■ Accessing individual characters in a string

You can think of a string as an array of characters. In this way, you can
access the individual characters in the string by indexing that array. For
example, the following code:

var myString = "Hello"
Console.Write ("The first character in the string is " +
myString[0])

displays "The first character in the string is H"
String 16-87

String Properties
Table 16-18 displays a summary of the string properties. Detailed descriptions
of each property follow the table.

length
The length of the string. The length property is read-only.

Property of String

Description For a null string, length is 0.

Example The following example displays 8 in an Alert dialog box:

var x="Netscape"
Alert("The string length is " + x.length)

prototype
Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For information on
prototypes, see Function.prototype.

Property of String

Tab le 16-18 String Properties

length Reflects the length of the string.

prototype Allows the addition of properties to a String object.
16-88 Core Objects

String Methods
Table 16-19 displays a summary of the string methods. Detailed descriptions of
each method follow the table.

Tab le 16-19 String Methods

anchor Creates an HTML anchor that is used as a hypertext target.

big Causes a string to be displayed in a big font as if it were in a BIG tag.

blink Causes a string to blink as if it were in a BLINK tag.

bold Causes a string to be displayed as if it were in a B tag.

charat Returns the character at the specified index.

charCodeat Returns a number indicating the ISO-Latin-1 codeset value of the charac-
ter at the given index.

concat Combines the text of two strings and returns a new string.

fixed Causes a string to be displayed in fixed-pitch font as if it were in a TT
tag.

fontcolor Causes a string to be displayed in the specified color as if it were in a
 tag.

fontsize Causes a string to be displayed in the specified font size as if it were in a
 tag.

fromCharCode Returns a string from the specified sequence of numbers that are ISO-
Latin-1 codeset values.

indexOf Returns the index within the calling String object of the first occur-
rence of the specified value.

italics Causes a string to be italic, as if it were in an I tag.

lastIndexOf Returns the index within the calling String object of the last occur-
rence of the specified value.

link Creates an HTML hypertext link that requests another URL.

match Used to match a regular expression against a string.

replace Used to find a match between a regular expression and a string, and to
replace the matched substring with a new substring.
String 16-89

16-90 Core Objects

search Executes the search for a match between a regular expression and a
specified string.

slice Extracts a section of a string and returns a new string.

small Causes a string to be displayed in a small font, as if it were in a SMALL
tag.

split Splits a String object into an array of strings by separating the string
into substrings.

strike Causes a string to be displayed as struck-out text, as if it were in a
STRIKE tag.

sub Causes a string to be displayed as a subscript, as if it were in a SUB tag.

substr Returns the characters in a string beginning at the specified location
through the specified number of characters.

substring Returns the characters in a string between two indexes into the string.

sup Causes a string to be displayed as a superscript, as if it were in a SUP
tag.

ToLowerCase Returns the calling string value converted to lowercase.

ToUpperCase Returns the calling string value converted to uppercase.

Tab le 16-19 String Methods (Continued)

anchor
Creates an HTML anchor that is used as a hypertext target.

Applies to String

Syntax anchor(nameAttribute)

Parameters nameAttribute
A string.

Description Use the anchor method with Console.Write to programmatically create
and display an anchor in a document. Create the anchor with the anchor
method, and then call write to display the anchor in a document.

In the syntax, the text string represents the literal text that you want the user
to see. The nameAttribute string represents the NAME attribute of the A tag.

Anchors created with the anchor method become elements in the
document.anchors array.

Examples The following example opens the msgWindow window and creates an anchor
for the table of contents:

var myString="Table of Contents"
Write(myString.anchor("contents_anchor"))

The previous example produces the same output as the following HTML:

Table of Contents

See also String:link
String 16-91

big
Causes a string to be displayed in a big font as if it were in a BIG tag.

Applies to String

Syntax big()

Parameters None

Description Use the big method with the Write method to format and display a string in
a document.

Example The following example uses string methods to change the size of a string:

var worldString="Hello, world"

Console.Write(worldString.small())
Console.Write(worldString.big())

Console.Write(worldString.fontsize(7))

The previous example produces the same output as the following HTML:

<SMALL>Hello, world</SMALL>

<BIG>Hello, world</BIG>

<FONTSIZE=7>Hello, world</FONTSIZE>

See also String.fontsize, String.small
16-92 Core Objects

blink
Causes a string to blink as if it were in a BLINK tag.

Applies to String

Syntax blink()

Parameters None

Description Use the blink method with the Write method to format and display a string
in a document.

Example The following example uses string methods to change the formatting of a
string:

var worldString="Hello, world"

Console.Write(worldString.blink())

Console.Write("<P>" + worldString.bold())
Console.Write("<P>" + worldString.italics())

Console.Write("<P>" + worldString.strike())

The previous example produces the same output as the following HTML:

<BLINK>Hello, world</BLINK>
<P>Hello, world
<P><I>Hello, world</I>
<P><STRIKE>Hello, world</STRIKE>

See also String.bold, String.italics, String.strike
String 16-93

bold
Causes a string to be displayed as bold as if it were in a B tag.

Applies to String

Syntax bold()

Parameters None

Description Use the bold method with the Write methods to format and display a string
in a document.

Example The following example uses string methods to change the formatting of a
string:

var worldString="Hello, world"
Console.Write(worldString.blink())
Console.Write("<P>" + worldString.bold())
Console.Write("<P>" + worldString.italics())
Console.Write("<P>" + worldString.strike())

The previous example produces the same output as the following HTML:

<BLINK>Hello, world</BLINK>
<P>Hello, world
<P><I>Hello, world</I>
<P><STRIKE>Hello, world</STRIKE>

See also String:blink, String:italics, String.strike
16-94 Core Objects

charAt
Returns the specified character from the string.

Applies to String

Syntax charAt(index)

Parameters index
An integer between 0 and 1 less than the length of the string.

Description Characters in a string are indexed from left to right. The index of the first
character is 0, and the index of the last character in a string called
stringName is stringName.length - 1. If the index you supply is
out of range, JavaScript returns an empty string.

Example The following example displays characters at different locations in the string
"Brave new world":

var anyString="Brave new world"

Console.Write("The character at index 0 is " +
anyString.charAt(0))
Console.Write("The character at index 1 is " +
anyString.charAt(1))
Console.Write("The character at index 2 is " +
anyString.charAt(2))
Console.Write("The character at index 3 is " +
anyString.charAt(3))
Console.Write("The character at index 4 is " +
anyString.charAt(4))

These lines display the following:

The character at index 0 is B
The character at index 1 is r
The character at index 2 is a
The character at index 3 is v
The character at index 4 is e

See also String:indexOf, String.lastIndexOf, String.split
String 16-95

charCodeAt
Returns a number indicating the ISO-Latin-1 codeset value of the character at
the given index.

Applies to String

Syntax charCodeAt(index)

Parameters index
(Optional) An integer between 0 and 1 less than the length of the string. The
default value is 0.

Description The ISO-Latin-1 codeset ranges from 0 to 255. The first 0 to 127 are a direct
match of the ASCII character set.

Example The following example returns 65, the ISO-Latin-1 codeset value for A.

"ABC".charCodeAt(0)

concat
Combines the text of two strings and returns a new string.

Applies to String

Syntax concat(string2)

Parameters string1
The first string.

string 2
The second string.

Description concat combines the text from two strings and returns a new string. Changes
to the text in one string do not affect the other string.

Example The following example combines two strings into a new string.

str1="The morning is upon us. "
str2="The sun is bright."
str3=str1.concat(str2)
Console.Write(str1)
Console.Write(str2)
Console.Write(str3)
16-96 Core Objects

This writes:

The morning is upon us.
The sun is bright.
The morning is upon us. The sun is bright.

fixed
Causes a string to be displayed in fixed-pitch font as if it were in a TT tag.

Applies to String

Syntax fixed()

Parameters None

Description Use the fixed method with the Write method to format and display a string
in a document.

Example The following example uses the fixed method to change the formatting of a
string:

var worldString="Hello, world"
 (worldString.fixed())

The previous example produces the same output as the following HTML:

<TT>Hello, world</TT>
String 16-97

fontcolor
Causes a string to be displayed in the specified color as if it were in a <FONT
COLOR=color> tag.

Applies to String

Syntax fontcolor(color)

Parameters color
A string expressing the color as a hexadecimal RGB triplet or as a string literal.
String literals for color names are listed in Appendix B, "Color Values," in the
JavaScript Guide.

Description Use the fontcolor method with the Write method to format and display a
string in a document.

If you express color as a hexadecimal RGB triplet, you must use the format
rrggbb. For example, the hexadecimal RGB values for salmon are red=FA,
green=80, and blue=72, so the RGB triplet for salmon is "FA8072".

The fontcolor method overrides a value set in the fgColor property.

Examples The following example uses the fontcolor method to change the color of a
string:

var worldString="Hello, world"
Console.Write(worldString.fontcolor("maroon") +
 " is maroon in this line")

Console.Write("<P>" + worldString.fontcolor("salmon") +
 " is salmon in this line")

Console.Write("<P>" + worldString.fontcolor("red") +
 " is red in this line")

Console.Write("<P>" + worldString.fontcolor("8000") +
 " is maroon in hexadecimal in this line")

Console.Write("<P>" + worldString.fontcolor("FA8072") +
 " is salmon in hexadecimal in this line")

Console.Write("<P>" + worldString.fontcolor("FF00") +
 " is red in hexadecimal in this line")

The previous example produces the same output as the following HTML:

Hello, world is maroon in this line
<P>Hello, world is salmon in this
line
<P>Hello, world is red in this line
16-98 Core Objects

String 16-99

Hello, world
is maroon in hexadecimal in this line
<P>Hello, world
is salmon in hexadecimal in this line
<P>Hello, world
is red in hexadecimal in this line

fontsize
Causes a string to be displayed in the specified font size as if it were in a <FONT
SIZE=size> tag.

Applies to String

Syntax fontsize(size)

Parameters size
An integer between 1 and 7, a string representing a signed integer between 1
and 7.

Description Use the fontsize method with the Write method to format and display a
string in a document.

When you specify size as an integer, you set the size of stringName to one
of the 7 defined sizes. When you specify size as a string such as "-2", you
adjust the font size of stringName relative to the size set in the BASEFONT
tag.

Example The following example uses string methods to change the size of a string:

var worldString="Hello, world"
Console.Write(worldString.small())
Console.Write("<P>" + worldString.big())
Console.Write("<P>" + worldString.fontsize(7))

The previous example produces the same output as the following HTML:

<SMALL>Hello, world</SMALL>
<P><BIG>Hello, world</BIG>
<P><FONTSIZE=7>Hello, world</FONTSIZE>

See also String.big, String.small

fromCharCode
Returns a string created by using the specified sequence ISO-Latin-1 codeset
values.

Applies to String

Syntax fromCharCode(num1, ..., numN)

Parameters num1...numN
A sequence of numbers that are ISO-Latin-1 codeset values.

Description This method returns a string and not a String object.

fromCharCode is a static method of String. As a result, you always use it as
String.fromCharCode(), rather than as a method of a String object you
create.

Examples The following example returns the string "ABC".

String.fromCharCode(65,66,67)

indexOf
Returns the index within the calling String object of the first occurrence of
the specified value, starting the search at fromIndex, or -1 if the value is not
found.

Applies to String

Syntax indexOf(searchValue, fromIndex)

Parameters searchValue
A string representing the value for which to search.

fromIndex
(Optional) The location within the calling string to start the search from. It
can be any integer between 0 and 1 less than the length of the string. The
default value is 0.
16-100 Core Objects

Description Characters in a string are indexed from left to right. The index of the first
character is 0, and the index of the last character of a string called
stringName is stringName.length - 1.

If stringName contains an empty string (""), indexOf returns an empty
string.

The indexOf method is case sensitive. For example, the following expression
returns -1:

"Blue Whale".indexOf("blue")

Examples The following example uses indexOf and lastIndexOf to locate values in
the string "Brave new world."

var anyString="Brave new world"
//Displays 8
Console.Write("<P>The index of the first w from the beginning is
" +
 anyString.indexOf("w"))

//Displays 10
Console.Write("<P>The index of the first w from the end is " +
 anyString.lastIndexOf("w"))

//Displays 6
Console.Write("<P>The index of 'new' from the beginning is " +
 anyString.indexOf("new"))

//Displays 6
Console.Write("<P>The index of 'new' from the end is " +
 anyString.lastIndexOf("new"))

The following example defines two string variables. The variables contain the
same string except that the second string contains uppercase letters. The first
writeln method displays 19. But because the indexOf method is case
sensitive, the string "cheddar" is not found in myCapString, so the second
writeln method displays -1.

myString="brie, pepper jack, cheddar"
myCapString="Brie, Pepper Jack, Cheddar"
Console.Write('myString.indexOf("cheddar") is ' +
 myString.indexOf("cheddar"))

Console.Write('myCapString.indexOf("cheddar") is ' +
 myCapString.indexOf("cheddar"))

The following example sets count to the number of occurrences of the letter x
in the string str:

count = 0;
pos = str.indexOf("x");
while (pos != -1) {
 count++;
String 16-101

 pos = str.indexOf("x",pos+1);
}

See also String:charAt, String:lastIndexOf, String:split

italics
Causes a string to be italic, as if it were in an I tag.

Applies to String

Syntax italics()

Parameters None

Description Use the italics method with the Write method to format and display a
string in a document.

Example The following example uses string methods to change the formatting of a
string:

var worldString="Hello, world"

Console.Write(worldString.blink())
Console.Write(worldString.bold())
Console.Write(worldString.italics())
Console.Write(worldString.strike())

The previous example produces the same output as the following HTML:

<BLINK>Hello, world</BLINK>
<P>Hello, world
<P><I>Hello, world</I>
<P><STRIKE>Hello, world</STRIKE>

See also String:blink, String:bold, String:strike
16-102 Core Objects

String 16-103

lastIndexOf
Returns the index within the calling String object of the last occurrence of
the specified value. The calling string is searched backward, starting at
fromIndex, or -1 if not found.

Applies to String

Syntax lastIndexOf(searchValue, fromIndex)

Parameters searchValue
A string representing the value for which to search.

fromIndex
(Optional) The location within the calling string to start the search from. It
can be any integer between 0 and 1 less than the length of the string. The
default value is 1 less than the length of the string.

Description Characters in a string are indexed from left to right. The index of the first
character is 0, and the index of the last character is stringName.length -
1.

The lastIndexOf method is case sensitive. For example, the following
expression returns -1:

"Blue Whale, Killer Whale".lastIndexOf("blue")

Example The following example uses indexOf and lastIndexOf to locate values in
the string "Brave new world."

var anyString="Brave new world"
//Displays 8
Console.Write("The index of the first w from the beginning is "
+
 anyString.indexOf("w"))

//Displays 10
Console.Write("The index of the first w from the end is " +
 anyString.lastIndexOf("w"))

//Displays 6
Console.Write("The index of 'new' from the beginning is " +
 anyString.indexOf("new"))

//Displays 6
Console.Write("The index of 'new' from the end is "
 anyString.lastIndexOf("new"))

See also String:charAt, String:indexOf, String:split

link
Creates an HTML hypertext link that requests another URL.

Applies to String

Syntax link(hrefAttribute)

Parameters hrefAttribute
Any string that specifies the HREF attribute of the A tag; it should be a valid
URL (relative or absolute).

Description Use the link method to programmatically create a hypertext link, and then
call to display the link in a document.

Example The following example displays the word "Brio" as a hypertext link that returns
the user to Brio's Web site:

var hotText="Brio"
var URL="http://www.brio.com"
Console.Write("Click to return to " + hotText.link(URL))

The previous example produces the same output as the following HTML:

Click to return to Brio

See also String:anchor
16-104 Core Objects

match
Used to match a regular expression against a string.

Applies to String

Syntax match(regexp)

Parameters regexp
Name of the regular expression. It can be a variable name or literal.

Description If you want to execute a global match, or a case insensitive match, include the g
(for global) and i (for ignore case) flags in the regular expression. These can
be included separately or together. The following two examples below show
how to use these flags with match.

Tip If you execute a match simply to find true or false, use String.search or the
regular expression test method.

Examples In the following example, match is used to find 'Chapter' followed by 1 or
more numeric characters followed by a decimal point and numeric character 0
or more times. The regular expression includes the i flag so that case will be
ignored.

str = "For more information, see Chapter 3.4.5.1";
re = /(chapter \d+(\.\d)*)/i;
found = str.match(re);
Console.Write(found);

This returns the array containing Chapter 3.4.5.1, Chapter 3.4.5.1,.1

'Chapter 3.4.5.1' is the first match and the first value remembered from
(Chapter \d+(\.\d)*).

'.1' is the second value remembered from (\.\d).

The following example demonstrates the use of the global and ignore case flags
with match.

str = "abcDdcba";
newArray = str.match(/d/gi);
Console.Write(newArray);

The returned array contains D, d.

✰

String 16-105

replace
Used to find a match between a regular expression and a string, and to replace
the matched substring with a new substring.

Applies to String

Syntax replace(regexp, newSubStr)

Parameters regexp
The name of the regular expression. It can be a variable name or a literal.

newSubStr
The string to put in place of the string found with regexp. This string can
include the RegExp properties $1, ..., $9, lastMatch, lastParen,
leftContext, and rightContext.

Description This method does not change the String object it is called on; it simply
returns a new string.

If you want to execute a global search and replace, or a case insensitive search,
include the g (for global) and i (for ignore case) flags in the regular
expression. These can be included separately or together. The following two
examples below show how to use these flags with replace.

Examples In the following example, the regular expression includes the global and ignore
case flags which permits replace to replace each occurrence of 'apples' in the
string with 'oranges.'

re = /apples/gi;
str = "Apples are round, and apples are juicy.";
newstr=str.replace(re, "oranges");
Console.Write(newstr)

This prints "oranges are round, and oranges are juicy."

In the following example, the regular expression is defined in replace and
includes the ignore case flag.

str = "Twas the night before Xmas...";
newstr=str.replace(/xmas/i, "Christmas");
Console.Write(newstr)
16-106 Core Objects

This prints "Twas the night before Christmas..."

The following script switches the words in the string. For the replacement text,
the script uses the values of the $1 and $2 properties.

re = /(\w+)\s(\w+)/;
str = "John Smith";
newstr = str.replace(re, "$2, $1");
Console.Write(newstr)

This prints "Smith, John".

search
Executes the search for a match between a regular expression and this String
object.

Applies to String

Syntax search(regexp)

Parameters regexp
Name of the regular expression. It can be a variable name or a literal.

Description If successful, search returns the index of the regular expression inside the
string. Otherwise, it returns -1.

When you want to know whether a pattern is found in a string use search
(similar to the regular expression test method); for more information (but
slower execution) use match (similar to the regular expression exec method).

Example The following example prints a message which depends on the success of the
test.

function testinput(re, str){
 if (str.search(re) != -1)
 midstring = " contains ";
 else
 midstring = " does not contain ";
 Console.Write (str + midstring + re.source);

}

String 16-107

slice
Extracts a section of a string and returns a new string.

Applies to String

Syntax slice(beginslice,endSlice)

Parameters beginSlice
The zero-based index at which to begin extraction.

endSlice
(Optional) The zero-based index at which to end extraction. If omitted, slice
extracts to the end of the string.

Description slice extracts the text from one string and returns a new string. Changes to
the text in one string do not affect the other string.

slice extracts up to but not including endSlice. string.slice(1,4)
extracts the second character through the fourth character (characters indexed
1, 2, and 3).

As a negative index, endSlice indicates an offset from the end of the string.
string.slice(2,-1) extracts the third character through the second to
last character in the string.

Example The following example uses slice to create a new string.

str1="The morning is upon us. "
tr2=str1.slice(3,-5)
Console.Write(str2)

This writes:

The morning is upon us
16-108 Core Objects

small
Causes a string to be displayed in a small font, as if it were in a SMALL tag.

Applies to String

Syntax small()

Parameters None

Description Use the small method with the Write method to format and display a string
in a document.

Example The following example uses string methods to change the size of a string:

var worldString="Hello, world"
Console.Write(worldString.small())
Console.Write("<P>" + worldString.big())
Console.Write("<P>" + worldString.fontsize(7))

The previous example produces the same output as the following HTML:

<SMALL>Hello, world</SMALL>
<P><BIG>Hello, world</BIG>
<P><FONTSIZE=7>Hello, world</FONTSIZE>

See also String:big, String:fontsize
String 16-109

split
Splits a String object into an array of strings by separating the string into
substrings.

Applies to String

Syntax split(separator, limit)

Parameters separator
(Optional) Specifies the character to use for separating the string. The
separator is treated as a string. If separator is omitted, the array returned
contains one element consisting of the entire string.

limit
(Optional) Integer specifying a limit on the number of splits to be found.

Description The split method returns the new array.

When found, separator is removed from the string and the substrings are
returned in an array. If separator is omitted, the array contains one element
consisting of the entire string.

It can take a regular expression argument, as well as a fixed string, by which to
split the object string. If separator is a regular expression, any included
parentheses cause submatches to be included in the returned array.

It can take a limit count so that it won't include trailing empty elements in the
resulting array.

Examples The following example defines a function that splits a string into an array of
strings using the specified separator. After splitting the string, the function
displays messages indicating the original string (before the split), the separator
used, the number of elements in the array, and the individual array elements.

function splitString (stringToSplit,separator) {
 arrayOfStrings = stringToSplit.split(separator)
 Console.Write ('<P>The original string is: "' +

stringToSplit + '"')
 Console.Write ('
The separator is: "' + separator +

'"')
 Console.Write ("
The array has " +

arrayOfStrings.length + " elements: ")
 for (var i=0; i < arrayOfStrings.length; i++) {
 Console.Write (arrayOfStrings[i] + " / ")
 }
16-110 Core Objects

}
var tempestString="Oh brave new world that has such people in
it."
var
monthString="Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,Oct,Nov,Dec"

var space=" "
var comma=","

splitString(tempestString,space)
splitString(tempestString)
splitString(monthString,comma)

This example produces the following output:

The original string is: "Oh brave new world that has such people
in it."
The separator is: " "
The array has 10 elements: Oh / brave / new / world / that / has
/ such / people / in / it. /
The original string is: "Oh brave new world that has such people
in it."
The separator is: "undefined"
The array has 1 elements: Oh brave new world that has such
people in it. /

The original string is:
"Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,Oct,Nov,Dec"
The separator is: ","
The array has 12 elements: Jan / Feb / Mar / Apr / May / Jun /
Jul / Aug / Sep / Oct / Nov / Dec /

Consider the following script:

str="She sells seashells \nby the\n seashore"
Console.Write(str)
a=str.split(" ")
Console.Write(a)

Using LANGUAGE="JavaScript1.2", this script produces

"She", "sells", "seashells", "by", "the", "seashore"
String 16-111

In the following example, split looks for 0 or more spaces followed by a
semicolon followed by 0 or more spaces and, when found, removes the spaces
from the string. nameList is the array returned as a result of split.

names = "Harry Trump ;Fred Barney; Helen Rigby ; Bill Abel
;Chris Hand ";
Console.Write (names , " ");
re = /\s*;\s*/;
nameList = names.split (re);
Console.Write(nameList);

This prints two lines; the first line prints the original string, and the second line
prints the resulting array.

Harry Trump ;Fred Barney; Helen Rigby ; Bill Abel ;Chris Hand
Harry Trump,Fred Barney,Helen Rigby,Bill Abel,Chris Hand

In the following example, split looks for 0 or more spaces in a string and
returns the first 3 splits that it finds.

myVar = " Hello World. How are you doing? ";
splits = myVar.split(" ", 3);
Console.Write(splits)

This script displays the following:

["Hello", "World.", "How"]

See also String.charAt, String.indexOf, String.lastIndexOf
16-112 Core Objects

strike
Causes a string to be displayed as struck-out text, as if it were in a STRIKE tag.

Applies to String

Syntax strike()

Parameters None

Description Use the strike method with the Write method to format and display a
string in a document.

Examples The following example uses string methods to change the formatting of a
string:

var worldString="Hello, world"

Console.Write(worldString.blink())
Console.Write("<P>" + worldString.bold())
Console.Write("<P>" + worldString.italics())
Console.Write("<P>" + worldString.strike())

The previous example produces the same output as the following HTML:

<BLINK>Hello, world</BLINK>
<P>Hello, world
<P><I>Hello, world</I>
<P><STRIKE>Hello, world</STRIKE>

See also String.blink, String.bold, String.italics
String 16-113

sub
Causes a string to be displayed as a subscript, as if it were in a SUB tag.

Applies to String

Syntax sub()

Parameters None

Description Use the sub method with the Write method to format and display a string in
a document.

Example The following example uses the sub and sup methods to format a string:

var superText="superscript"
var subText="subscript"

Console.Write("This is what a " + superText.sup() + " looks
like.")
Console.Write("<P>This is what a " + subText.sub() + " looks
like.")

The previous example produces the same output as the following HTML:

This is what a ^{superscript} looks like.
<P>This is what a _{subscript} looks like.

See also String:sup
16-114 Core Objects

String 16-115

substr
Returns the characters in a string beginning at the specified location through
the specified number of characters.

Applies to String

Syntax substr(start, length)

Parameters start
Location at which to begin extracting characters.

length
(Optional) The number of characters to extract.

Description start is a character index. The index of the first character is 0, and the index
of the last character is 1 less than the length of the string. substr begins
extracting characters at start and collects length number of characters.

If start is positive and is the length of the string or longer, substr returns
no characters.

If start is negative, substr uses it as a character index from the end of the
string. If start is negative and abs(start) is larger than the length of the
string, substr uses 0 is the start index.

If length is 0 or negative, substr returns no characters. If length is
omitted, start extracts characters to the end of the string.

Example Consider the following script:

str = "abcdefghij"
Console.Write("(1,2): ", str.substr(1,2))
Console.Write("(-2,2): ", str.substr(-2,2))
Console.Write("(1): ", str.substr(1))
Console.Write("(-20, 2): ", str.substr(1,20))
Console.Write("(20, 2): ", str.substr(20,2))

This script displays:

(1,2): bc
(-2,2): ij
(1): bcdefghij
(-20, 2): bcdefghij
(20, 2):

See also String: substring

substring
Returns a subset of a String object.

Applies to String

Syntax substring(indexA, indexB)

Parameters indexA
An integer between 0 and 1 less than the length of the string.

indexB
An integer between 0 and 1 less than the length of the string.

Description substring extracts characters from indexA up to but not including
indexB. In particular:

■ If indexA is less than 0, indexA is treated as if it were 0.

■ If indexB is greater than stringName.length, indexB is treated as if it
were stringName.length.

■ If indexA equals indexB, substring returns an empty string.

■ If indexB is omitted, indexA extracts characters to the end of the string.

■ If indexA is greater than indexB, JavaScript returns a substring beginning
with indexB and ending with indexA - 1.

Examples The following example uses substring to display characters from the string
"Netscape":

var anyString="Netscape"

//Displays "Net"
Console.Write(anyString.substring(0,3))
Console.Write(anyString.substring(3,0))
//Displays "cap"
Console.Write(anyString.substring(4,7))
Console.Write(anyString.substring(7,4))
//Displays "Netscap"
Console.Write(anyString.substring(0,7))
//Displays "Netscape"
Console.Write(anyString.substring(0,8))
Console.Write(anyString.substring(0,10))

The following example replaces a substring within a string. It will replace both
individual characters and substrings. The function call at the end of the
example changes the string "Brave New World" into "Brave New Web".
16-116 Core Objects

function replaceString(oldS,newS,fullS) {
// Replaces oldS with newS in the string fullS
 for (var i=0; i<fullS.length; i++) {
 if (fullS.substring(i,i+oldS.length) == oldS) {
 fullS =

fullS.substring(0,i)+newS+fullS.substring(i+oldS.length,fullS.l
ength)
 }
 }
 return fullS

}
replaceString("World","Web","Brave New World")

sup
Causes a string to be displayed as a superscript, as if it were in a SUP tag.

Applies to String

Syntax sup()

Parameters None

Description Use the sup method with the Write method to format and display a string in
a document.

Examples The following example uses the sub and sup methods to format a string:

var superText="superscript"
var subText="subscript"

Console.Write("This is what a " + superText.sup() + " looks
like.")
Console.Write("<P>This is what a " + subText.sub() + " looks
like.")

The previous example produces the same output as the following HTML:

This is what a ^{superscript} looks like.
<P>This is what a _{subscript} looks like.

See also String.sub
String 16-117

toLowerCase
Returns the calling string value converted to lowercase.

Applies to String

Syntax toLowerCase()

Parameters None

Description The toLowerCase method returns the value of the string converted to
lowercase. toLowerCase does not affect the value of the string itself.

Example The following example displays the lowercase string "alphabet":

var upperText="ALPHABET"
Console.Write(upperText.toLowerCase())

See also String:toUpperCase

toUpperCase
Returns the calling string value converted to uppercase.

Applies to String

Syntax toUpperCase()

Parameters None

Description The toUpperCase method returns the value of the string converted to
uppercase. toUpperCase does not affect the value of the string itself.

Examples The following example displays the string "ALPHABET":

var lowerText="alphabet"
Console.Write(lowerText.toUpperCase())

See also String.toLowerCase
16-118 Core Objects

Regular Expression

A regular expression object contains the pattern of a regular expression. It has
properties and methods for using that regular expression to find and replace
matches in strings.

In addition to the properties of an individual regular expression object that
you create using the RegExp constructor function, the predefined RegExp
object has static properties that are set whenever any regular expression is used.
Regular expression is a core object.

Created by A literal text format or the RegExp constructor function.

The literal format is used as follows:

/pattern/flags

The constructor function is used as follows:

new RegExp("pattern", "flags")

Parameters pattern
The text of the regular expression

flags
(Optional) If specified, flags can have one of the following 3 values:

■ G – global match

■ i – ignore case

■ gi – both global match and ignore case

Notice that the parameters to the literal format do not use quotation marks to
indicate strings, while the parameters to the constructor function do use
quotation marks. So the following expressions create the same regular
expression:

/ab+c/i
new RegExp("ab+c", "i")
Regular Expression 16-119

Description When using the constructor function, the normal string escape rules
(preceding special characters with \ when included in a string) are necessary.
For example, the following are equivalent:

re = new RegExp("\\w+")
re = /\w+/

Table 16-20 provides a complete list and description of the special characters
that can be used in regular expressions.

Tab le 16-20 Special Characters Used in Regular Expressions

Character Meaning

\ For characters that are usually treated literally, indicates that the next
character is special and not to be interpreted literally. For example, /b/
matches the character 'b'. By placing a backslash in front of b, that is by
using /\b/, the character becomes special to mean match a word boundary
-or-
For characters that are usually treated specially, indicates that the next
character is not special and should be interpreted literally. For example, * is a
special character that means 0 or more occurrences of the preceding
character should be matched; for example, /a*/ means match 0 or more
a's. To match * literally, precede the it with a backslash; for example, /a*/
matches 'a*'.

^ Matches beginning of input or line. For example, /^A/ does not match the
'A' in "an A," but does match it in "An A."

$ Matches end of input or line.For example, /t$/ does not match the 't' in
"eater", but does match it in "eat"

* Matches the preceding character 0 or more times. For example, /bo*/
matches 'boooo' in "A ghost booooed" and 'b' in "A bird warbled", but
nothing in "A goat grunted".

+ Matches the preceding character 1 or more times. Equivalent to {1,}. For
example, /a+/ matches the 'a' in "candy" and all the a's in "caaaaaaandy."

? Matches the preceding character 0 or 1 time.For example, /e?le?/
matches the 'el' in "angel" and the 'le' in "angle."

. (The decimal point) matches any single character except the newline charac-
ter. For example, /.n/ matches 'an' and 'on' in "nay, an apple is on the
tree", but not 'nay'.
16-120 Core Objects

(x) Matches 'x' and remembers the match. For example, /(foo)/ matches
and remembers 'foo' in "foo bar." The matched substring can be recalled
from the resulting array's elements [1], ..., [n], or from the predefined
RegExp object's properties $1, ..., $9.

x|y Matches either 'x' or 'y'.For example, /green|red/ matches 'green' in
"green apple" and 'red' in "red apple."

{n} Where n is a positive integer. Matches exactly n occurrences of the preceding
character.For example, /a{2}/ doesn't match the 'a' in "candy," but it
matches all of the a's in "caandy," and the first two a's in "caaandy."

{n,} Where n is a positive integer. Matches at least n occurrences of the preceding
character. For example, /a{2,} doesn't match the 'a' in "candy", but
matches all of the a's in "caandy" and in "caaaaaaandy."

{n,m} Where n and m are positive integers. Matches at least n and at most m occur-
rences of the preceding character. For example, /a{1,3}/ matches
nothing in "cndy", the 'a' in "candy," the first two a's in "caandy," and the first
three a's in "caaaaaaandy" Notice that when matching "caaaaaaandy", the
match is "aaa", even though the original string had more a's in it.

[xyz] A character set. Matches any one of the enclosed characters. You can specify
a range of characters by using a hyphen. For example, [abcd] is the same
as [a-c]. They match the 'b' in "brisket" and the 'c' in "ache".

[^xyz] A negated or complemented character set. That is, it matches anything that is
not enclosed in the brackets. You can specify a range of characters by using a
hyphen. For example, [^abc] is the same as [^a-c]. They initially match
'r' in "brisket" and 'h' in "chop."

[\b] Matches a backspace. (Not to be confused with \b.)

\b Matches a word boundary, such as a space. (Not to be confused with [\b].)
For example, /\bn\w/ matches the 'no' in "noonday"; /\wy\b/ matches
the 'ly' in "possibly yesterday."

\B Matches a non-word boundary. For example, /\w\Bn/ matches 'on' in
"noonday", and /y\B\w/ matches 'ye' in "possibly yesterday."

\cX Where X is a control character. Matches a control character in a string. For
example, /\cM/ matches control-M in a string.

\d Matches a digit character. Equivalent to [0-9]. For example, /\d/ or /[0-
9]/ matches '2' in "B2 is the suite number."

Tab le 16-20 Special Characters Used in Regular Expressions (Continued)

Character Meaning
Regular Expression 16-121

\D Matches any non-digit character. Equivalent to [^0-9]. For example, /\D/ or
/[^0-9]/ matches 'B' in "B2 is the suite number."

\f Matches a form-feed.

\n Matches a linefeed.

\r Matches a carriage return.

\s Matches a single white space character, including space, tab, form feed, line
feed. Equivalent to [\f\n\r\t\v]. For example, /\s\w*/ matches '
bar' in "foo bar."

\S Matches a single character other than white space. Equivalent to [^
\f\n\r\t\v]. For example, /\S/\w* matches 'foo' in "foo bar."

\t Matches a tab.

\v Matches a vertical tab.

\w Matches any alphanumeric character including the underscore. Equivalent to
[A-Za-z0-9_]. For example, /\w/ matches 'a' in "apple," '5' in "$5.28,"
and '3' in "3D."

\W Matches any non-word character. Equivalent to [^A-Za-z0-9_]. For
example, /\W/ or /[^$A-Za-z0-9_]/ matches '%' in "50%."

\n Where n is a positive integer. A back reference to the last substring matching
the n parenthetical in the regular expression (counting left parentheses). For
example, /apple(,)\sorange\1/ matches 'apple, orange', in "apple,
orange, cherry, peach." A more complete example follows this table.

Note: If the number of left parentheses is less than the number specified in
\n, the \n is taken as an octal escape as described in the next row.

\ooctal
\xhex

Where \ooctal is an octal escape value or \xhex is a hexadecimal
escape value. Allows you to embed ASCII codes into regular expressions.

Tab le 16-20 Special Characters Used in Regular Expressions (Continued)

Character Meaning
16-122 Core Objects

The literal notation provides compilation of the regular expression when the
expression is evaluated. Use literal notation when the regular expression will
remain constant. For example, if you use literal notation to construct a regular
expression used in a loop, the regular expression won't be recompiled on each
iteration.

The constructor of the regular expression object, for example, new
RegExp("ab+c"), provides runtime compilation of the regular expression.
Use the constructor function when you know the regular expression pattern
will be changing, or you don't know the pattern and are getting it from another
source, such as user input. Once you have a defined regular expression, and if
the regular expression is used throughout the script and may change, you can
use the compile method to compile a new regular expression for efficient
reuse.

A separate predefined RegExp object is available in each window; that is, each
separate thread of JavaScript execution gets its own RegExp object. Because
each script runs to completion without interruption in a thread, this assures
that different scripts do not overwrite values of the RegExp object.

The predefined RegExp object contains the static properties input,
multiline, lastMatch, lastParen, leftContext, rightContext,
and $1 through $9. The input and multiline properties can be preset. The
values for the other static properties are set after execution of the exec and
test methods of an individual regular expression object, and after execution
of the match and replace methods of String.

Examples The following script uses the replace method to switch the words in the
string. For the replacement text, the script uses the values of the $1 and $2
properties of the global RegExp object. Note that the RegExp object name is
not be prepended to the $ properties when they are passed as the second
argument to the replace method.

re = /(\w+)\s(\w+)/;
str = "John Smith";
newstr=str.replace(re, "$2, $1");
(newstr)

This displays "Smith, John".
Regular Expression 16-123

In the following example, RegExp.input is set by the Change event. In the
getInfo function, the exec method uses the value of RegExp.input as its
argument. Note that RegExp is prepended to the $ properties.

function getInfo() {
 re = /(\w+)\s(\d+)/;
 re.exec();
 alert(RegExp.$1 + ", your age is " + RegExp.$2);

}
Enter your first name and your age, and then press Enter.
<FORM>
<INPUT TYPE:"TEXT" NAME="NameAge" onChange="getInfo(this);">
</FORM>
</HTML>

Regular Expression Properties
Table 16-21 displays a summary of the regular expression properties. Note that
several of these properties have both long and short (Perl-like) names. Both
names always refer to the same value. Perl is the programming language from
which JavaScript modeled its regular expressions. Detailed descriptions of each
property follow the table.

Tab le 16-21 Regular Expression Properties

$1, ..., $9 Parenthesized substring matches, if any.

$_ See input.

$* See multiline.

$& See lastMatch.

$+ See lastParen.

$' See leftContext.

$' See rightContext.

global Whether to test the regular expression against all possible matches in a
string, or only against the first.

ignoreCase Whether to ignore case while attempting a match in a string.

input The string against which a regular expression is matched.

lastIndex The index at which to start the next match.
16-124 Core Objects

$1, ..., $9
Properties that contain parenthesized substring matches, if any.

Property of RegEx

Description input is static, read-only. As a result, it is not a property of an individual
regular expression object. Instead, you always use it as RegExp.input.

The number of possible parenthesized substrings is unlimited, but the
predefined RegExp object can only hold the last nine. You can access all
parenthesized substrings through the returned array's indexes.

These properties can be used in the replacement text for the
String.replace method. When used this way, do not prepend them with
RegExp. The example below illustrates this. When parentheses are not
included in the regular expression, the script interprets $n's literally (where n
is a positive integer).

Example The following script uses the replace method to switch the words in the
string. For the replacement text, the script uses the values of the $1 and $2
properties of the global RegExp object. Note that the RegExp object name is
not be prepended to the $ properties when they are passed as the second
argument to the replace method.

re = /(\w+)\s(\w+)/;
str = "John Smith";
newstr=str.replace(re, "$2, $1");
Console.Write(newstr)

This displays "Smith, John".

lastMatch The last matched characters.

lastParen The last parenthesized substring match, if any.

leftContext The substring preceding the most recent match.

multiline Whether to search in strings across multiple lines.

rightContext The substring following the most recent match.

source The text of the pattern.

Tab le 16-21 Regular Expression Properties (Continued)
Regular Expression 16-125

$_
See input.

$*
See multiline.

$&
See lastMatch.

$+
See lastParen.

$'
See leftContext.

$'
See rightContext.

global
Whether the "g" flag is used with the regular expression. The global
property is read-only.

Property of RegEx

Description global is a property of an individual regular expression object.

The value of global is true if the "g" flag is used; otherwise, it is false.
The "g" flag indicates that the regular expression should be tested against all
possible matches in a string.

You cannot change this property directly. However, calling the compile
method changes the value of this property.
16-126 Core Objects

ignoreCase
Whether or not the "i" flag is used with the regular expression. The
ignorecase property is read-only.

Property of RegEx

Description ignoreCase is a property of an individual regular expression object.

The value of ignoreCase is true if the "i" flag is used; otherwise, it is
false. The "i" flag indicates that case should be ignored while attempting a
match in a string.

You cannot change this property directly. However, calling the compile
method changes the value of this property.

input
The string against which a regular expression is matched. $_ is another name
for the same property.

Property of RegEx

Description Because input is static, it is not a property of an individual regular expression
object. Instead, you always use it as RegExp.input.

If no string argument is provided to a regular expression's exec or test
methods, and if RegExp.input has a value, its value is used as the argument
to that method.

The script or the browser can preset the input property. If preset and if no
string argument is explicitly provided, the value of input is used as the string
argument to the exec or test methods of the regular expression object.
input is set by the browser in the following cases:

When an event handler is called for a TEXT form element, input is set to the
value of the contained text.

When an event handler is called for a TEXTAREA form element, input is set
to the value of the contained text. Note that multiline is also set to true
so that the match can be executed over the multiple lines of text.

When an event handler is called for a SELECT form element, input is set to
the value of the selected text.
Regular Expression 16-127

When an event handler is called for a Link object, input is set to the value of
the text between and .

The value of the input property is cleared after the event handler completes.

lastIndex
A read/write integer property that specifies the index at which to start the next
match.

Property of RegEx

Description lastIndex is a property of an individual regular expression object.

This property is set only if the regular expression used the "g" flag to indicate
a global search. The following rules apply:

■ If lastIndex is greater than the length of the string, regexp.test and
regexp.exec fail, and lastIndex is set to 0.

■ If lastIndex is equal to the length of the string and if the regular
expression matches the empty string, then the regular expression matches
input starting at lastIndex.

■ If lastIndex is equal to the length of the string and if the regular
expression does not match the empty string, then the regular expression
mismatches input, and lastIndex is reset to 0.

■ Otherwise, lastIndex is set to the next position following the most
recent match.

For example, consider the following sequence of statements:

re = /(hi)?/g Matches the empty string.
re("hi") Returns ["hi", "hi"] with lastIndex equal to 2.
re("hi") Returns [""], an empty array whose zeroth element is the

match string. In this case, the empty string because
lastIndex was 2 (and still is 2) and "hi" has length 2.
16-128 Core Objects

lastMatch
The last matched characters. $& is another name for the same property.

Property of RegEx

Description Because lastMatch is static, it is not a property of an individual regular
expression object. Instead, you always use it as RegExp.lastMatch.

lastParen
The last parenthesized substring match, if any. $+ is another name for the same
property.

Property of RegEx

Description Because lastParen is static (read-only), it is not a property of an individual
regular expression object. Instead, you always use it as RegExp.lastParen.

leftContext
The substring preceding the most recent match. $' is another name for the
same property.

Property of RegEx

Description Because leftContext is static (read-only), it is not a property of an
individual regular expression object. Instead, you always use it as
RegExp.leftContext.
Regular Expression 16-129

multiline
Reflects whether or not to search in strings across multiple lines. $* is another
name for the same property.

Property of RegEx

Description Because multiline is static, it is not a property of an individual regular
expression object. Instead, you always use it as RegExp.multiline.

The value of multiline is true if multiple lines are searched, false if
searches must stop at line breaks.

rightContext
The substring following the most recent match. $' is another name for the
same property.

Property of RegEx

Description Because rightContext is static (read-only), it is not a property of an
individual regular expression object. Instead, you always use it as
RegExp.rightContext.

source
A read-only property that contains the text of the pattern, excluding the
forward slashes and "g" or "i" flags.

Property of RegEx

Description source is a property of an individual regular expression object. It is read-only.
You cannot change this property directly. However, calling the compile
method changes the value of this property.
16-130 Core Objects

Regular Expression Methods
Table 16-22 displays a summary of the regular expression methods. Detailed
descriptions of each method follow the table.

compile
Compiles a regular expression object during execution of a script.

Applies to: RegExp

Syntax regexp.compile(pattern, flags)

Parameters regexp
The name of he regular expression. It can be a variable name or a literal.

pattern
A string containing the text of the regular expression.

flags
(Optional) If specified, flags can have one of the following 3 values:

■ g – global match

■ i – ignore case

■ gi – both global match and ignore case

Description Use the compile method to compile a regular expression created with the
RegExp constructor function. This forces compilation of the regular
expression once only which means the regular expression isn't compiled each
time it is encountered. Use the compile method when you know the regular
expression will remain constant (after getting its pattern) and will be used
repeatedly throughout the script.

Tab le 16-22 Regular Expression Methods

Compile Compiles a regular expression object.

Exec Executes a search for a match in its string parameter.

Test Tests for a match in its string parameter.
Regular Expression 16-131

You can also use the compile method to change the regular expression during
execution. For example, if the regular expression changes, you can use the
compile method to recompile the object for more efficient repeated use.

Calling this method changes the value of the regular expression's source,
global, and ignoreCase properties.

exec
Executes the search for a match in a specified string. Returns a result array.

Applies to: RegExp

Syntax regexp.exec(str)
regexp(str)

Parameters regexp
The name of the regular expression. It can be a variable name or a literal.

str
(Optional) The string against which to match the regular expression. If
omitted, the value of RegExp.input is used.

Description As shown in the syntax description, a regular expression's exec method call be
called either directly, (with regexp.exec(str)) or indirectly (with
regexp(str)).

If you are executing a match simply to find true or false, use the test
method or the String search method.

If the match succeeds, the exec method returns an array and updates
properties of the regular expression object and the predefined regular
expression object, RegExp. If the match fails, the exec method returns null.

Consider the following example:

//Match one d followed by one or more b's followed by one d
//Remember matched b's and the following d
//Ignore case
myRe=/d(b+)(d)/ig;
myArray = myRe.exec("cdbBdbsbz");
Table 16-23 shows the results for this script:
16-132 Core Objects

Tab le 16-23 Script Results

Object Property/Index Description Example

myArray The contents of myArray ["dbBd", "bB", "d"]

index The 0-based index of the match in
the string.

1

input The original string cdbBdbsbz

[0] The last matched characters dbBd

[1], ...[n] The parenthesized substring
matches, if any. The number of
possible parenthesized substrings
is unlimited.

[1] = bB
[2] = d

myRe lastIndex The index at which to start the next
match.

5

ignoreCase Indicates if the "i" flag was used to
ignore case

true

global Indicates if the "g" flag was used
for a global match

true

source The text of the pattern d(b+)(d)

RegExp lastMatch
$&

The last matched characters dbBd

leftContext
$\Q

The substring preceding the most
recent match.

c

rightContext
$'

The substring following the most
recent match.

bsbz

$1, ...$9 The parenthesized substring
matches, if any. The number of
possible parenthesized substrings
is unlimited, but RegExp can only
hold the last nine.

$1 = bB
$2 = d

lastParen
$+

The last parenthesized substring
match, if any.

d

Regular Expression 16-133

If your regular expression uses the "g" flag, you can use the exec method
multiple times to find successive matches in the same string. When you do so,
the search starts at the substring of str specified by the regular expression's
lastIndex property. For example, assume you have this script:

myRe=/ab*/g;
str = "abbcdefabh"
myArray = myRe.exec(str);
Console.Write("\r\nFound " + myArray[0] +
". Next match starts at " + myRe.lastIndex)
mySecondArray = myRe.exec(str);
Console.Write("\r\nFound " + mySecondArray[0] +
". Next match starts at " + myRe.lastIndex)

This script displays the following text:

Found abb. Next match starts at 3
Found ab. Next match starts at 9

Examples In the following example, the user enters a name and the script executes a
match against the input. It then cycles through the array to see if other names
match the user's name.

This script assumes that first names of registered party attendees are preloaded
into the array A, perhaps by gathering them from a party database.

A = ["Frank", "Emily", "Jane", "Harry", "Nick", "Beth", "Rick",
 "Terrence", "Carol", "Ann", "Terry", "Frank",

"Alice", "Rick",
 "Bill", "Tom", "Fiona", "Jane", "William", "Joan",

"Beth"]

function lookup() {
 firstName = /\w+/i();
 if (!firstName)
 Alert (RegExp.input + " isn't a name!");
 else {
 count = 0;
 for (i=0; i<A.length; i++)
 if (firstName[0].toLowerCase() ==

A[i].toLowerCase()) count++;
 if (count ==1)
 midstring = " other has ";
 else
 midstring = " others have ";
 window.alert ("Thanks, " + count + midstring + "the

same name!")
 }

}
Enter your first name and then press Enter.
16-134 Core Objects

test
Executes the search for a match between a regular expression and a specified
string. Returns true or false.

Syntax regexp.test(str)

Parameters regexp
The name of the regular expression. It can be a variable name or a literal.

str
(Optional) The string against which to match the regular expression. If
omitted, the value of RegExp.input is used.

Description When you want to know whether a pattern is found in a string use the test
method (similar to the String.search method); for more information
(but slower execution) use the exec method (similar to the String.match
method).

Example The following example prints a message which depends on the success of the
test:

function testinput(re, str){
 if (re.test(str))
 midstring = " contains ";
 else
 midstring = " does not contain ";
 Console.Write (str + midstring + re.source);

}

Regular Expression 16-135

16-136 Core Objects

Index
Symbols

, 4-5

!, 14-9

-, 4-4, 14-2

--, 4-4, 14-2

!=, 4-5, 14-8

$&, 16-126

$', 16-126

$*, 16-126

$+, 16-126

$_, 16-126

$1, ..., $9, 16-125

%, 4-4, 14-3

%=, 4-4, 14-3

&&, 4-5, 14-9

&=, 14-3

*, 4-4, 14-3

*=, 4-4, 14-3

+, 4-4, 14-2, 14-10

++, 4-4, 14-2

+=, 4-4, 14-3, 14-10

,, 14-12

., 14-11

. separator, 4-3

.bmp, 1-7

/, 4-4 – 4-5, 14-3

/=, 4-4, 14-3

/>, 4-5

/>=, 4-5

<, 14-8

<=, 14-8

-=, 4-4, 14-3

=, 4-4, 14-3

==, 4-5, 14-8

>, 14-8

>=, 14-8

>>=, 14-4

>>>=, 14-4

?:, 14-11

^=, 14-3

|=, 14-4

||, 14-9

A

abs, 16-56

accessing

cookies, 8-23

drop-down selections, 5-3

selected values, 7-8

URL parameters, 8-24

acos, 16-56

Activate (Method), 10-2

Active (Property), 11-2

active document level, 13-4

AdaptiveState (Property), 11-3

Add (Method), 10-3

AddAll (Method), 10-6

AddComputed (Method), 10-7

AddComputedItem (Method), 10-8

AddExportSection (Method), 10-9

AddFilterValue (Method), 10-12

adding

concatenating versus, 4-9

in JavaScript, 4-9

items to the request line, 12-9

joins, 12-8

objects to tab order, 1-16

topics to a data model section, 12-7

addition operator, 4-4, 14-2

AddTotals (Method), 10-14

AggregateLimits (Collection), 9-2

Alert (Method), 10-15

Alignment (Property), 11-4

alignment properties, 1-9 – 1-10

AllowNonJoinedQueries (Property), 11-5

ampersand, 4-5

anchor, 16-91

and operator, 4-5

API (Property), 11-6

AppendQueries (Collection), 9-3

Application (Object), 9-4

application level, 13-3

applications, components of scripted, 8-2

AreaChart (Object), 9-5

arguments, 16-43

drop-down item, 7-8

list box item, 7-8

arithmetic operators, 4-4, 14-2

arity, 16-44

Array object

JavaScript, 16-2

methods, 16-7

properties, 16-5

asin, 16-57

assigning

chart types, 4-6

values, 4-15

assignment operators

definition, 4-4

description, 14-3

shorthand, 14-4

versus comparison operators, 4-5, 8-30

associating scripts

with check boxes, 3-11

with command buttons, 3-5

with list boxes, 3-15

with radio buttons, 3-7

asterisk, 4-4, 14-3

atan, 16-58

atan2, 16-59

AuditSQL (Method), 10-16

AutoAlias (Property), 11-7

AutoCommit (Property), 11-8

AutoFrequency (Property), 11-9

AutoInterval (Property), 11-10

AutoJoin (Property), 11-11

automation controller, OLE, 8-26

AutoProcess (Property), 11-12

AutoScale (Property), 11-13

AutoSizeHeight (Method), 10-18

AutoSizeWidth (Method), 10-19

available values

filling a drop down box with, 7-7

filling a list box with, 7-4

AvailableValues (Property), 11-14

AxisItems (Collection), 9-6

AxisLabels (Collection), 9-7

AxisPlotValues (Property), 11-15

AxisType (Property), 11-16

B

background and border properties, 1-11

BackgroundAlternateColor (Property), 11-17

BackgroundAlternateFrequency (Property), 11-19

BackgroundColor (Property), 11-19

BackgroundShowAlternateColor (Property), 11-19
2 Index

BarChart (Object), 9-8

BarLineChart (Object), 9-9

BeginLimitName (Property), 11-19, 11-23

big, 16-92

bitwise operators

definition, 14-5

logical, 14-6

shift, 14-7

blink, 16-93

BMP files, 1-7

bold, 16-94

Boolean object

JavaScript, 16-23

methods, 16-25

properties, 16-24

Boolean operators, 4-5

border and background properties, 1-10

BorderColor (Property), 11-23

BorderWidth (Property), 11-23

BottomMargin (Property), 11-23

boxes, 1-7, 7-1

break statements

definition, 15-3

using, 8-16

Brio Intelligence

methods, 10-1

objects, 9-1

properties, 11-1

scripting applications in, 8-2

Brio Intelligence object model See object model

browser cookies, using to pass parameters to ODS
documents, 8-22

browser, Object, 2-8

buttons

command, 1-7, 3-5

radio, 1-7, 3-7

bypassing

errors, 8-35

user IDs and passwords, 8-21

C

Call (Method), 10-20

caller, 16-45

calling functions, 8-4

case-sensitive code, 8-29

Catalog pane

in Design and Run modes, 1-5

CategoryItems (Collection), 9-10

ceil, 16-60

changing

control object titles, 3-3

tab order sequence, 1-16

characteristics, variable, 5-7

characters, special, used in Regular Expressions,
16-120

charAt, 16-95

charCodeAt, 16-96

chart facts

controlling with if...else, 6-12

controlling with switch, 6-13

setting, 5-15

Chart section, 13-7

ChartSection (Object), 9-11

ChartThisPivot (Method), 10-21

ChartType (Property), 11-28

check boxes

changing states with, 6-3

definition, 1-7

using, 3-11

Checked (Property), 11-30

checking errors, Console window and, 2-14

Close (Method), 10-22

Clusterby (Property), 11-31

code entry, 8-35

code structure, in JavaScript, 4-2

code, case-sensitive, 8-29

collection, definition, 2-3

Color (Property), 11-32

Column (Object), 9-12
Index 3

Columns (Collection), 9-13

ColumnType (Property), 11-33

command buttons

definition, 1-7

using, 3-5

commands, EIS section, 1-21

comment statements, 15-5

comparison operators, 4-5

list of, 14-8

versus assignment operators, 4-5

compile, 16-131

components, of scripted applications, 8-2

concat, 16-8, 16-96

concatenate operator, 4-4

concatenation, 4-9

conditional statements, 8-7

conditional tests, 8-30

Connect (Method), 10-23

Connected (Property), 11-34

Connection (Object), 9-14

connection files, scripting, 12-6

Console (Object), 9-16

Console window, using to check errors, 2-14

constant, definition, 2-3

constructor, 16-79

continue statements

definition, 15-6

using, 8-15

Control (Object), 9-17

control events, 2-6

control objects

changing titles, 3-3

events associated with, 2-6

list of, 1-6

scripting, 3-2

control structures, 6-2 – 6-4, 6-8

controller, OLE automation, 8-26

controlling graphics and controls visibility, example,
12-5

controls

enabling and disabling, 12-4

scripting EIS, 3-1

Controls (Collection), 9-18

ControlsCheckBox (Object), 9-19

ControlsCommandButton (Object), 9-20

ControlsDropDown (Object), 9-21

ControlsListBox (Object), 9-22

ControlsRadioButton (Object), 9-23

ControlsTextBox (Object), 9-24

converting data types, 4-16

Cookies (Collection), 9-25

cookies, browser, using to pass parameters to ODS
documents, 8-22

Copy (Method), 10-24

core objects

Array, 16-2

Boolean, 16-23

Date, 16-26

Function, 16-41

Math, 16-50

Number, 16-72

Object, 16-78

Regular Expression, 16-119

String, 16-87

CornerLabels (Object), 9-27

cos, 16-61

Count (Property), 11-35

CreateConnection (Method), 10-25

CreateDateGroup (Method), 10-26

CreateLimit (Method), 10-27

creating

EIS sections, 1-4, 3-2

OCEs (connection files), 12-6

Results limits, 7-12

variable limits, 12-10

CSSExport (Property), 11-36

CurrentDir (Property), 11-37

CustomSQL (Property), 11-38
4 Index

CustomSQLFrom (Method), 10-29

CustomSQLWhere (Method), 10-30

CustomValues (Property), 11-39

Cutting Script, 2-10

D

DashStyle (Property), 11-40

data models, downloading, 12-7

Database (Property), 11-41

DatabaseList (Property), 11-43

DatabaseName (Property), 11-44

DataFunction (Property), 11-45

DataLabels (Object), 9-28

DataModelSection (Object), 9-29

DataType (Property), 11-47

Date Field (Object), 9-31

Date object

JavaScript, 16-26

methods, 16-27

properties, 16-27

DateNow Field (Object), 9-32

DateTime Field (Object), 9-33

DateTimeNow Field (Object), 9-34

DBLibAllowChangeDatabase (Property), 11-48

DBLibApiSeverity (Property), 11-49

DBLibDatabaseCancel (Property), 11-50

DBLibPacketSize (Property), 11-51

DBLibServerSeverity (Property), 11-52

DBLibUseQuotedIdentifiers (Property), 11-53

DBLibUseSQLTable (Property), 11-54

declaring variables

dynamically, 4-15

global, 4-14

local, 4-14

decrement operator, 4-4, 14-2

default

mode, 1-5

tab order, 1-16

DefinedJoinPath (Object), 9-37

DefinedJoinPaths (Collection), 9-35

defining functions, 8-3, 8-5

delete operator, 14-12

delete statements, 15-8

deleting

EIS sections, 1-4

objects, 1-8

Description (Property), 11-55

Description pane, 2-10

design guides, 1-18

Design Guides command, 1-21

Design mode, 1-5

Design/Run Mode command, 1-21

designing scripts, 8-33

Dimension (Object), 9-38

Dimensions (Collection), 9-40

disabling controls, 12-4

Disconnect (Method), 10-31

Display (Property), 11-56

displaying

connection login boxes, 12-6

rulers, 1-19

Table catalog, 12-7

values in text boxes, 12-2

DisplayName (Property), 11-57

division operator, 4-4, 14-3

DMCatalog (Object), 9-41

DMCatalogItem (Object), 9-42

DMCatalogItems (Collection), 9-43

do...while statements

definition, 15-9

using, 8-13

Document (Object), 9-44

document level

active, 13-4

events, 2-7

Documents (Collection), 9-45

documents, ODS, passing parameters to, 8-22

DoEvents (Method), 10-32
Index 5

downloading data models, 12-7

DrillInto (Method), 10-33

drop-down boxes

accessing selections, 5-3

definition, 1-7

filling with available values, 7-7

filling with multiple values, 7-3

in the Limits EIS section, 5-9

typical use, 5-2

using for loops, 7-2

drop-down item argument, 7-8

drop-down selections, modifying limits with,
example, 5-9

Duplicate (Method), 10-34

dynamically declaring variables, 4-15

E

E, 16-51

Effect (Property), 11-58

EIS controls, scripting, 3-1

EIS section

control objects, 1-7

creating, 1-4

default mode, 1-5

definition, 1-2

enabling and disabling controls, 12-4

events, 2-5

graphic objects, 1-6

layout tools in, 1-18

menu commands, 1-21

object model map, 13-6

properties, 1-8

renaming, 1-4

toolbar, 1-19

EISSection (Object), 9-46

elements, properties and, 16-3

embedding objects, 1-7

EnableAsyncProcess (Property), 11-59

Enabled (Property), 11-60

EnableTransActionMode (Property), 11-61

enabling controls, 12-4

EndLimitName (Property), 11-62

entering code, 8-35

equal sign assignment operator, 4-4

equal test operator, 4-5

errors

bypassing, 8-35

checking using the Console window, 2-14

eval, 16-80

evaluations, short-circuit, 14-10

events, 1-22, 2-4

example scripts, 12-5

exec, 16-132

ExecuteBScript (Method), 10-35

Execution window, using to test scripts, 2-13

Executive Information Systems, 1-1

exercises

Adding Comparison and Assignment Buttons, 4-6

Associating a Script with a List Box, 3-15

Concatenating Values, 4-11

Declaring a Variable, 5-8

Summing Values, 4-12

Using a for Loop to Fill a List Box with Limit
Values, 7-5

Using a switch Statement to Change Chart Types,
6-9

Using an if...else Statement to Change Chart
Types, 6-5

Using JavaScript to Clear and Assign New Results
Limits in Drop-Down Boxes, 7-14

Using Loops to Access List Box Selections, 7-10

Using Operators as Characters, 4-8

Using the Assignment Operator, 4-7

Using the Comparison Operator, 4-6

exp, 16-62

Export (Method), 10-36

exporting scripts, 8-27

ExportWithoutQuotes (Property), 11-63
6 Index

F

Facts (Object), 9-47

Field (Object), 9-48

Fields (Collection), 9-49

Filename (Property), 11-64

FileName Field (Object), 9-50

FilePath (Property), 11-65

files

BMP, 1-7

text, exporting scripts to, 8-27

Fill (Object), 9-51

filling boxes with values, 7-3 – 7-4, 7-7

FillUnderRibbon (Property), 11-66

Finding/Replacing Script, 2-16

fixed, 16-97

floor, 16-63

Focus (Property), 11-67

focus, object determining, 1-16

FocusSelection (Method), 10-38

Font (Object), 9-52

font properties, 1-12

fontcolor, 16-98

fontsize, 16-99

Footer (Object), 9-53

for loops, using, 7-2

for statements

definition, 15-10

using, 8-12

for...in statements

definition, 15-11

using, 8-17

Form (Collection), 9-54

Formula (Property), 11-68

forward slash, 4-4, 14-3

fromCharCode, 16-100

FullName (Property), 11-69

Function object

JavaScript, 16-41

methods, 16-48

properties, 16-42

function statements, 15-12

functions

calling, 8-4

defining, 8-3

G

general scripting reference, 8-1

GetCell (Method), 10-39

getDate, 16-28

getDay, 16-29

getFullYear, 16-32

getHours, 16-29

getMinutes, 16-30

getMonth, 16-30

getSeconds, 16-31

getTime, 16-31

getTimezoneOffset, 16-32

getting

help with problem scripts, 8-36

global property, 16-126

global variables, declaring, 4-14

graphic objects

events associated with, 2-5

list of, 1-6

graphics and controls, controlling the visibility of,
12-5

graphics, inserting, 1-21

greater than, 4-5

greater than or equal to, 4-5

Grid command, 1-21

grids, 1-18

Group (Object), 9-56

Group (Property), 11-70

GroupItem (Object), 9-58

GroupItems (Collection), 9-59

Groups (Collection), 9-57

guides, design, 1-18
Index 7

H

Header (Object), 9-60

headers, page, turning off, 12-11

Height (Property), 11-71

help, online, 2-10

Hide (Method), 10-40

HideSelection (Method), 10-41

hiding toolbars, 5-17

hierarchy, object model, 13-2

Home Dialog command, 1-21

horizontal lines, 1-6

HorizontalAlignment (Property), 11-72

Hostname (Property), 11-73

HTMLExportBreakCount (Property), 11-74

I

IDs, user, bypassing, 8-21

if statements, 6-2

if statements, inline, 8-9

if...else statements

control structure syntax, 6-2

controlling chart facts with, 6-12

definition, 15-13

switch versus, 6-8

using, 6-4, 8-8

Ignore (Property), 11-75

ignoreCase, 16-127

IgnoreNulls (Property), 11-76

II, 4-5

ImportDataFile (Method), 10-42

ImportSQLFile (Method), 10-43

IncludeNulls (Property), 11-77

including

limit values in URLs submitted to ODS, 12-11

operators in strings, 4-8

increment operator, 4-4, 14-2

index, 16-5

Index (Property), 11-78

indexOf, 16-100

inline if statements, 8-9

input, 16-5, 16-127

Insert Control command, 1-21

Insert Graphic command, 1-21

inserting

EIS objects, 1-7

EIS sections, 1-4

IntervalFrequency (Property), 11-79

italics, 16-102

Item (Method), 10-45

item argument and method, 7-8

J

JavaScript

basic syntax, 4-2

basics, 5-1

case-sensitivity, 4-2, 8-29

code structure, 4-2

concatenating versus adding, 4-9

control structures, 6-1 – 6-2

core objects, 16-1

entering syntax, 8-35

examples, 12-1

improving performance, 8-33

keywords, 15-1

manipulating objects with, 8-17

objects. See core objects.

OLE automation controller within, 8-26

operators, 4-4, 14-1

arithmetic, 14-2

logical, 14-9

special, 14-11

string, 14-10

reserved words, 4-17

sample, 2-11

statement elements, 4-3

statements, 15-1 – 15-2

syntax, 4-1
8 Index

troubleshooting, 8-28

join, 16-9

Join (Object), 9-61

Joins (Collection), 9-62

JoinsOptions (Collection), 9-63

-jscriptcmd, 8-2

K

KeepTogether (Property), 11-81

KeepWithNext (Property), 11-80

L

labeled statements, 8-14

definition, 15-14

using, 8-14

LabelFrequency (Property), 11-82

labels, text, 1-7

LabelsAxis (Object), 9-64

LabelText (Property), 11-83

LabelValues (Object), 9-65

lastIndex, 16-128

lastIndexOf, 16-103

lastMatch, 16-129

lastParen, 16-129

LastPrinted (Property), 11-84

LastPrinted Field (Object), 9-66

LastSaved (Property), 11-85

LastSaved Field (Object), 9-67

LastSQLStatement (Property), 11-86

Layer (Method), 10-47

layout tools, 1-18

LeftAxis (Object), 9-70

leftContext, 16-129

LeftMargin (Property), 11-87

legal names, for variables, 4-2

Legend (Collection), 9-69

Legend (Object), 9-68

length, 16-6, 16-88

less than or equal to, 4-5

Limit (Object), 9-71

limits

modifying, 5-9

Query, modifying, 5-14

Results, creating, 7-12

Results, modifying, 5-9

Limits (Collection), 9-73

LimitValues (Collection), 9-75

LimitValueType (Property), 11-88

Line (Object), 9-78

LineChart (Object), 9-77

lines, 1-6

link, 16-104

list box

definition, 1-7

filling with available values, 7-4

item argument, 7-8

using, 3-15

LN10, 16-52

LN2, 16-52

LoadFromFile (Method), 10-49

LoadSharedLibrary (Method), 10-50

local variables, declaring, 4-14

LocalJoins (Collection), 9-79

LocalJoins (Scripting), 9-79

LocalResults (Collection), 9-80

LocalResults (Scripting), 9-80, 9-82

LocalResultsTopicItems (Collection), 9-82

log, 16-64

LOG10E, 16-52

LOG2E, 16-53

logical operators, 4-5, 14-9

logical operators, bitwise, 14-6

LogicalOperator (Property), 11-89

loop statements, 8-12

M

manipulating objects with JavaScript, 8-17
Index 9

map, object model, 13-1

MarkerBorderColor (Property), 11-90

MarkerFillColor (Property), 11-91

MarkerSize (Property), 11-92

MarkerStyle (Property), 11-93

match, 16-105

Math object

JavaScript, 16-50

methods, 16-55

properties, 16-51

max, 16-65

MAX_VALUE, 16-74

menu commands, EIS section, 1-21

MetadataPassword (Property), 11-94

MetadataUser (Property), 11-95

MetaFileChoice (Property), 11-96

method, valueOf, object types for, 16-85

methods

Array object, 16-7

Boolean object, 16-25

Brio Intelligence, 10-1

Date object, 16-27

definition, 2-3

Function object, 16-48

Item object, 7-8

Math object, 16-55

Number object, 16-77

Object object, 16-80

OpenURL(), 8-20

Regular Expression object, 16-131

Shell(), 8-19

String object, 16-89

Microsoft automation interfaces, 8-25

min, 16-66

MIN_VALUE, 16-74

minum sign, 14-2

minus sign, 4-4

models, data, downloading, 12-7

modes, switching between Design and Run, 1-5

ModifyComputed (Method), 10-51

modifying

limits, 5-9

Query limits, 5-14

Results limits, 5-9

modulus operator, 4-4, 14-3

Move (Method), 10-52

multiline, 16-130

multiple values, filling boxes with, 7-3

multiplication operator, 4-4, 14-3

MultiSelect(Property), 11-97

N

Name (Property), 11-98

naming

variables, 4-2

naming EIS sections, 1-4

NaN, 16-75

Navigation toolbar, 1-20

navigation, object model, 13-1

Negate (Property), 11-99

NEGATIVE_INFINITY, 16-75

new, 14-13

New (Method), 10-53

not equal test operator, 4-5

Number object

JavaScript, 16-72

methods, 16-77

properties, 16-73

NumberFormat (Property), 11-100

O

Object browser, 2-8

object level events, 2-5

object model

description pane, 2-10

hierarchy, 13-2

map, 13-1
10 Index

Microsoft automation interfaces, 8-25

navigating, 13-1

online help, 2-10

terminology, 2-2 – 2-3

Object object

JavaScript, 16-78

method, 16-80

properties, 16-78

object properties

list of, 1-13

setting, 1-13

setting with JavaScript, 12-3

object types, for valueOf method, 16-85

objects

associated events

control, 2-6

graphic, 2-5

Brio Intelligence, 9-1

control, 1-6

core, 16-1

definition, 2-3

deleting, 1-8

embedding, 1-7

Function, 16-41

graphic, 1-6

in Catalog pane, 1-5

inserting, 1-7

manipulating with JavaScript, 8-17

scripting control, 3-2

section, 1-6

using variables for, 5-13

ODBCDatabasePrompt (Property), 11-101

ODBCEnableLargeBufferMode (Property), 11-102

ODS documents, passing parameters to, 8-22

ODSUsername (Property), 11-103

OLAPConnection (Object), 9-83

OLAPLabel (Object), 9-84

OLAPMeasure (Object), 9-87

OLAPMeasures (Collection), 9-88

OLAPQuery section, object model map, 13-9

OLAPQuerySection (Object), 9-89

OLAPSlicer (Object), 9-90

OLAPSlicers (Collection), 9-91

OLE automation controller, 8-26

OLPLabels (Collection), 9-85

OnActivate (Method), 10-54

OnChange (Method), 10-56

OnClick (Method), 10-57

OnDeactivate (Method), 10-58

OnDoubleClick (Method), 10-59

OnEnter, 10-60

OnExit, 10-61

OnInterruptQueryProcess(Method), 10-62

online help, 2-10

OnPostProcess (Method), 10-62

OnPreProcess (Method), 10-63

OnShutdown (Method), 10-64

OnStartup (Method), 10-65

Open (Method), 10-66

OpenURL (Method), 10-67

OpenURL() Method, 8-20

Operator (Property), 11-104

operators

assignment, 14-3

assignment vs comparison, 4-5

bitwise, 14-5 – 14-7

comparison, 14-8

conditional, 14-11

JavaScript, 4-4

logical, 14-9

short-circuit evaluation, 14-10

shorthand assignment, 14-4

special, 14-11

string, 4-8, 14-10

or operator, 4-5

order, default tab, 1-16

Orientation (Property), 11-106

ovals, 1-7
Index 11

Owner (Property), 11-107

P

page headers, turning off for first page in reports,
12-11

PageBreak (Property), 11-108

PageCount Field (Object), 9-92

PageFooter (Object), 9-93

PageHeader (Object), 9-94

PageNm (Object), 9-95

PageXofY Field (Object), 9-96

parameters, passing to ODS documents, 8-22

Parentheses (Collection), 9-97

Parentheses (Object), 9-99

parse, 16-33

Password (Property), 11-109

passwords, bypassing, 8-21

Path (Property), 11-110

Path Field (Object), 9-100

PathSeparator (Property), 11-111

Pattern (Property), 11-112

percent sign, 4-4, 14-3

periods, as separators, 4-3

PhysicalName (Property), 11-113

PI, 16-53

picture properties, 1-15

pictures, 1-7

PieChart (Object), 9-101

pipe, 4-5

Pivot section, object model map, 13-8

PivotFact (Object), 9-102

PivotFacts (Collection), 9-103

PivotLabel (Object), 9-104

PivotLabels (Collection), 9-105

PivotLabelTotals (Object), 9-106

PivotSection (Object), 9-107

PivotThisChart (Method), 10-68

PivotTo (Method), 10-69

plus sign, 4-4

pop, 16-10

POSITIVE_INFINITY, 16-76

pow, 16-67

PrintOut (Method), 10-70

Process (Method), 10-71

ProcessEventOrigin (Property), 11-114

processing queries

using “don’t prompt for database logon”, 12-12

using “prompt for database logon”, 12-13

ProcessStoredProc (Method), 10-72

ProcessToTable (Method), 10-73

Prompt (Property), 11-115

Prompt To Save dialog box, turning off, 12-11

properties

alignment, 1-9 – 1-10

Array object, 16-5

background and border, 1-11

Boolean object, 16-24

Brio Intelligence, 11-1

Date object, 16-27

definition, 2-3

font, 1-12

Function object, 16-42

Math object, 16-51

Number object, 16-73

object, 1-13

Object object, 16-78

picture, 1-15

Regular Expression object, 16-124

retrieving object, 12-3

setting EIS, 1-8

setting object, 12-3

String object, 16-88

tab order, 1-16

Properties command, 1-21

prototype

Array property, 16-6

Boolean property, 16-24

Date property, 16-27
12 Index

Function property, 16-46

Number property, 16-76

Object property, 16-79

String property, 16-88

push, 16-11

Q

Query Limit (Object), 9-108

Query limits, modifying, 5-14

Query section, object model map, 13-5

Query SQL (Object), 9-109

QueryInProcess (Property), 11-116

QuerySection (Object), 9-110

QuerySize (Property), 11-117

Quit (Method), 10-74

quotation marks, strings and, 4-2

R

radio buttons

definition, 1-7

using, 3-7

random, 16-68

Recalculate (Method), 10-75

recalculating results, 8-33

RecentFiles (Collection), 9-112

rectangles, 1-6

references

general scripting, 8-1

syntax, 8-32

Refresh (Method), 10-76

RefreshAvailableValues (Method), 10-77

RefreshData (Property), 11-118

RefreshDataNow (Method), 10-78

Regular Expression object

Javascript, 16-119

methods, 16-131

properties, 16-124

regular expressions, special characters used in,
16-120

Remove (Method), 10-79

Remove Selected Items command, 1-21

RemoveAll (Method), 10-81

RemoveExportSection (Method), 10-82

removing objects from tab order, 1-16

renaming, EIS sections, 1-4

replace, 16-106

Report section

object model map, 13-8

toolbar, 1-19

ReportChart (Object), 9-113

ReportCharts (Collection), 9-114

ReportFooter (Object), 9-115

ReportGroup (Object), 9-116

ReportHeader (Object), 9-117

ReportName Field (Object), 9-118

ReportPivot (Collection), 9-120

ReportPivot (Object), 9-119

reports, turning off page headers for first page in,
12-11

ReportTable (Object), 9-121

ReportTables (Collection), 9-122

Request (Object), 9-123

Requests (Collection), 9-124

reserved words, 4-17

ResetCustomerSQL (Method), 10-83

ResetPrintProperties (Property), 11-120

ResizeToBestFit (Method), 10-84

Result Limit (Object), 9-127

Results (Collection), 9-126

Results (Object), 9-125

Results limits

creating, 7-12

modifying, 5-9

Results section, object model map, 13-8

results, recalculating, 8-33

retrieving object properties, 12-3

return statements, 15-15
Index 13

reverse, 16-12

RightAxis (Object), 9-128

rightContext, 16-130

RightMargin (Property), 11-121

Rotation (Property), 11-122

round, 16-68

round rectangles, 1-6

RowCount (Property), 11-123

RowLimit (Property), 11-124

RowLimitActive (Property), 11-125

RowNumber (Property), 11-126

rulers, 1-19

Rulers command, 1-21

Run mode, switching to, 1-5

S

sample scripts

Add a Computed Column to a Query Request line,
12-9

Add Items to The Request line, 12-9

Add Joins, 12-8

Add Topics to a Data Model Section, 12-7

Create an OCE, 12-6

Create and Set Variable Limits, 12-10

Display a Connection Login Box, 12-6

Display a Table Catalog, 12-7

Include Limit Values in the URL submitted to the
ODS, 12-11

ODS User Name as a Limit, using, 12-10

Process multiple queries against different
databases in the ODS using the, 12-12

Prompt for Database logon, 12-13

Setup Topic Objexts Variables, 12-8

Turn off page headers for the first page in the
Reporter, 12-11

Using a Brio Intelligence 6.6 Limit Dialog Box
andStoring Selected Value in Text Box, 12-10

Save (Method), 10-85

SaveAs (Method), 10-86

SaveResults (Property), 11-127

SaveWithoutUsername (Property), 11-128

ScaleMax (Property), 11-129

ScaleMin (Property), 11-130

ScaleX (Property), 11-131

ScaleY (Property), 11-132

script commands, launching, 8-2

Script Editor

Description pane, 8-32

using, 2-7

script results, 16-133

scripted applications, components of, 8-2

scripting

applications, 8-2

control objects, 3-2

EIS controls, 3-1

reference, 8-1

Scripting pane, 2-9

scripting, finding and replacing, 2-16

Scripts command, 1-21

scripts, exporting to text files, 8-27

scripts, testing, Execution window and, 2-13

scripts, troubleshooting, 8-28

Scrollable (Property), 11-133

ScrollbarsAlwaysShown (Property), 11-134

search, 16-107

Section (Object), 9-129

section level events, 2-6

section objects, 1-6

sections

Chart, 13-7

EIS, 1-2, 13-6

Query, 13-5

Sections (Collection), 9-130

Select (Method), 10-87

selected values, accessing, 7-8

SelectedIndex (Property), 11-135

SelectedList (Object), 9-131

selections
14 Index

accessing with drop-down boxes, 5-3

using variables for, 5-7

SendSQL (Method), 10-88

separators, statement, 4-3

Session (Object), 9-132

setDate, 16-34

setHours, 16-34

setMinutes, 16-35

setMonth, 16-35

SetODSPassword (Method), 10-89

SetPassword (Method), 10-90

setSeconds, 16-36

SetStoredProcParam (Method), 10-91

setTime, 16-36

setting

chart facts, 5-15

EIS properties, 1-8

object properties, 12-3

topic object variables, 12-8

setYear, 16-37

Shadow (Property), 11-136

Shape (Object), 9-133

Shapes (Collection), 9-134

SharedLibrary (Object), 9-135

Shell (Method), 10-92

Shell() Method, 8-19

shift, 16-13

shift operators, bitwise, 14-7

ShiftPoints (Property), 11-137

short-circuit evaluation operator, 14-10

shorthand assignment operators , 14-4

Show3DObjects (Property), 11-138

ShowAdvanced (Property), 11-139

ShowAllPositive (Property), 11-140

ShowBackPlane (Property), 11-141

ShowBarValues (Property), 11-142

ShowBorder (Property), 11-143

ShowBrioRepositoryTables (Property), 11-144

ShowCatalog (Property), 11-145

ShowColumnTitles (Property), 11-146

ShowColumnTotal (Property), 11-147

ShowFullNames (Property), 11-148

ShowHorizontalPlane (Property), 11-149

ShowIconJoins(Property), 11-150

ShowIntervalTickmarks (Property), 11-151

ShowIntervalValues (Property), 11-152

ShowLabel (Property), 11-153

ShowLabels (Property), 11-154

ShowLegend (Property), 11-155

ShowLocalResults (Property), 11-156

ShowMenuBar (Property), 11-157

ShowMetadata (Property), 11-158

ShowOutliner (Property), 11-159

ShowPercentages (Property), 11-160

ShowRowNumbers (Property), 11-161

ShowSectionTitleBar (Property), 11-162

ShowStatusBar (Property), 11-163

ShowSubtitle (Property), 11-164

ShowTickmarks (Property), 11-165

ShowTitle (Property), 11-166

ShowValues (Property), 11-167

ShowValuesAtRight (Property), 11-168

ShowVerticalPlane (Property), 11-169

sin, 16-69

Size (Property), 11-170

slice, 16-14, 16-108

small, 16-109

sort, 16-18

SortByFact (Method), 10-93

SortByLabel (Method), 10-94

SortFactName (Property), 11-171

SortFunction (Property), 11-172

SortItems (Collection), 9-136

SortNow (Method), 10-95

SortOrder (Property), 11-173

source, 16-130

space-saving variables, 8-28

special characters, in regular expressions , 16-120
Index 15

special operators, 14-11

SpecificMetadataLogin (Property), 11-174

splice, 16-16

split, 16-110

Spring (Method), 10-96

SQLName (Property), 11-175

SQLNetRetainDateFormats (Property), 11-176

sqrt, 16-70

SQRT1_2, 16-53

SQRT2, 16-54

StackClusterType (Property), 11-177

statement separators, 4-3

statements

break, 8-16, 15-3

comment, 15-5

conditional, 8-7

continue, 8-15, 15-6

delete, 15-8

do...while, 8-13, 15-9

eturn, 15-15

for, 8-12, 15-10

for...in, 8-17, 15-11

function, 15-12

if...else, 6-2, 6-4, 8-8, 15-13

inline if, 8-9

JavaScript, 15-1

label, 8-14

labeled, 15-14

loop, 8-12

switch, 6-3, 6-8, 8-10, 15-16

var, 15-18

while, 8-13, 15-19

with, 8-18, 15-20

strike, 16-113

String object

JavaScript, 16-87

methods, 16-89

properties, 16-88

string operators, 14-10

StringRetrieval (Property), 11-178

strings, concatenation and addition of, 4-10

Style (Property), 11-179

sub, 16-114

substr, 16-115

substring, 16-116

SubTitle (Property), 11-180

subtraction operator, 4-4, 14-2

sup, 16-117

SuppressDuplicates (Property), 11-181

SurfaceValues (Property), 11-182

SuspendRecalculation (Property), 11-183

switch statements

control structures, 6-3

controlling chart facts with, 6-13

controlling statement execution, 6-8

definition, 6-8, 15-16

using, 8-10

versus if...else, 6-8

switching between Design and Run modes, 1-5

SyncWithDatabase (Method), 10-97

syntax, 4-2, 15-1

syntax reference, 8-32

T

tab order

default, 1-16

setting, 1-16

tab order properties, 1-16

Table section, object model map, 13-9

TableFact (Object), 9-138

TableFacts (Collection), 9-139

TableSection (Object), 9-140

tan, 16-71

test, 16-135

test if operators, 4-5

testing scripts, Execution window and, 2-13

tests, conditional, 8-30

Text (Property), 11-184
16 Index

text box, 1-7

text files, exporting scripts to, 8-27

text labels, 1-7

TextWrap (Property), 11-185

this, 14-11, 14-15

TickmarkFrequency (Property), 11-186

Time Field (Object), 9-141

TimeLimit (Property), 11-187

TimeLimitActive (Property), 11-188

TimeNow Field (Object), 9-142

Title (Property), 11-189

toGMTString, 16-38

toLocaleString, 16-39

toLowerCase, 16-118

Toolbar (Object), 9-143

toolbar, Navigation, 1-20

Toolbars (Collection), 9-145

toolbars, hiding, 5-17

tools, layout, 1-18

Topic (Object), 9-146

TopicItem (Object), 9-147

TopicItems (Collection), 9-148

TopicName (Property), 11-190

Topics (Collection), 9-149

TopMargin (Property), 11-191

toString, 16-21, 16-25, 16-48, 16-77, 16-82

ToString() (Function), 16-41

ToString() (Method), 16-72

toUpperCase, 16-118

troubleshooting scripts, 8-28

turning off

page headers, 12-11

Prompt To Save dialog box, 12-11

Type (Property), 11-192

typeof, 14-11, 14-15

types, object, for valueOf method, 16-85

U

umn, 9-139

unary negation operator, 14-2

understanding

Brio Intelligence events, 2-4

Brio Intelligence object model, 2-2

control structure syntax, 6-2

functions, 8-3

UnhideAll (Method), 10-98

UnionController (Property), 11-195

UniqueRows (Property), 11-196

Unselect (Method), 10-99

unshift, 16-22

UnSpring (Method), 10-100

unwatch, 16-84

URL (Collection), 9-150

URL (Property), 11-197

URL parameters, using to pass parameters to ODS
documents, 8-22

UseAlternateMetadataLocation (Method), 10-101

user IDs, bypassing, 8-21

Username (Property), 11-198

using

 loops, 7-2

assignment versus comparison operators, 4-5

Brio Intelligence 6.6 Limit dialog box, 12-10

browser cookies to pass parameters to ODS
documents, 8-22

Console window, to check errors, 2-14

design tools, 1-18

drop-down boxes, 5-2

Execution window, to test scripts, 2-13

JavaScript statements, 8-7

JavaScript to open Web and ODS documents, 8-19

ODS user name as limit, 12-10

Script Editor, 2-7

variables

for objects, 5-13

for selections, 5-7

UTC, 16-40
Index 17

V

valueOf, 16-84

valueOf method, object types for, 16-85

values, 7-3 – 7-4, 7-7 – 7-8

Values properties, 1-17

ValuesAxis (Object), 9-151

ValueSource (Property), 11-199

var statements, 15-18

variable characteristics, 5-7

VariableLimit (Property), 11-200

variables

assigning values, 4-15

characteristics, 5-7

declaring global, 4-14

declaring local, 4-14

definition, 4-13

dynamically declaring, 4-15

naming, 4-2

space-saving, 8-28

using for a drop down selection, 5-7

using for objects, 5-13

Version (Property), 11-201

vertical lines, 1-6

VerticalAlignment (Property), 11-202

View (Property), 11-203

Visible (Property), 11-204

Visual Basic, 8-25

void, 14-11, 14-16

W

watch, 16-86

WebClientDocument (Object), 9-152

while statements

definition, 15-19

using, 8-13

Width (Property), 11-205

windows

Console, 2-14

Execution, 2-13

WindowState (Property), 11-206

with statements

definition, 15-20

using, 8-18

words, reserved, 4-17

working

with EIS objects, 1-6

with EIS sections, 1-4

Write (Method), 10-102

Writeln (Method), 10-103

X

XAxisLabel (Object), 9-154

XCategory (Object), 9-155

XLabels (Object), 9-156

Y

YLabels (Object), 9-157

Z

ZAxisLabel (Object), 9-158

ZCategory (Object), 9-159

ZLabels (Object), 9-160
18 Index

	BrioQuery Object Model and Executive Information Systems
	About This Book
	Overview
	Executive Information Systems
	EIS Section
	Working with the EIS Section
	Inserting an EIS Section
	Renaming an EIS Section
	Deleting an EIS Section
	Switching Between Design and Run Modes

	Working with EIS Objects
	Inserting EIS Objects
	Deleting EIS Objects

	Setting EIS Properties
	Alignment Properties
	Border And Background Properties
	Font Properties
	Object Properties
	Picture Properties
	Tab Order Properties
	Values Properties

	Using Design Tools
	Layout Tools
	Design Guides
	Grids
	Rulers
	EIS Section Toolbar

	Navigation Toolbar

	EIS Menu Command Reference
	Summary

	Brio Intelligence Object Model
	Understanding the Brio Intelligence Object Model
	Understanding Brio Intelligence Events
	Object Level Events
	Section Level Events
	Document Level Events

	Using the Script Editor
	Object Browser
	Scripting Pane
	Description Pane and Online Help

	Sample JavaScript Script
	Testing Scripts Using the Execution Window
	Checking Errors Using the Console Window
	Finding/Replacing Script
	Summary

	Scripting EIS Controls
	Scripting Control Objects
	Creating a New EIS Section
	Changing a Control Object’s Title

	Associating Scripts with Command Buttons
	Associating Scripts with Radio Buttons
	Associating Scripts with Check Boxes
	Associating Scripts with List Boxes
	Exercise: Associating a Script with a List Box

	Summary

	Brio JavaScript Tutorials
	JavaScript Syntax
	Basic JavaScript Syntax
	JavaScript Code Structure
	JavaScript Operators
	Using Assignment versus Comparison Operators
	Exercise: Adding Comparison and Assignment Buttons
	Exercise: Using the Comparison Operator
	Exercise: Using the Assignment Operator

	Including Operators in Strings
	Exercise: Using Operators as Characters

	Concatenating versus Adding
	Exercise: Concatenating Values
	Exercise: Summing Values

	Variables
	Declaring Local Variables
	Declaring Global Variables
	Dynamically Declaring Variables
	Assigning Values

	Reserved Words
	Summary

	JavaScript Basics
	Using Drop-Down Boxes
	Accessing a Drop-Down Selection
	Using a Variable for the Selection
	Exercise: Declaring a Variable

	Modifying Limits
	Modifying a Results Limit
	Using a Variable for an Object
	Modifying a Query Limit

	Finishing the Document
	Setting a Chart Fact
	Hiding Toolbars

	Summary

	JavaScript Control Structures
	Understanding Control Structure Syntax
	About if...else Statements
	Exercise: Using an if...else Statement to Change Chart Types

	About switch Statements
	Exercise: Using a switch Statement to Change Chart Types

	Controlling Chart Facts with if...else
	Controlling Chart Facts with switch
	Summary

	Drop-Down and List Boxes
	Using for Loops
	Filling Boxes with Multiple Values
	Filling a List Box with Available Values
	Exercise: Using a for Loop to Fill a List Box with Limit Values

	Filling a Drop-Down Box with Available Values

	Accessing Selected Values
	Drop-Down Item Argument
	List Box Item Argument
	Exercise: Using Loops to Access List Box Selections

	Creating Results Limits
	Exercise: Using JavaScript to Clear and Assign New Results Limits in Drop-Down Boxes

	What’s Next
	Summary

	Brio Scripting Reference
	General Scripting Reference
	Scripting Applications in Brio Intelligence
	Understanding Functions
	Defining Functions
	Calling Functions
	Function Scope
	Defining Functions in Different Scopes

	Using JavaScript Statements
	Conditional Statements
	if...else Statements
	Inline if Statements
	switch Statements

	Loop Statements
	for Statements
	do...while Statements
	while Statements
	label Statements
	continue Statements

	break Statements

	Manipulating Objects with JavaScript
	for...in Statement
	with Statement

	Using JavaScript to Open Web and OnDemand Server Documents
	Shell() Method
	OpenURL() Method
	Bypassing the Userid and Password
	Including Limit Values in the URL Submitted to the ODS
	Passing Parameters to OnDemand Server Documents Using Browser Cookies or URL Parameters
	Accessing Cookies
	Accessing URL Parameters

	Microsoft Automation Interfaces and the Object Model
	OLE Automation Controller within JavaScript
	Exporting Scripts to Text Files
	Troubleshooting Scripts
	Space-Saving Variables
	Case-Sensitive Code
	Assignment Operators Versus Comparison Operators
	Conditional Tests
	Syntax Reference
	Recalculating Results
	Designing Your Script
	Code Entry
	Bypass Errors
	Getting Help with a Problem Script

	Objects
	Methods
	Properties
	JavaScript Examples
	Displaying and Entering Values in a Text Box
	Retrieving and Setting the Properties of an Object
	Enabling and Disabling Controls
	Controlling the Visibility of Graphics and Controls
	Creating an OCE (connection file)
	Displaying a Connection Login Box
	Downloading Data Models
	Displaying a Table Catalog
	Adding Topics to a Data Model Section
	Setting up Topic Object Variables
	Adding Joins
	Adding Items to the Request Line
	Adding a Computed Column to a Query Request Line
	Creating and Setting Variable Limits
	Using the ODS User Name as a Limit
	Using a Brio Intelligence 6.6 Limit Dialog Box and Storing Selected Value�in�Text�Box
	Turning off the Page Headers for the First Page in the Report
	Including Limit Values in the URL Submitted to the ODS
	Turning off the Prompt To Save Dialog Box
	Processing Queries Using “Don’t Prompt For Database Logon”
	Processing Queries Using “Prompt For Database Logon”

	Object Model Map
	Object Model Hierarchy
	Application Level
	Active Document Level
	Query Section
	EIS Section
	Chart Section
	Results, Report, and Pivot Sections
	Table and OLAPQuery Sections

	General JavaScript Reference
	JavaScript Operators
	Arithmetic Operators
	Assignment Operators
	Bitwise Operators
	Bitwise Logical Operators
	Bitwise Shift Operators

	Comparison Operators
	Logical Operators
	Short-Circuit Evaluation

	String Operators
	Special Operators

	Statements
	Core Objects

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

