
Java in Adaptive Server Enterprise

Adaptive Server Enterprise

12.5

DOCUMENT ID: 31652-01-1250-03

LAST REVISED: June 2001

Copyright © 1989-2001 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase database management software and to any subsequent release until otherwise indicated in new
editions or technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server,
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication,
Adaptive Server Everywhere, Adaptive Server IQ, Adaptive Warehouse, AnswerBase, Anywhere Studio, Application Manager,
AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-FORMS, APT-Translator, APT-Library, Backup Server,
ClearConnect, Client-Library, Client Services, Data Pipeline, Data Workbench, DataArchitect, Database Analyzer, DataExpress,
DataServer, DataWindow, DB-Library, dbQueue, Developers Workbench, Direct Connect Anywhere, DirectConnect, Distribution
Director, E-Anywhere, E-Whatever, Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/Server, Enterprise Connect,
Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work Designer,
Enterprise Work Modeler, EWA, Financial Fusion, Financial Fusion Server, Gateway Manager, ImpactNow, InfoMaker, Information
Anywhere, Information Everywhere, InformationConnect, InternetBuilder, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeBase,
MainframeConnect, Maintenance Express, MAP, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, MySupport,
Net-Gateway, Net-Library, ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Client,
Open ClientConnect, Open Client/Server, Open Client/Server Interfaces, Open Gateway, Open Server, Open ServerConnect, Open
Solutions, Optima++, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library, Power++, power.stop, PowerAMC, PowerBuilder,
PowerBuilder Foundation Class Library, PowerDesigner, PowerDimensions, PowerDynamo, PowerJ, PowerScript, PowerSite,
PowerSocket, Powersoft, PowerStage, PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare Desktop,
PowerWare Enterprise, ProcessAnalyst, Report Workbench, Report-Execute, Replication Agent, Replication Driver, Replication Server,
Replication Server Manager, Replication Toolkit, Resource Manager, RW-DisplayLib, RW-Library, S-Designor, SDF, Secure SQL
Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts, smart.script, SQL Advantage, SQL Anywhere, SQL
Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere, SQL Modeler, SQL Remote, SQL
Server, SQL Server Manager, SQL SMART, SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL Server SNMP SubAgent, SQL
Station, SQLJ, STEP, SupportNow, Sybase Central, Sybase Client/Server Interfaces, Sybase Financial Server, Sybase Gateways, Sybase
MPP, Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase User Workbench, SybaseWare, Syber Financial,
SyberAssist, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data Stream, Transact-SQL, Translation Toolkit,
UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viewer, Visual Components, VisualSpeller, VisualWriter,
VQL, WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse WORKS, Watcom, Watcom SQL, Watcom SQL
Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server and XP
Server are trademarks of Sybase, Inc. 3/01

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-
7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., 6475 Christie Avenue, Emeryville, CA 94608.

Contents

iii

About This Book ... xi

CHAPTER 1 An Introduction to Java in the Database 1
Advantages of Java in the database .. 1
Capabilities of Java in the database .. 2

Invoking Java methods in the database 2
Storing Java classes as datatypes .. 3
Storing and querying XML in the database 4

Standards... 4
Java in the database: questions and answers 5

What are the key features? ... 5
How can I store Java instructions in the database? 6
How is Java executed in the database?.................................... 6
How can I use Java and SQL together?.................................... 7
What is the Java API? ... 8
How can I access the Java API from SQL? 8
Which Java classes are supported in the Java API? 8
Can I install my own Java classes?... 9
Can I access data using Java? ... 9
Can I use the same classes on client and server?.................... 9
How do I use Java classes in SQL?.. 9
Where can I find information about Java in the database? 10
What you cannot do with Java in the database....................... 10

Sample Java classes ... 11

CHAPTER 2 Preparing for and Maintaining Java in the Database................. 13
The Java runtime environment... 13

Java classes in the database .. 13
JDBC drivers ... 14
The Java VM ... 14

Configuring memory for Java in the database................................ 15
Enabling the server for Java .. 15

Disabling the server for Java... 15

Contents

iv

Creating Java classes and JARs ... 16
Writing the Java code.. 16
Compiling Java code ... 16
Saving classes in a JAR file .. 16

Installing Java classes in the database.. 17
Using installjava .. 18
Referencing other Java-SQL classes...................................... 20

Viewing information about installed classes and JARs 20
Downloading installed classes and JARs....................................... 21
Removing classes and JARs ... 21

Retaining classes .. 21

CHAPTER 3 Using Java Classes in SQL... 23
General concepts ... 24

Java considerations... 24
Java-SQL names... 24

Using Java classes as datatypes ... 25
Creating and altering tables with Java-SQL columns.............. 26
Selecting, inserting, updating, and deleting Java objects........ 28

Invoking Java methods in SQL .. 30
Sample methods ... 31
Exceptions in Java-SQL methods ... 31

Representing Java instances ... 31
Assignment properties of Java-SQL data items............................. 32
Datatype mapping between Java and SQL fields 35
Character sets for data and identifiers ... 36
Subtypes in Java-SQL data ... 36

Widening conversions ... 36
Narrowing conversions.. 37
Runtime versus compile-time datatypes 38

The treatment of nulls in Java-SQL data.. 38
References to fields and methods of null instances 38
Null values as arguments to Java-SQL methods 40
Null values when using the SQL convert function 41

Java-SQL string data ... 42
Zero-length strings .. 42

Type and void methods.. 43
Java void instance methods .. 43
Java void static methods ... 45

Equality and ordering operations ... 45
Evaluation order and Java method calls .. 46

Columns .. 47
Variables and parameters ... 47

Static variables in Java-SQL classes ... 48

Contents

v

Java classes in multiple databases.. 49
Scope .. 49
Cross-database references ... 49
Inter-class transfers... 50
Passing inter-class arguments .. 51
Temporary and work databases.. 51

 Java classes.. 52

CHAPTER 4 Data Access Using JDBC... 57
Overview .. 57
JDBC concepts and terminology.. 58
Differences between client- and server-side JDBC........................ 58
Permissions.. 59
Using JDBC to access data ... 60

Overview of the JDBCExamples class 60
The main() and serverMain() methods 61
Obtaining a JDBC connection: the Connecter() method 62
Routing the action to other methods: the doAction() method . 63
Executing imperative SQL operations: the doSQL() method . 63
Executing an update statement: the UpdateAction() method. 63
Executing a select statement: the selectAction() method....... 64
Calling a SQL stored procedure: the callAction() method 65

Error handling in the native JDBC driver.. 67
The JDBCExamples class.. 69

The main() method ... 69
The internalMain() method ... 69
The connecter() method ... 70
The doAction() method... 71
The doSQL() method.. 72
The updateAction() method.. 72
The selectAction() method ... 73
The callAction() method ... 73

CHAPTER 5 SQLJ Functions and Stored Procedures.................................... 75
Overview .. 75

Compliance with SQLJ Part 1 specifications........................... 76
General issues .. 76
Security and permissions .. 77
SQLJExamples.. 78

Invoking Java methods in Adaptive Server 78
Using Sybase Central to manage SQLJ functions and procedures 80
SQLJ user-defined functions.. 81

Handling null argument values .. 84

Contents

vi

Deleting a SQLJ function name... 86
SQLJ stored procedures .. 87

Modifying SQL data... 89
Using input and output parameters ... 90
Returning result sets ... 94

Viewing information about SQLJ functions and procedures 97
Advanced topics... 98

Mapping Java and SQL datatypes .. 98
Using the command main method... 102

SQLJ and Sybase implementation: a comparison 102
SQLJExamples class ... 105

CHAPTER 6 Introduction to XML in the Database ... 109
Introduction .. 109

Source code and javadoc.. 110
References .. 110

An overview of XML ... 111
A sample XML document .. 111
XML document types... 116
XSL: formatting XML information .. 118
Character sets and XML data.. 118
XML parsers .. 119

CHAPTER 7 Selecting Data with XQL ... 121
Accessing the XML parser ... 121
Setting the CLASSPATH environment variable 122
Installing XQL in Adaptive Server .. 122

Converting a raw XML document to a parsed version 123
Inserting XML documents.. 123
Updating XML documents ... 124
Deleting XML documents .. 124
Memory requirements for running the query engine inside

Adaptive Server .. 124
Using XQL... 125
Query structures that affect performance.............................. 127
Examples... 128

Other usages of the XQL package... 130
com.sybase.xml.xql.XqlDriver syntax.................................... 130
Validating your document.. 132
Using XQL to develop standalone applications..................... 133

XQL methods ... 136
Methods in com.sybase.xml.xql.Xql ... 136
parse(String xmlDoc) ... 136

Contents

vii

parse(InputStream xml_document, boolean validate).................. 137
query(String query, String xmlDoc) .. 138
query(String query, InputStream xmlDoc).................................... 138
query(String query, SybXmlStream xmlDoc) 139
query(String query, JXml jxml) ... 139
sybase.aseutils.SybXmlStream.. 139
com.sybase.xml.xql.store.SybMemXmlStream............................ 140
com.sybase.xml.xql.store.SybFileXmlStream 140
setParser(String parserName) ... 140
reSetParser .. 141

CHAPTER 8 Specialized XML Processing ... 143
The OrderXml class for order documents 143

OrderXml(String) constructor .. 144
OrderXml(date, customerid, server) 144
void order2Sql(String ordersTableName, String server) 144
static void createOrderTable

(String ordersTableName, String server)........................ 145
void setOrderElement

(String elementName, String newValue) 145
String getItemElement

(int itemNumber, String elementName) 145
void setItemElement

(int itemNumber, String elementName, String newValue 146
String getItemAttribute

(int itemNumber, elementName, attributeName)............ 146
void setItemAttribute (int itemNumber, elementName,

attributeName, newValue) .. 146
void appendItem

(newItemid, newItemName, newQuantity, newUnit)....... 147
void deleteItem(int itemNumber) ... 147

Storing XML documents... 147
Mapping and storage... 148
Advantages and disadvantages of storage options............... 148
Client or server considerations.. 149

Creating and populating SQL tables for order data...................... 149
Tables for element storage.. 150
Tables for document and hybrid storage............................... 151

Using the element storage technique... 151
Composing order documents from SQL data........................ 151
Translating data from an XML order into SQL....................... 153

Using the document storage technique.. 154
Storing XML order documents in SQL columns 154
Accessing the elements of stored XML order documents 155

Contents

viii

Server access to order elements... 158
Appending and deleting items in the XML document 159

Using the hybrid storage technique.. 159

CHAPTER 9 XML for SQL Result Sets ... 161
The ResultSetXML class.. 161

ResultSetXml(String)... 161
Constructor: ResultSetXml

(query, cdataColumns, colNames, server) 162
ResultXml example ... 162
String toSqlScript

(resultTableName, columnPrefix, goOption) 162
String getColumn(int rowNumber, int columnNumber).......... 163
String getColumn(int rowNumber, String columnName) 163
void setColumn

(int rowNumber, int columnNumber, newValue)............. 163
void setColumn

(int rowNumber, String columnName, newValue) 164
Boolean allString

(int ColumnNumber, String compOp, String comparand) 164
Boolean someString

(int columnNumber, String compOp, String comparand) 164
A customizable example for different result sets.......................... 165

The ResultSet document type ... 166
Using the element storage technique.................................... 170

Generating a ResultSet in the client... 171
Generating a result set in Adaptive Server 171
Translating the XML ResultSet document in the client 172
Translating the XML ResultSet Document in Adaptive Server..... 173
Using the document storage technique.. 173

Storing an XML ResultSet document in a SQL column......... 173
Accessing the columns of stored ResultSet documents 174
Quantified comparisons in stored ResultSet documents....... 177

CHAPTER 10 Debugging Java in the Database ... 181
Introduction to debugging Java .. 181

How the debugger works... 181
Requirements for using the Java debugger 181
What you can do with the debugger...................................... 182

Using the debugger.. 182
Starting the debugger and connecting to the database......... 182
Compiling classes for debugging .. 183
Attaching to a Java VM ... 183

Contents

ix

The Source window... 184
Options .. 185
Setting breakpoints.. 186
Disconnecting from the database.. 188

A debugging tutorial ... 189
Before you begin ... 189
Start the Java debugger and connect to the database.......... 189
Attach to a Java VM .. 190
Load source code into the debugger..................................... 190
Step through source code ... 191
Inspecting and modifying variables 192

CHAPTER 11 Network Access Using java.net... 195
Overview .. 195
java.net classes.. 196
Setting up java.net ... 196
Example usage .. 197

Using socket classes... 197
Using the URL class.. 200

User notes.. 202
Where to go for help... 202

CHAPTER 12 Reference Topics .. 205
Assignments... 205

Assignment rules at compile-time ... 206
Assignment rules at runtime.. 206

Allowed conversions .. 207
Transferring Java-SQL objects to clients 207
Supported Java API packages, classes, and methods 208

Supported Java packages and classes................................. 208
Unsupported Java packages and classes............................. 209
Unsupported java.sql methods and interfaces 209

Invoking SQL from Java... 211
Special considerations .. 211

Transact-SQL commands from Java methods............................. 212
Datatype mapping between Java and SQL........................... 217

Java-SQL identifiers... 219
Java-SQL class and package names... 220
Java-SQL column declarations .. 221
Java-SQL variable declarations ... 221
Java-SQL column references... 222
Java-SQL member references ... 223
Java-SQL method calls .. 224

Contents

x

Glossary ... 227

Index ... 233

xi

About This Book

This book describes how to install and use Java classes and methods in the
Sybase® Adaptive Server® Enterprise database.

Audience This book is for Sybase System Administrators, Database Owners, and
users who are familiar with the Java programming language and Transact-
SQL®, the Sybase version of Structured Query Language (SQL).
Familiarity with Java Database Connectivity (JDBC), the eXtensible
Markup Language (XML), and the Extensible Query Language (XQL) is
assumed for those who use these features.

How to use this book This book will assist you in installing, configuring, and using Java classes
and methods in the Adaptive Server database. It includes these chapters:

• Chapter 1, “An Introduction to Java in the Database,” provides an
overview of Java in Adaptive Server, including a “questions and
answers” section for both novice and experienced Java users.

• Chapter 2, “Preparing for and Maintaining Java in the Database,”
describes the Java runtime environment and the steps for enabling
Java on the server and installing Java classes.

• Chapter 3, “Using Java Classes in SQL,” describes how to use Java-
SQL classes in your Adaptive Server database.

• Chapter 4, “Data Access Using JDBC,” describes how you use a
JDBC driver (on the server or on the client) to perform SQL
operations in Java.

• Chapter 5, “SQLJ Functions and Stored Procedures,” describes how
you can enclose and use Java methods in SQL wrappers.

• Chapter 6, “Introduction to XML in the Database,” provides an
overview of XML and the methods for storing XML documents in
Adaptive Server and generating them from SQL data.

Chapters 7, 8, and 9 describe other ways that you can use XML in the
Adaptive Server database.

• Chapter 7, “Selecting Data with XQL,” describes how to select raw
data from Adaptive Server using the XQL language and display it as
an XML document.

About this book

xii

• Chapter 8, “Specialized XML Processing,” describes the OrderXML
class, which is designed for an example application that uses XML
documents for customer Order data, and is written specifically to
process XML documents for order data.

• Chapter 9, “XML for SQL Result Sets,” describes the ResultSetXML
class, which allows you to generate an XML document representing
an SQL result set, and to access and update such an XML document.

• Chapter 10, “Debugging Java in the Database,” describes how you
use the Sybase debugger with Java.

• Chapter 11, “Network Access Using java.net,” describes how you
can use java.net, a package that allows you to create networking
applications over TCP/IP. It enables classes running in Adaptive
Server to access different kinds of servers.

• Chapter 12, “Reference Topics,” provides information about datatype
mapping, Java-SQL syntax, and other useful information.

In addition, a glossary provides descriptions of the Java and Java-SQL
terms used in this book.

Related documents The following documents comprise the Sybase Adaptive Server
Enterprise documentation:

• The release bulletin for your platform – contains last-minute
information that was too late to be included in the books.

A more recent version of the release bulletin may be available on the
World Wide Web. To check for critical product or document
information that was added after the release of the product CD, use
the Sybase Technical Library.

• The Installation Guide for your platform – describes installation,
upgrade, and configuration procedures for all Adaptive Server and
related Sybase products.

• Configuring Adaptive Server Enterprise for your platform – provides
instructions for performing specific configuration tasks for Adaptive
Server.

• What’s New in Adaptive Server Enterprise? – describes the new
features in Adaptive Server version 12.5, the system changes added to
support those features, and the changes that may affect your existing
applications.

About this book

xiii

• Transact-SQL User’s Guide – documents Transact-SQL, Sybase’s
enhanced version of the relational database language. This manual
serves as a textbook for beginning users of the database management
system. This manual also contains descriptions of the pubs2 and
pubs3 sample databases.

• System Administration Guide – provides in-depth information about
administering servers and databases. This manual includes
instructions and guidelines for managing physical resources, security,
user and system databases, and specifying character conversion,
international language, and sort order settings.

• Reference Manual – contains detailed information about all Transact-
SQL commands, functions, procedures, and datatypes. This manual
also contains a list of the Transact-SQL reserved words and
definitions of system tables.

• Performance and Tuning Guide – explains how to tune Adaptive
Server for maximum performance. This manual includes information
about database design issues that affect performance, query
optimization, how to tune Adaptive Server for very large databases,
disk and cache issues, and the effects of locking and cursors on
performance.

• The Utility Guide – documents the Adaptive Server utility programs,
such as isql and bcp, which are executed at the operating system level.

• The Quick Reference Guide – provides a comprehensive listing of the
names and syntax for commands, functions, system procedures,
extended system procedures, datatypes, and utilities in a pocket-sized
book. Available only in print version.

• The System Tables Diagram – illustrates system tables and their
entity relationships in a poster format. Available only in print version.

• Error Messages and Troubleshooting Guide – explains how to
resolve frequently occurring error messages and describes solutions
to system problems frequently encountered by users.

• Component Integration Services User’s Guide – explains how to use
the Adaptive Server Component Integration Services feature to
connect remote Sybase and non-Sybase databases.

• Using Sybase Failover in a High Availability System – provides
instructions for using Sybase’s Failover to configure an Adaptive
Server as a companion server in a high availability system.

About this book

xiv

• Using Adaptive Server Distributed Transaction Management
Features – explains how to configure, use, and troubleshoot Adaptive
Server DTM features in distributed transaction processing
environments.

• EJB Server User’s Guide – explains how to use EJB Server to deploy
and execute Enterprise JavaBeans in Adaptive Server.

• XA Interface Integration Guide for CICS, Encina, and TUXEDO –
provides instructions for using Sybase’s DTM XA interface with
X/Open XA transaction managers.

• Glossary – defines technical terms used in the Adaptive Server
documentation.

• Sybase jConnect for JDBC Programmer’s Reference – describes the
jConnect for JDBC product and explains how to use it to access data
stored in relational database management systems.

• Full-Text Search Specialty Data Store User’s Guide – describes how
to use the Full-Text Search feature with Verity to search Adaptive
Server Enterprise data.

• Historical Server User’s Guide –describes how to use Historical
Server to obtain performance information for SQL Server and
Adaptive Server.

• Monitor Server User’s Guide – describes how to use Monitor Server
to obtain performance statistics from SQL Server and Adaptive
Server.

• Monitor Client Library Programmer’s Guide – describes how to write
Monitor Client Library applications that access Adaptive Server
performance data.

Other sources of
information

Use the Sybase Technical Library CD and the Technical Library Product
Manuals Web site to learn more about your product:

• Technical Library CD contains product manuals and is included with
your software. The DynaText browser (downloadable from Product
Manuals at http://www.sybase.com/detail/1,3693,1010661,00.html)
allows you to access technical information about your product in an
easy-to-use format.

Refer to the Technical Library Installation Guide in your
documentation package for instructions on installing and starting the
Technical Library.

About this book

xv

• Technical Library Product Manuals Web site is an HTML version of
the Technical Library CD that you can access using a standard Web
browser. In addition to product manuals, you will find links to the
Technical Documents Web site (formerly known as Tech Info
Library), the Solved Cases page, and Sybase/Powersoft newsgroups.

To access the Technical Library Product Manuals Web site, go to
Product Manuals at http://www.sybase.com/support/manuals/.

Sybase certifications on
the Web

Technical documentation at the Sybase Web site is updated frequently.

❖ For the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Select Products from the navigation bar on the left.

3 Select a product name from the product list.

4 Select the Certification Report filter, specify a time frame, and click
Go.

5 Click a Certification Report title to display the report.

❖ For the latest information on EBFs and Updates

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Select EBFs/Updates. Enter user name and password information, if
prompted (for existing Web accounts) or create a new account (a free
service).

3 Specify a time frame and click Go.

4 Select a product.

5 Click an EBF/Update title to display the report.

❖ To create a personalized view of the Sybase Web site (including support
pages)

Set up a MySybase profile. MySybase is a free service that allows you to
create a personalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/

2 Click MySybase and create a MySybase profile.

About this book

xvi

Java syntax conventions This book uses these font and syntax conventions for Java items:

• Classes, interfaces, methods, and packages are shown in Helvetica
within paragraph text. For example:

SybEventHandler interface

setBinaryStream() method

com.Sybase.jdbx package

• Objects, instances, and parameter names are shown in italics. For
example:

“In the following example, ctx is a DirContext object.”

 “eventHdler is an instance of the SybEventHandler class that you
implement.”

“The classes parameter is a string that lists specific classes you want
to debug.”

• Java names are always case sensitive. For example, if a Java method
name is shown as Misc.stripLeadingBlanks(), you must type the
method name exactly as displayed.

Transact-SQL syntax
conventions

This book uses the same font and syntax conventions for Transact-SQL as
other Adaptive Server documents:

• Command names, command option names, utility names, utility
flags, and other keywords are in Helvetica in paragraph text. For
example:

select command

isql utility

-f flag

• Variables, or words that stand for values that you fill in, are in italics.
For example:

user_name

server_name

• Code fragments are shown in a monospace font.Variables in code
fragments (that is, words that stand for values that you fill in) are
italicized. For example:

Connection con = DriverManager.getConnection
("jdbc:sybase:Tds:host:port", props);

About this book

xvii

• You can disregard case when typing Transact-SQL keywords. For
example, SELECT, Select, and select are the same.

Additional conventions for syntax statements in this manual are described
in Table 1. Examples illustrating each convention can be found in the
System Administration Guide.

Table 1: Syntax statement conventions

If you need help Each Sybase installation that has purchased a support contract has one or
more designated people who are authorized to contact Sybase Technical
Support. If you cannot resolve a problem using the manuals or online help,
please have the designated person contact Sybase Technical Support or
the Sybase subsidiary in your area.

Key Definition

{ } Curly braces indicate that you choose at least one of the enclosed
options. Do not include braces in your option.

[] Brackets mean choosing one or more of the enclosed options is
optional. Do not include brackets in your option.

() Parentheses are to be typed as part of the command.

| The vertical bar means you may select only one of the options
shown.

, The comma means you may choose as many of the options shown
as you like, separating your choices with commas to be typed as
part of the command.

xviii

1

C H A P T E R 1 An Introduction to Java in the
Database

This chapter provides an overview of Java classes in Adaptive Server
Enterprise.

Advantages of Java in the database
Adaptive Server provides a runtime environment for Java, which means
that Java code can be executed in the server. Building a runtime
environment for Java in the database server provides powerful new ways
of managing and storing both data and logic.

• You can use the Java programming language as an integral part of
Transact-SQL.

• You can reuse Java code in the different layers of your application—
client, middle-tier, or server—and use them wherever makes most
sense to you.

• Java in Adaptive Server provides a more powerful language than
stored procedures for building logic into the database.

• Java classes become rich, user-defined data types.

• Methods of Java classes provide new functions accessible from SQL.

Topic Page
Advantages of Java in the database 1

Capabilities of Java in the database 2

Standards 4

Java in the database: questions and answers 5

Sample Java classes 11

Capabilities of Java in the database

2

• Java can be used in the database without jeopardizing the integrity,
security, and robustness of the database. Using Java does not alter the
behavior of existing SQL statements or other aspects of non-Java
relational database behavior.

Capabilities of Java in the database
Java in Adaptive Server allows you to:

• Invoke Java methods in the database

• Store Java classes as datatypes

• Store and query XML in the database

Invoking Java methods in the database
You can install Java classes in Adaptive Server, and then invoke the static
methods of those classes in two ways:

• You can invoke the Java methods directly in SQL.

• You can wrap the methods in SQL names and invoke them as you would
standard Transact-SQL stored procedures.

Invoking Java methods directly in SQL

The methods of an object-oriented language correspond to the functions of a
procedural language. You can invoke methods stored in the database by
referencing them, with name qualification, on instances for instance methods,
and on either instances or classes for static (class) methods. You can invoke the
method directly in, for example, Transact-SQL select lists and where clauses.

You can use static methods that return a value to the caller as user-defined
functions (UDFs).

Certain restrictions apply when using Java methods in this way:

• If the Java method accesses the database through JDBC, result-set values
are available only to the Java method, not to the client application.

Chapter 1 An Introduction to Java in the Database

3

• Output parameters are not supported. A method can manipulate the data it
receives from a JDBC connection, but the only value it can return to its
caller is a single return value declared as part of its definition.

Invoking Java methods as SQLJ stored procedures and functions

You can enclose Java static methods in SQL wrappers and use them exactly as
you would Transact-SQL stored procedures or built-in functions. This
functionality:

• Allows Java methods to return output parameters and result sets to the
calling environment.

• Allows you to take advantage of traditional SQL syntax, metadata, and
permission capabilities.

• Allows you to invoke SQLJ functions across databases.

• Allows you to use existing Java methods as SQLJ procedures and
functions on the server, on the client, and on any SQLJ-compliant, third-
party database.

• Complies with Part 1 of the ANSI standard specification. See “Standards”
on page 4.

Storing Java classes as datatypes
With Java in the database, you can install pure Java classes in a SQL system,
and then use those classes in a natural manner as datatypes in a SQL database.
This capability adds a full object-oriented datatype extension mechanism to
SQL, using a model that is widely understood and a language that is portable
and widely available. The objects that you create and store with this facility are
readily transferable to any Java-enabled environment, either in another SQL
system or standalone Java environment.

This capability of using Java classes in the database has two different but
complementary uses:

• It provides a type extension mechanism for SQL, which you can use for
data that is created and processed in SQL.

Standards

4

• It provides a persistent data capability for Java, which you can use to store
data in SQL that is created and processed (mainly) in Java. Java in
Adaptive Server provides a distinct advantage over traditional SQL
facilities: you do not need to map the Java objects into scalar SQL
datatypes or store the Java objects as untyped binary strings.

Storing and querying XML in the database
Similar to Hypertext Markup Language (HTML), the eXtensible Markup
Language (XML) allows you to define your own application-specific markup
tags and is thus particularly suited for data interchange.

Adaptive Server allows you to:

• Generate XML-formatted documents from raw data stored in Adaptive
Server.

• Store XML documents and data extracted from them in Adaptive Server.

• Query XML documents stored on the Web.

Adaptive Server uses the XML Query Language (XQL) to search XML
documents. A Java-based XQL query processor is included with Adaptive
Server. Because many of the tools commonly used to process XML are written
in Java, Adaptive Server provides an excellent base for XML-SQL
applications.

Standards
The SQLJ consortium of SQL vendors develops specifications for using Java
with SQL. The consortium submits these specifications to ANSI for formal
processing as standards. The standards can be found on the Web at
http://www.ansi.org. In this document, SQLJ refers to capabilities compliant
with SQLJ Part 1 of the standard specifications

Compliance with SQLJ standards ensures that Sybase functionality ports to all
third-party, standards-compliant relational databases.

The standard specifications are in three parts:

• Part 0 – “Database Language SQL—Part 10: Object Language Bindings
(SQL/OLB),” ANSI X3.135.10-1998.

Chapter 1 An Introduction to Java in the Database

5

Specifications for embedding SQL statements in Java methods. Similar to
the traditional SQL facilities for embedded SQL in COBOL and C and
other languages. The Java classes containing embedded SQL statements
are precompiled to pure Java classes with JDBC calls.

• Part 1 – “SQLJ—Part 1: SQL Routines using the Java Programming
Language,” ANSI NCITS N331.1.

Specifications for installing Java classes in a SQL system, and for
invoking Java static methods as SQL stored procedures and functions.

• Part 2 – “SQLJ—Part 2: SQL Types using the Java Programming
Language,” ANSI NCITS N331.2.

Specifications for using Java classes as SQL datatypes.

Sybase supports Part 1 of the specification. In addition, Sybase extends the
capabilities provided in the standard. For example, Adaptive Server allows you
to reference Java methods and classes directly in SQL, whereas SQLJ Parts 1
and 2 require that you use SQL aliases.

Java in the database: questions and answers
Although this book assumes that readers are familiar with Java, there is much
to learn about Java in a database. Sybase is not only extending the capabilities
of the database with Java, but also extending the capabilities of Java with the
database. See

Both experienced and novice Java users should read this section. It uses a
question-and-answer format to familiarize you with the basics of Java in
Adaptive Server.

What are the key features?
All of these points are explained in detail in later sections. With Java in
Adaptive Server, you can:

• Run Java in the database server using an internal Java Virtual Machine
(Java VM).

• Call Java functions (methods) directly from SQL statements.

Java in the database: questions and answers

6

• Wrap Java methods in SQL aliases and call them as standard SQL stored
procedures and built-in functions.

• Access SQL data from Java using an internal JDBC driver.

• Use Java classes as SQL datatypes.

• Save instances of Java classes in tables.

• Generate XML-formatted documents from raw data stored in Adaptive
Server databases and, conversely, store XML documents and data
extracted from them in Adaptive Server databases.

• Debug Java in the database.

How can I store Java instructions in the database?
Java is an object-oriented language. Its instructions (source code) come in the
form of classes. You write and compile the Java instructions outside the
database into compiled classes (byte code), which are binary files holding Java
instructions.

You then install the compiled classes into the database, where they can be
executed in the database server.

Adaptive Server is a runtime environment for Java classes. You need a Java
development environment, such as Sybase PowerJ™ or Sun Microsystems
Java Development Kit (JDK), to write and compile Java.

How is Java executed in the database?
To support Java in the database, Adaptive Server:

• Comes with its own Java VM, specifically developed for handling Java
processing in the server.

• Uses its own JDBC driver that runs in the server and accesses a database.

The Sybase Java VM runs in the database environment. It interprets compiled
Java instructions and runs them in the database server.

Chapter 1 An Introduction to Java in the Database

7

The Sybase Java VM meets the JCM specifications from Java Software; it is
designed to work with the 2.0 version of the Java API. It supports public class
and instance methods; classes inheriting from other classes; the Java API; and
access to protected, public, and private fields. Some Java API functions that are
not appropriate in a server environment, such as user interface elements, are
not supported. All supported Java API packages and classes come with
Adaptive Server.

The Adaptive Server Java VM is available at all times to perform a Java
operation whenever it is required as part of the execution of a SQL statement.
The database server starts the Java VM automatically when it is needed; you
do not need to take any explicit action to start or stop the Java VM.

Client- and server-side JDBC

JDBC is the industry standard API for executing SQL in Java.

Adaptive Server provides a native JDBC driver. This driver is designed to
maximize performance as it executes on the server because it does not need to
communicate across the network. This driver permits Java classes installed in
a database to use JDBC classes that execute SQL statements.

When JDBC classes are used within a client application, you typically must use
jConnect™ for JDBC™, the Sybase client-side JDBC database driver, to
provide the classes necessary to establish a database connection.

How can I use Java and SQL together?
A guiding principle for the design of Java in the database is that it provides a
natural, open extension to existing SQL functionality.

• Java operations are invoked from SQL – Sybase has extended the range of
SQL expressions to include fields and methods of Java objects, so that you
can include Java operations in a SQL statement.

• Java methods as SQLJ stored procedures and functions – you create a
SQLJ alias for Java static methods, so that you can invoke them as
standard SQL stored procedures and user-defined functions (UDFs).

• Java classes become user-defined datatypes – you store Java class
instances using the same SQL statements as those used for traditional SQL
datatypes.

Java in the database: questions and answers

8

You can use classes that are part of the Java API, and classes created and
compiled by Java developers.

What is the Java API?
The Java Application Programming Interface (API) is a set of classes defined
by Sun Microsystems. It provides a range of base functionality that can be used
and extended by Java developers. It is the core of “what you can do” with Java.

The Java API offers considerable functionality in its own right. A large portion
of the Java API is built in to any database that is enabled to use Java code—
which includes the majority of nonvisual classes from the Java API already
familiar to developers using the Sun Microsystems JDK.

How can I access the Java API from SQL?
You can use the Java API in stored procedures, in UDFs, and in SQL
statements as extensions to the available built-in functions provided by SQL.

For example, the SQL function PI(*) returns the value for Pi. The Java API
class java.lang.Math has a parallel field named PI that returns the same value.
But java.lang.Math also has a field named E that returns the base of the natural
logarithm, as well as a method that computes the remainder operation on two
arguments as prescribed by the IEE754 standard.

Which Java classes are supported in the Java API?
Not all Java API classes are supported in the database. Some classes, for
example, the java.awt package that contains user interface components for
applications, are not appropriate inside a database server. Other classes,
including part of java.io, deal with writing information to a disk, and are also
not supported in the database server environment. See Chapter 12, “Reference
Topics,” for a list of supported and unsupported classes.

Chapter 1 An Introduction to Java in the Database

9

Can I install my own Java classes?
You can install your own Java classes into the database as, for example, a user-
created Employee class or Inventory class that a developer designed, wrote,
and compiled with a Java compiler.

User-defined Java classes can contain both information and methods. Once
installed in a database, Adaptive Server lets you use these classes in all parts
and operations of the database and execute their functionality (in the form of
class or instance methods).

Can I access data using Java?
The JDBC interface is an industry standard designed to access database
systems. The JDBC classes are designed to connect to a database, request data
using SQL statements, and return results that can be processed in the client
application.

You can connect from a client application to Adaptive Server Enterprise via
JDBC, using jConnect or a JDBC/ODBC bridge. Adaptive Server also
provides an internal JDBC driver, which permits Java classes installed in a
database to use JDBC classes that execute SQL statements.

Can I use the same classes on client and server?
You can create Java classes that can be used on different levels of an enterprise
application. You can integrate the same Java class into either the client
application, a middle tier, or the database.

How do I use Java classes in SQL?
Using Java classes, whether user-defined or from the Java API, is a three-step
activity:

1 Write or acquire a set of Java classes that you want to use as SQL
datatypes, or as SQL aliases for static methods.

2 Install those classes in the Adaptive Server database.

3 Use those classes in SQL code:

• Call class (static) methods of those classes as UDFs.

Java in the database: questions and answers

10

• Declare the Java classes as datatypes of SQL columns, variables, and
parameters. In this book, they are called Java-SQL columns,
variables, and parameters.

• Reference the Java-SQL columns, their fields, and their methods.

• Wrap static methods in SQL aliases and use them as stored procedures
or functions.

Where can I find information about Java in the database?
There are many books about Java and Java in the database. Two particularly
useful books are:

• James Gosling, Bill Joy, Guy Steele, and Gilad Bracha, The Java™
Language Specification, Second Edition, Addison-Wesley, 2000.

• Seth White, Maydene Fisher, Rick Cattell, Graham Hamilton, and Mark
Hapner, JDBC™ API Tutorial and Reference, Second Edition, Addison-
Wesley, 1999.

What you cannot do with Java in the database
Adaptive Server is a runtime environment for Java classes, not a Java
development environment.

You cannot carry out these tasks in the database:

• Edit class source files (*.java files).

• Compile Java class source files (*.java files).

• Execute Java APIs that are not supported, such as applet and visual
classes.

• Use Java threading. Adaptive Server does not support java.lang.Thread and
java.lang.ThreadGroup. If you attempt to spawn a thread, Adaptive Server
throws java.lang.UnsupportedOperationException.

• Use Java objects as parameters sent to a remote procedure call or received
from a remote procedure call. They do not translate correctly.

Chapter 1 An Introduction to Java in the Database

11

• Sybase recommends that you do not use static variables in methods
referenced by Java-SQL functions, SQLJ functions, or SQLJ stored
procedures. The values returned for these variables may be unreliable as
the scope of the static variable is implementation-dependent.

Sample Java classes
The chapters of this book use simple Java classes to illustrate basic principles
for using Java in the database. You can find copies of these classes in the
chapters that describe them and in the Sybase release directory in
$SYBASE/$SYBASE_ASE/sample/JavaSql (UNIX) or %SYBASE%\Ase-
12_5\sample\JavaSql (Windows NT). This subdirectory also contains Javadoc
facilities so that you can view specifications about sample classes and methods
with your Web browser.

Sample Java classes

12

13

C H A P T E R 2 Preparing for and Maintaining
Java in the Database

This chapter describes the Java runtime environment, how to enable Java
on the server, and how to install and maintain Java classes in the database.

The Java runtime environment
The Adaptive Server runtime environment for Java requires a Java VM,
which is available as part of the database server, and the Sybase runtime
Java classes, or Java API. If you are running Java applications on the
client, you may also require the Sybase JDBC driver, jConnect, on the
client.

Java classes in the database
You can use either of the following sources for Java classes:

• Sybase runtime Java classes

• User-defined classes

Topic Page
The Java runtime environment 13

Enabling the server for Java 15

Creating Java classes and JARs 16

Installing Java classes in the database 17

Viewing information about installed classes and JARs 20

Downloading installed classes and JARs 21

Removing classes and JARs 21

The Java runtime environment

14

Sybase runtime Java classes

The Sybase Java VM supports a subset of JDK version 2.0 (UNIX and
Windows NT) classes and packages.

The Sybase runtime Java classes are the low-level classes installed to Java-
enable a database. They are downloaded automatically when Adaptive Server
is installed and are available thereafter from $SYBASE
/$SYBASE_ASE/lib/runtime.zip (UNIX) or
%SYBASE%\%SYBASE_ASE%\lib\runtime.zip (Windows NT). You do not
need to set the CLASSPATH environment variable specifically for Java in
Adaptive Server.

Sybase does not support runtime Java packages and classes that assume a
screen display, deal with networking and remote communications, or handle
security. See Chapter 12, “Reference Topics” for a list of supported and
unsupported packages and classes.

User-defined Java classes

You install user-defined classes into the database using the installjava utility.
Once installed, these classes are available from other classes in the database
and from SQL as user-defined datatypes.

JDBC drivers
The Sybase native JDBC driver that comes with Adaptive Server supports
JDBC version 1.2. It is compliant with and supports several classes and
methods of JDBC version 2.0. See Chapter 12, “Reference Topics,” for a
complete list of supported and not supported classes and methods.

If your system requires a JDBC driver on the client, you must use jConnect
version 5.2 or later, which supports JDBC version 2.0.

The Java VM
To ensure that each invoked method is executed as quickly as possible, Sybase
provides a Java VM. The Java VM runs on the server. The Java VM requires
little or no administration once installation is complete.

Chapter 2 Preparing for and Maintaining Java in the Database

15

Configuring memory for Java in the database
Use the sp_configure system procedure to change memory allocations for Java
in Adaptive Server. You can change the memory allocation for:

• size of global fixed heap – specifies memory space for internal data
structures.

• size of process object fixed heap – specifies the total memory space
available for all user connections using the Java VM.

• size of shared class heap – specifies the shared memory space for all Java
classes called into the Java VM.

See “Java Services” in the System Administration Guide for complete
information about these configuration parameters.

Enabling the server for Java
To enable the server and its databases for Java, enter this command from isql:

sp_configure “enable java”, 1

Then shut down and restart the server.

By default, Adaptive Server is not enabled for Java. You cannot install Java
classes or perform any Java operations until the server is enabled for Java.

You can increase or decrease the amount of memory available for Java in
Adaptive Server and optimize performance using sp_configure. Java
configuration parameters are described in the System Administration Guide.

Disabling the server for Java
To disable Java in the database, enter this command from isql:

sp_configure “enable java”, 0

Creating Java classes and JARs

16

Creating Java classes and JARs
The Sybase-supported classes from the JDK are installed on your system when
you install Adaptive Server version 12 or later. This section describes the steps
for creating and installing your own Java classes.

To make your Java classes (or classes from other sources) available for use in
the server, follow these steps:

1 Write and save the Java code that defines the classes.

2 Compile the Java code.

3 Create Java archive (JAR) files to organize and contain your classes.

4 Install the JARs/classes in the database.

Writing the Java code
Use the Sun Java SDK or a development tool such as Sybase PowerJ to write
the Java code for your class declarations. Save the Java code in a file with an
extension of .java. The name and case of the file must be the same as that of
the class.

Note Make certain that any Java API classes used by your classes are among
the supported API classes listed in Chapter 12, “Reference Topics”.

Compiling Java code
This step turns the class declaration containing Java code into a new, separate
file containing bytecode. The name of the new file is the same as the Java code
file but has an extension of .class. You can run a compiled Java class in a Java
runtime environment regardless of the platform on which it was compiled or
the operating system on which it runs.

Saving classes in a JAR file
You can organize your Java classes by collecting related classes in packages
and storing them in JAR files. JAR files allow you to install or remove related
classes as a group.

Chapter 2 Preparing for and Maintaining Java in the Database

17

Installing uncompressed JARs

To install Java classes in a database, save the classes or packages in a JAR file,
in uncompressed form. To create an uncompressed JAR file that contains Java
classes, use the Java jar cf0 (“zero”) command.

In this UNIX example, the jar command creates an uncompressed JAR file that
contains all .class files in the jcsPackage directory:

jar cf0 jcsPackage.jar jcsPackage/*.class

Installing compressed JARs

You can also install a compressed JAR file if you first expand the compressed
file using the x option of the jar command. In this UNIX example, abcPackage
is a compressed file.

1 Place the compressed JAR file in an empty directory and expand it:

jar xf0 abcPackage.jar

2 Delete the compressed JAR file so that it won’t be included in the new,
uncompressed JAR file:

rm abcPackage.jar

3 Create the uncompressed JAR file:

jar cf0 abcPackage.jar*

Installing Java classes in the database
To install Java classes from a client operating system file, use the installjava
(UNIX) or instjava (Windows NT) utility from the command line.

See the Adaptive Server Enterprise Utilities Guide for detailed information
about these utilities. Both utilities perform the same tasks; for simplicity, this
document uses UNIX examples.

Installing Java classes in the database

18

Using installjava
installjava copies a JAR file into the Adaptive Server system and makes the
Java classes contained in the JAR available for use in the current database. The
syntax is:

installjava
-f file_name
[-new | -update]
[-j jar_name]
[-S server_name]
[-U user_name]
[-P password]
[-D database_name]
[-I interfaces_file]
[-a display_charset]
[-J client_charset]
[-z language]
[-t timeout]

For example, to install classes in the addr.jar file, enter:

installjava -f “/home/usera/jars/addr.jar”

The –f parameter specifies an operating system file that contains a JAR. You
must use the complete path name for the JAR.

This section describes retained JAR files (using -j) and updating installed JARs
and classes (using new and update). For more information about these and the
other options available with installjava, see the Utility Guide.

Note When you install a JAR file, Application Server copies the file to a
temporary table and then installs it from there. If you install a large JAR file,
you may need to expand the size of tempdb using the alter database command.

Retaining the JAR file

When a JAR is installed in a database, the server disassembles the JAR,
extracts the classes, and stores them separately. The JAR is not stored in the
database unless you specify installjava with the -j parameter.

Use of -j determines whether the Adaptive Server system retains the JAR
specified in installjava or uses the JAR only to extract the classes to be installed.

• If you specify the -j parameter, Adaptive Server installs the classes
contained in the JAR in the normal manner, and then retains the JAR and
its association with the installed classes.

Chapter 2 Preparing for and Maintaining Java in the Database

19

• If you do not specify the -j parameter, Adaptive Server does not retain any
association of the classes with the JAR. This is the default option.

Sybase recommends that you specify a JAR name so that you can better
manage your installed classes. If you retain the JAR file:

• You can remove the JAR and all classes associated with it, all at once, with
the remove java statement. Otherwise, you must remove each class or
package of classes one at a time.

• You can use extractjava to download the JAR to an operating system file.
See “Downloading installed classes and JARs” on page 21.

Updating installed classes

The new and update clauses of installjava indicate whether you want new
classes to replace currently installed classes.

• If you specify new, you cannot install a class with the same name as an
existing class.

• If you specify update, you can install a class with the same name as an
existing class, and the newly installed class replaces the existing class.

 Warning! If you alter a class used as a column datatype by reinstalling a
modified version of the class, make sure that the modified class can read
and use existing objects (rows) in tables using that class as a datatype.
Otherwise, you may be unable to access existing objects without
reinstalling the original class.

Substitution of new classes for installed classes depends also on whether the
classes being installed or the already installed classes are associated with a
JAR. Thus:

• If you update a JAR, all classes in the existing JAR are deleted and
replaced with classes in the new JAR.

• A class can be associated only with a single JAR. You cannot install a class
in one JAR if a class of that same name is already installed and associated
with another JAR. Similarly, you cannot install a class not-associated with
a JAR if that class is currently installed and associated with a JAR.

You can, however, install a class in a retained JAR with the same name as
an installed class not associated with a JAR. In this case, the class not
associated with a JAR is deleted and the new class of the same name is
associated with the new JAR.

Viewing information about installed classes and JARs

20

If you want to reorganize your installed classes in new JARs, you may find it
easier to first disassociate the affected classes from their JARs. See “Retaining
classes” on page 21 for more information.

Referencing other Java-SQL classes
Installed classes can reference other classes in the same JAR file and classes
previously installed in the same database, but they cannot reference classes in
other databases.

If the classes in a JAR file do reference undefined classes, an error may result:

• If an undefined class is referenced directly in SQL, it causes a syntax error
for “undefined class.”

• If an undefined class is referenced within a Java method that has been
invoked, it throws a Java exception that may be caught in the invoked Java
method or cause the general SQL exception described in “Exceptions in
Java-SQL methods” on page 31.

The definition of a class can contain references to unsupported classes and
methods as long as they are not actively referenced or invoked. Similarly, an
installed class can contain a reference to a user-defined class that is not
installed in the same database as long as the class is not instantiated or
referenced.

Viewing information about installed classes and JARs
To view information about classes and JARs installed in the database, use . The
syntax is:

sp_helpjava [‘class’ [, name [, 'detail' | , 'depends']] |
‘jar’ [, name [, 'depends']]]

To view detailed information about the Address class, for example, log in to isql
and enter:

sp_helpjava “class”, Address, detail

See “sp_helpjava” in the Reference Manual for more information.

Chapter 2 Preparing for and Maintaining Java in the Database

21

Downloading installed classes and JARs
You can download copies of Java classes installed on one database for use in
other databases or applications.

Use the extractjava system utility to download a JAR file and its classes to a
client operating system file. For example, to download addr.jar to
~/home/usera/jars/addrcopy.jar, enter:

extractjava –j ‘addr.jar‘ -f
 ‘~/home/usera/jars/addrcopy.jar'

See the Utility Guide manual for more information.

Removing classes and JARs
Use the Transact-SQL remove java statement to uninstall one or more Java-
SQL classes from the database. remove java can specify one or more Java class
names, Java package names, or retained JAR names. For example, to uninstall
the package utilityClasses, from isql enter:

remove java package “utilityClasses”

Note Adaptive Server does not allow you to remove classes that are used as
the datatypes for columns and parameters or that are referenced by SQLJ
functions or stored procedures.

You must make sure that you do not remove subclasses or classes that are used
as variables or UDF return types.

remove java package deletes all classes in the specified package and all of its
sub-packages.

See the Reference Manual for more information about remove java.

Retaining classes
You can delete a JAR file from the database but retain its classes as classes no
longer associated with a JAR. Use remove java with the retain classes option if,
for example, you want to rearrange the contents of several retained JARs.

Removing classes and JARs

22

For example, from isql enter:

remove java jar ’utilityClasses’ retain classes

Once the classes are disassociated from their JARs, you can associate them
with new JARs using installjava with the new keyword.

23

C H A P T E R 3 Using Java Classes in SQL

This chapter describes how to use Java classes in an Adaptive Server
environment. The first sections give you enough information to get
started; succeeding sections provide more advanced information.

In this document, SQL columns and variables whose datatypes are Java-
SQL classes are described as Java-SQL columns and Java-SQL variables
or as Java-SQL data items.

The sample classes used in this chapter can be found in:

• $SYBASE/$SYBASE_ASE/sample/JavaSql (UNIX)

• %SYBASE%\Ase-12_5\sample\JavaSql (Windows NT)

Topics Page
General concepts 24

Using Java classes as datatypes 25

Invoking Java methods in SQL 30

Representing Java instances 31

Assignment properties of Java-SQL data items 32

Datatype mapping between Java and SQL fields 35

Character sets for data and identifiers 36

Subtypes in Java-SQL data 36

The treatment of nulls in Java-SQL data 38

Java-SQL string data 42

Type and void methods 43

Equality and ordering operations 45

Evaluation order and Java method calls 46

Static variables in Java-SQL classes 48

Java classes in multiple databases 49

Java classes 52

General concepts

24

General concepts
This sections provides general Java and Java-SQL identifier information.

Java considerations
Before you use Java in your Adaptive Server database, here are some general
considerations.

• Java classes contain:

• Fields that have declared Java datatypes.

• Methods whose parameters and results have declared Java datatypes.

• Java datatypes for which there are corresponding SQL datatypes are
defined in “Datatype mapping between Java and SQL” on page 217.

• Java classes can include classes, fields, and methods that are private,
protected, friendly, or public.

Classes, fields and methods that are public can be referenced in SQL.
Classes, fields, and methods that are private, protected, or friendly cannot
be referenced in SQL, but they can be referenced in Java, and are subject
to normal Java rules.

• Java classes, fields, and methods all have various syntactic properties:

• Classes – the number of fields and their names

• Field – their datatypes

• Methods – the number of parameters and their datatypes, and the
datatype of the result

The SQL system determines these syntactic properties from the Java-SQL
classes themselves, using the Java Reflection API.

Java-SQL names
Java-SQL class names (identifiers) are limited to 255 bytes. Java-SQL field
and method names can be any length, but they must be 255 bytes or less if you
use them in Transact-SQL. All Java-SQL names must conform to the rules for
Transact-SQL identifiers if you use them in Transact-SQL statements.

Chapter 3 Using Java Classes in SQL

25

Class, field, and method names of 30 or more bytes must be surrounded by
quotation marks.

The first character of the name must be either an alphabetic character
(uppercase or lowercase) or an underscore (_) symbol. Subsequent characters
can include alphabetic characters, numbers, the dollar ($) symbol, or the
underscore (_) symbol.

Java-SQL names are always case sensitive, regardless of whether the SQL
system is specified as case sensitive or case insensitive.

See Java-SQL identifiers on page 219 for more information about identifiers.

Using Java classes as datatypes
After you have installed a set of Java classes, you can reference them as
datatypes in SQL. To be used as a column datatype, a Java-SQL class must be
defined as public and must implement either java.io.Serializable or
java.io.Externalizable.

You can specify Java-SQL classes as:

• The datatypes of SQL columns

• The datatypes of Transact-SQL variables and parameters to Transact-SQL
stored procedures

• Default values for SQL columns

When you create a table, you can specify Java-SQL classes as the datatypes of
SQL columns:

create table emps (
name varchar(30),
home_addr Address,
mailing_addr Address2Line null)

The name column is an ordinary SQL character string, the home_addr and
mailing_addr columns can contain Java objects, and Address and Address2Line
are Java-SQL classes that have been installed in the database.

You can specify Java-SQL classes as the datatypes of Transact-SQL variables:

declare @A Address
declare @A2 Address2Line

Using Java classes as datatypes

26

You can also specify default values for Java-SQL columns, subject to the
normal constraint that the specified default must be a constant expression. This
expression is normally a constructor invocation using the new operator with
constant arguments, such as the following:

create table emps (
name varchar(30),
home_addr Address default new Address

(’Not known’, ’’),
mailing_addr Address2Line

)

Creating and altering tables with Java-SQL columns
When you create or alter tables with Java-SQL columns, you can specify any
installed Java class as a column datatype. You can also specify how the
information in the column is to be stored. Your choice of storage options affects
the speed with which Adaptive Server references and updates the fields in these
columns.

Column values for a row typically are stored “in-row,” that is, consecutively on
the data pages allocated to a table. However, you can also store Java-SQL
columns in a separate “off-row” location in the same way that text and image
data items are stored. The default value for Java-SQL columns is off-row.

If a Java-SQL column is stored in-row:

• Objects stored in-row are processed more quickly than objects stored off-
row.

• An object stored in-row can occupy up to approximately 16K bytes,
depending on the page size of the database server and other variables. This
includes its entire serialization, not just the values in its fields. A Java
object whose runtime representation is more than the 16K limit generates
an exception, and the command aborts.

If a Java-SQL column is stored off-row, the column is subject to the restrictions
that apply to text and image columns:

• Objects stored off-row are processed more slowly than objects stored in-
row.

• An object stored off-row can be of any size—subject to normal limits on
text and image columns.

• An off-row column cannot be referenced in a check constraint.

Chapter 3 Using Java Classes in SQL

27

Similarly, do not reference a table that contains an off-row column in a
check constraint. Adaptive Server allows you to include the check
constraint when you create or alter the table, but issues a warning message
at compile time and ignores the constraint at runtime.

• You cannot include an off-row column in the column list of a select query
with select distinct.

• You cannot specify an off-row column in a comparison operator, in a
predicate, or in a group by clause.

Partial syntax for create table with the in row/off row option is:

create table...column_name datatype
 [default {constant_expression | user | null}]
 {[{identity | null | not null}]
 [off row | [in row [(size_in_bytes)]]...

size_in_bytes specifies the maximum size of the in-row column. The value can
be as large as 16K bytes. The default value is 255 bytes.

The maximum in-row column size you enter in create table must include the
column’s entire serialization, not just the values in its fields, plus minimum
values for overhead.

To determine an appropriate column size that includes overhead and
serialization values, use the datalength system function. datalength allows you
to determine the actual size of a representative object you intend to store in the
column.

For example:

select datalength (new class_name(...))

where class_name is an installed Java-SQL class.

Partial syntax for alter table is:

alter table...{add column_name datatype
 [default {constant_expression | user | null}]
 {identity | null} [off row | [in row]...

Note You cannot change the column size of an in-row column using alter
column in this Adaptive Server release.

Using Java classes as datatypes

28

Altering partitioned tables

If a table containing Java columns is partitioned, you cannot alter the table
without first dropping the partitions. To change the table schema:

1 Remove the partitions.

2 Use the alter table command.

3 Repartition the table.

Selecting, inserting, updating, and deleting Java objects
After you specify Java-SQL columns, the values that you assign to those data
items must be Java instances. Such instances are generated initially by calls to
Java constructors using the new operator. You can generate Java instances for
both columns and variables.

Constructor methods are pseudo instance methods. They create instances.
Constructor methods have the same name as the class, and have no declared
datatype. If you do not include a constructor method in your class definition, a
default method is provided by the Java base class object. You can supply more
than one constructor for each class, with different numbers and types of
arguments. When a constructor is invoked, the one with the proper number and
type of arguments is used.

In the following example, Java instances are generated for both columns and
variables:

declare @A Address, @AA Address, @A2 Address2Line,
 @AA2 Address2Line

 select @A = new Address()
 select @AA = new Address(’123 Main Street’, ’99123’)
 select @A2 = new Address2Line()
 select @AA2 = new Address2Line(’987 Front Street’,
 ’Unit 2’, ’99543’)

 insert into emps values(’John Doe’, new Address(),
 new Address2Line())
 insert into emps values(’Bob Smith’,

new Address('432 ElmStreet', ‘99654’),
new Address2Line('PO Box 99', 'attn: Bob Smith', '99678'))

Values assigned to Java-SQL columns and variables can then be assigned to
other Java-SQL columns and variables. For example:

Chapter 3 Using Java Classes in SQL

29

declare @A Address, @AA Address, @A2 Address2Line,
 @AA2 Address2Line

 select @A = home_addr, @A2 = mailing_addr from emps
 where name = ’John Doe’
 insert into emps values (’George Baker’, @A, @A2)

 select @AA2 = @A2
 update emps
 set home_addr = new Address(’456 Shoreline Drive’, ’99321’),
 mailing_addr = @AA2
 where name = ’Bob Smith’

You can also copy values of Java-SQL columns from one table to another. For
example:

create table trainees (
name char(30),
home_addr Address,
mailing_addr Address2Line null

)
insert into trainees
select * from emps

where name in (’Don Green’, ’Bob Smith’,
’George Baker’)

n reference and update the fields of Java-SQL columns and of Java-SQL
variables with normal SQL qualification. To avoid ambiguities with the SQL
use of dots to qualify names, use a double-angle (>>) to qualify Java field and
method names when referencing them in SQL.

declare @name varchar(100), @street varchar(100),
 @streetLine2 varchar(100), @zip char(10), @A Address

 select @A = new Address()
 select @A>>street = ’789 Oak Lane’
 select @street = @A>>street

 select @street = home_add>>street, @zip = home_add>>zip from emps
 where name = ’Bob Smith’
 select @name = name from emps
 where home_addr>>street= ’456 Shoreline Drive’

 update emps
 set home_addr>>street = ’457 Shoreline Drive’,

home_addr>>zip = ’99323’
 where home_addr>>street = ’456 Shoreline Drive’

Invoking Java methods in SQL

30

Invoking Java methods in SQL
You can invoke Java methods in SQL by referencing them, with name
qualification, on instances for instance methods, and on either instances or
classes for static methods.

Instance methods are generally closely tied to the data encapsulated in a
particular instance of their class. Static (class) methods affect the whole class,
not a particular instance of the class. Static methods often apply to objects and
values from a wide range of classes.

Once you have installed a static method, it is ready for use. A class that
contains a static method for use as a function must be public, but it does not
need to be serializable.

One of the primary benefits of using Java with Adaptive Server is that you can
use static methods that return a value to the caller as user-defined functions
(UDFs).

You can use a Java static method as a UDF in a stored procedure, a trigger, a
where clause, or anywhere that you can use a built-in SQL function.

Java methods invoked directly in SQL as UDFs are subject to these limitations:

• If the Java method accesses the database through JDBC, result-set values
are available only to the Java method, not to the client application.

• Output parameters are not supported. A method can manipulate the data it
receives from a JDBC connection, but the only value it can return to its
caller is a single return value declared as part of its definition.

• Cross-database invocations of static methods are supported only if you use
a class instance as a column value.

Permission to execute any UDF is granted implicitly to public. If the UDF
performs SQL queries via JDBC, permission to access the data is checked
against the invoker of the UDF. Thus, if user A invokes a UDF that accesses
table t1, user A must have select permission on t1 or the query will fail. For a
more detailed discussion of security models for Java method invocations, see
“Security and permissions” on page 77.

To use Java static methods to return result sets and output parameters, you must
enclose the methods in SQL wrappers and invoke them as SQLJ stored
procedures or functions. See “Invoking Java methods in Adaptive Server” on
page 78 for a comparison of the ways you can invoke Java methods in Adaptive
Server.

Chapter 3 Using Java Classes in SQL

31

Sample methods
The sample Address and Address2Line classes have instance methods named
toString(), and the sample Misc class has static methods named
stripLeadingBlanks(), getNumber(), and getStreet(). You can invoke value
methods as functions in a value expression.

declare @name varchar(100)
declare @street varchar(100)
declare @streetnum int
declare @A2 Address2Line

select @name = Misc.stripLeadingBlanks(name),

@street = Misc.stripLeadingBlanks(home_addr>>street),
@streetnum = Misc.getNumber(home_addr>>street),
@A2 = mailing_addr

from emps
where home_addr>>toString() like ’%Shoreline%’

For information about void methods (methods with no returned value) see
“Type and void methods” on page 43.

Exceptions in Java-SQL methods
en the invocation of a Java-SQL method completes with unhandled exceptions,
a SQL exception is raised, and this error message displays:

Unhandled Java method exception

The message text for the exception consists of the name of the Java class that
raised the exception, followed by the character string (if any) supplied when
the Java exception was thrown.

Representing Java instances
Non-Java clients such as isql cannot receive serialized Java objects from the
server. To allow you to view and use the object, Adaptive Server must convert
the object to a viewable representation.

Assignment properties of Java-SQL data items

32

To use an actual string value, Adaptive Server must invoke a method that
translates the object into a char or varchar value. The toString() method in the
Address class is an example of such a method. You must create your own
version of the toString() method so that you can work with the viewable
representation of the object.

Note The toString() method in the Java API does not convert the object to a
viewable representation. The toString() method you create overrides the
toString() method in the Java API.

When you use a toString() method, Adaptive Server imposes a limit on the
number of bytes returned. Adaptive Server truncates the printable
representation of the object to the value of the @@stringsize global variable.
The default value of @@stringsize is 50; you can change this value using the
set stringsize command. For example:

set stringsize 300

The display software on your computer may truncate the data item further so
that it fits on the screen without wrapping.

If you include a toString() or similar method in each class, you can return the
value of the object’s toString() method in either of two ways:

• You can select a particular field in the Java-SQL column, which
automatically invokes toString():

select home_add>>street from emps

• You can select the column and the toString() method, which lists in one
string all of the field values in the column:

select home_addr>>toString() from emps

Assignment properties of Java-SQL data items
The values assigned to Java-SQL data items are derived ultimately from values
constructed by Java-SQL methods in the Java VM. However, the logical
representation of Java-SQL variables, parameters, and results is different from
the logical representation of Java-SQL columns.

Chapter 3 Using Java Classes in SQL

33

• Java-SQL columns, which are persistent, are Java serialized streams stored
in the containing row of the table. They are stored values containing
representations of Java instances.

• Java-SQL variables, parameters, and function results are transient. They
do not actually contain Java-SQL instances, but instead contain references
to Java instances contained in the Java VM.

These differences in representation give rise to differences in assignment
properties as these examples illustrate.

• The Address constructor method with the new operator is evaluated in the
Java VM. It constructs an Address instance and returns a reference to it.
That reference is assigned as the value of Java-SQL variable @A:

declare @A Address, @AA Address, @A2 Address2Line,
@AA2 Address2Line

select @A = new Address(’432 Post Lane’, ’99444’)

• Variable @A contains a reference to a Java instance in the Java VM. That
reference is copied into variable @AA. Variables @A and @AA now
reference the same instance.

select @AA=@A

• This assignment modifies the zip field of the Address referenced by @A.
This is the same Address instance that is referenced by @AA. Therefore,
the values of @A.zip and @AA.zip are now both '99222'.

select @A>>zip=’99222’

• The Address constructor method with the new operator constructs an
Address instance and returns a reference to it. However, since the target is
a Java-SQL column, the SQL system serializes the Address instance
denoted by that reference, and copies the serialized value into the new row
of the emps table.

insert into emps
values (’Don Green’, new Address(’234 Stone
Road’, ’99777’), new Address2Line())

The Address2Line constructor method operates the same way as the
Address method, except that it returns a default instance rather than an
instance with specified parameter values. The action taken is, however, the
same as for the Address instance. The SQL system serializes the default
Address2Line instance, and stores the serialized value into the new row of
the emps table.

Assignment properties of Java-SQL data items

34

• The insert statement specifies no value for the mailing_addr column, so that
column will be set to null, in the same manner as any other column whose
value is not specified in an insert. This null value is generated entirely in
SQL, and initialization of the mailing_addr column does not involve the
Java VM at all.

insert into emps (name, home_addr) values (’Frank Lee’, @A)

The insert statement specifies that the value of the home_addr column is to
be taken from the Java-SQL variable @A. That variable contains a
reference to an Address instance in the Java VM. Since the target is a Java-
SQL column, the SQL system serializes the Address instance denoted by
@A, and copies the serialized value into the new row of the emps table.

• This statement inserts a new emps row for 'Bob Brown.' The value of the
home_addr column is taken from the SQL variable @A. It is also a
serialization of the Java instance referenced by @A.

insert into emps (name, home_addr) values (’Bob Brown’, @A)

• This update statement sets the zip field of the home_addr column of the
‘Frank Lee’ row to ‘99777.’ This has no effect on the zip field in the ‘Bob
Brown’ row, which is still ‘99444.’

update emps
set home_add>>zip = ’99777’
where name = ’Frank Lee’

• The Java-SQL column home_addr contains a serialized representation of
the value of an Address instance. The SQL system invokes the Java VM to
deserialize that representation as a Java instance in the Java VM, and
return a reference to the new deserialized copy. That reference is assigned
to @AA. The deserialized Address instance that is referenced by @AA is
entirely independent of both the column value and the instance referenced
by @A.

select @AA = home_addr from emps where name = ’Frank Lee’

• This assignment modifies the zip field of the Address instance referenced
by @A. This instance is a copy of the home_addr column of the 'Frank Lee'
row, but is independent of that column value. The assignment therefore
does not modify the zip field of the home_addr column of the 'Frank Lee'
row.

select @A>>zip = ’95678’

Chapter 3 Using Java Classes in SQL

35

Datatype mapping between Java and SQL fields
When you transfer data in either direction between the Java VM and Adaptive
Server, you must take into account that the datatypes of the data items are
different in each system. Adaptive Server automatically maps SQL items to
Java items and vice versa according to the correspondence tables in “Datatype
mapping between Java and SQL” on page 217.

Thus, SQL type char translates to Java type String, the SQL type binary
translates to the Java type byte[], and so on.

• For the datatype correspondences from SQL to Java, char, varchar, and
varbinary types of any length correspond to Java String or byte[] datatypes,
as appropriate.

• For the datatype correspondences from Java to SQL:

• The Java String and byte[] datatypes correspond to SQL varchar and
varbinary, where the maximum length value of 16K bytes is defined
by Adaptive Server.

• The Java BigDecimal datatype corresponds to SQL
numeric(precision,scale), where precision and scale are defined by the
user.

In the emps table, the maximum value for the Address and Address2Line
classes, street, zip, and line2 fields is 255 bytes (the default value). The Java
datatype of these classes is java.String, and they are treated in SQL as
varchar(255).

An expression whose datatype is a Java object is converted to the
corresponding SQL datatype only when the expression is used in a SQL
context. For example, if the field home_addr>>street for employee ‘Smith’ is
260 characters, and begins ‘6789 Main Street ...:

select Misc.getStreet(home_addr>>street) from emps where name=’Smith’

The expression in the select list passes the 260-character value of
home_addr>>street to the getStreet() method (without truncating it to 255
characters). The getStreet() method then returns the 255-character string
beginning ‘Main Street….’. That 255-character string is now an element of the
SQL select list, and is, therefore, converted to the SQL datatype and (if need
be) truncated to 255 characters.

Character sets for data and identifiers

36

Character sets for data and identifiers
The character set for both Java source code and for Java String data is Unicode.
Fields of Java-SQL classes can contain Unicode data.

Note Java identifiers used in the fully qualified names of visible classes or in
the names of visible members can use only Latin characters and Arabic
numerals.

Subtypes in Java-SQL data
Class subtypes allow you to use subtype substitution and method override,
which are characteristics of Java. A conversion from a class to one of its
superclasses is a widening conversion; a conversion from a class to one of its
subclasses is a narrowing conversion.

• Widening conversions are performed implicitly with normal assignments
and comparisons. They are always successful, since every subclass
instance is also an instance of the superclass.

• Narrowing conversions must be specified with explicit convert
expressions. A narrowing conversion is successful only if the superclass
instance is an instance of the subclass, or a subclass of the subclass.
Otherwise, an exception occurs.

Widening conversions
You do not need to use the convert function to specify a widening conversion.
For example, since the Address2Line class is a subclass of the Address class,
you can assign Address2Line values to Address data items. In the emps table,
the home_addr column is an Address datatype and the mailing_addr column is
an Address2Line datatype:

update emps
set home_addr = mailing_addr
where home_addr is null

For the rows fulfilling the where clause, the home_addr column contains an
Address2Line, even though the declared type of home_addr is Address.

Chapter 3 Using Java Classes in SQL

37

Such an assignment implicitly treats an instance of a class as an instance of a
superclass of that class. The runtime instances of the subclass retain their
subclass datatypes and associated data.

Narrowing conversions
You must use the convert function to convert an instance of a class to an
instance of a subclass of the class. For example:

update emps
 set mailing_addr = convert(Address2Line, home_addr)
 where mailing_addr is null

The narrowing conversions in the update statement cause an exception if they
are applied to any home_addr column that contains an Address instance that is
not an Address2Line. You can avoid such exceptions by including a condition
in the where clause:

update emps
 set mailing_addr = convert(Address2Line, home_addr)
 where mailing_addr is null
 and home_addr>>getClass()>>toString() = ’Address2Line’

The expression “home_addr>>getClass()>>toString()” invokes getClass()
and toString() methods of the Java Object class. The Object class is implicitly a
superclass of all classes, so the methods defined for it are available for all
classes.

You can also use a case expression:

update emps
 set mailing_addr =
 case
 when home_addr>>getClass()>>toString()
 =’Address2Line’
 then convert(Address2Line, home_addr)
 else null
 end

where mailing_addr is null

The treatment of nulls in Java-SQL data

38

Runtime versus compile-time datatypes
Neither widening nor narrowing conversions modify the actual instance value
or its runtime datatype; they simply specify the class to be used for the compile-
time type. Thus, when you store Address2Line values from the mailing_addr
column into the home_address column, those values still have the runtime type
of Address2Line.

For example, the Address class and the Address2Line subclass both have the
method toString(), which returns a String form of the complete address data.

select name, home_addr>>toString() from emps
 where home_addr>>toString() not like ’%Line2=[]’

For each row of emps, the declared type of the home_addr column is Address,
but the runtime type of the home_addr value is either Address or Address2Line,
depending on the effect of the previous update statement. For rows in which
the runtime value of the home_addr column is an Address, the toString()
method of the Address class is invoked, and for rows in which the runtime
value of the home_addr column is Address2Line, the toString() method of the
Address2Line subclass is invoked.

See “Null values when using the SQL convert function” on page 41 for a
description of null values for widening and narrowing conversions.

The treatment of nulls in Java-SQL data
This section discusses the use of nulls in Java-SQL data items.

References to fields and methods of null instances
If the value of the instance specified in a field reference is null, then the field
reference is null. Similarly, if the value of the instance specified in an instance
method invocation is null, then the result of the invocation is null.

Java has different rules for the effect of referencing a field or method of a null
instance. In Java, if you attempt to reference a field of a null instance, an
exception is raised.

For example, suppose that the emps table has the following rows:

insert into emps (name, home_addr)

Chapter 3 Using Java Classes in SQL

39

values ("Al Adams",
new Address("123 Main", "95321"))

insert into emps (name, home_addr)
values ("Bob Baker",
new Address("456 Side", "95123"))

 insert into emps (name, home_addr)
values ("Carl Carter", null)

Consider the following select:

select name, home_addr>>zip from emps
where home_addr>>zip in (’95123’, ’95125’, ’95128’)

 If the Java rule were used for the references to “home_addr>>zip,” then those
references would cause an exception for the “Carl Carter” row, whose
“home_addr” column is null. To avoid such an exception, you would need to
write such a select as follows:

select name,
case when home_addr is not null then home_addr>>zip
else null end

from emps
where case when home_addr is not null
then home_addr>>zip

else
null end

in (’95123’, ’95125’, ’95128’)

The SQL convention is therefore used for references to fields and methods of
null instances: if the instance is null, then any field or method reference is null.
The effect of this SQL rule is to make the above case statement implicit.

However, this SQL rule for field references with null instances only applies to
field references in source (right-side) contexts, not to field references that are
targets (left-side) of assignments or set clauses. For example:

update emps
set home_addr>>zip D ’99123’
where name D ’Charles Green’

This where clause is obviously true for the “Charles Green” row, so the update
statement tries to perform the set clause. This raises an exception, because you
cannot assign a value to a field of a null instance as the null instance has no
field to which a value can be assigned. Thus, field references to fields of null
instances are valid and return the null value in right-side contexts, and cause
exceptions in left-side contexts.

The treatment of nulls in Java-SQL data

40

 The same considerations apply to invocations of methods of null instances,
and the same rule is applied. For example, if we modify the previous example
and invoke the toString() method of the home_addr column:

select name, home_addr>>toString()from emps
where home_addr>>toString() D
’StreetD234 Stone Road ZIPD 99777’

If the value of the instance specified in an instance method invocation is null,
then the result of the invocation is null. Hence, the select statement is valid
here, whereas it raises an exception in Java.

Null values as arguments to Java-SQL methods
The outcome of passing null as a parameter is independent of the actions of the
method for which it is an argument, but instead depends on the ability of the
return datatype to deliver a null value.

You cannot pass the null value as a parameter to a Java scalar type method; Java
scalar types are always non-nullable. However, Java object types can accept
null values.

For the following Java-SQL class:

public class General implements java.io.Serializable {
 public static int identity1(int I) {return I;}
 public static java.lang.Integer identity2
 (java.lang.Integer I) {return I;}
 public static Address identity3 (Address A) {return A;}
 }

Consider these calls:

declare @I int
declare @A Address;

select @I = General.identity1(@I)
select @I = General.identity2(new java.lang.Integer(@I))
select @A = General.identity3(@A)

The values of both variable @I and variable @A are null, since values have not
been assigned to them.

• The call of the identity1() method raises an exception. The datatype of the
parameter @I of identity1() is the Java int type, which is scalar and has no
null state. An attempt to pass a null valued argument to identity1() raises
an exception.

Chapter 3 Using Java Classes in SQL

41

• The call of the identity2() method succeeds. The datatype of the parameter
of identity2() is the Java class java.lang.Integer, and the new expression
creates an instance of java.lang.Integer that is set to the value of variable
@I.

• The call of the identity3() method succeeds.

A successful call of identity1() never returns a null result because the return
type has no null state. A null cannot be passed directly because the method
resolution fails without parameter type information.

Successful calls of identity2() and identity3() can return null results.

Null values when using the SQL convert function
You use the convert function to convert a Java object of one class to a Java
object of a superclass or subclass of that class.

As shown in “Subtypes in Java-SQL data” on page 36, the home_addr column
of the emps table can contain values of both the Address class and the
Address2Line class. In this example:

select name, home_addr>>street, convert(Address2Line, home_addr)>>line2,
home_addr>>zip from emps

the expression “convert(Address2Line, home_addr)” contains a datatype
(Address2Line) and an expression (home_addr). At compile-time, the
expression (home_addr) must be a subtype or supertype of the class
(Address2Line). At runtime, the action of this convert invocation depends on
whether the runtime type of the expression’s value is a class, subclass, or
superclass:

• If the runtime value of the expression (home_addr) is the specified class
(Address2Line) or one of its subclasses, the value of the expression is
returned, with the specified datatype (Address2Line).

• If the runtime value of the expression (home_addr) is a superclass of the
specified class (Address), then a null is returned.

Adaptive Server evaluates the select statement for each row of the result. For
each row:

• If the value of the home_addr column is an Address2Line, then convert
returns that value, and the field reference extracts the line2 field. If convert
returns null, then the field reference itself is null.

• When a convert returns null, then the field reference itself evaluates to null.

Java-SQL string data

42

Hence, the results of the select shows the line2 value for those rows whose
home_addr column is an Address2Line and a null for those rows whose
home_addr column is an Address. As described in “The treatment of nulls in
Java-SQL data” on page 38, the select also shows a null line2 value for those
rows in which the home_addr column is null.

Java-SQL string data
In Java-SQL columns, fields of type String are stored as Unicode.

When a Java-SQL String field is assigned to a SQL data item whose type is
char, varchar, nchar, nvarchar, or text, the Unicode data is converted to the
character set of the SQL system. Conversion errors are specified by the set
char_convert options.

When a SQL data item whose type is char, varchar, nchar, or text is assigned to
a Java-SQL String field that is stored as Unicode, the character data is
converted to Unicode. Undefined codepoints in such data cause conversion
errors.

Zero-length strings
In Transact-SQL, a zero-length character string is treated as a null value, and
the empty string () is treated as a single space.

To be consistent with Transact-SQL, when a Java-SQL String value whose
length is zero is assigned to a SQL data item whose type is char, varchar, nchar,
nvarchar, or text, the Java-SQL String value is replaced with a single space.

For example:

1> declare @s varchar(20)
2> select @s = new java.lang.String()
3> select @s, char_length(@s)
4> go

 (1 row affected)

----------------- -----------------
1

Otherwise, the zero-length value would be treated in SQL as a SQL null, and
when assigned to a Java-SQL String, the Java-SQL String would be a Java null.

Chapter 3 Using Java Classes in SQL

43

Type and void methods
Java methods (both instance and static) are either type methods or void
methods. In general, type methods return a value with a result type, and void
methods perform some action(s) and return nothing.

For example, in the Address class:

• The toString() method is a type method whose type is String.

• The removeLeadingBlanks() method is a void method.

• The Address constructor method is a type method whose type is the
Address class.

You invoke type methods as functions and use the new keyword when invoking
a constructor method:

insert into emps
values (’Don Green’, new Address(’234 Stone Road’, ’99777’),

 new Address2Line())

select name, home_addr>>toString() from emps
 where home_addr>>toString() like ‘%Baker%’

The removeLeadingBlanks() method of the Address class is a void instance
method that modifies the street and zip fields of a given instance. You can
invoke removeLeadingBlanks() for the home_addr column of each row of the
emps table. For example:

update emps
 set home_addr =
 home_addr>>removeLeadingBlanks()

removeLeadingBlanks() removes the leading blanks from the street and zip
fields of the home_addr column. The Transact-SQL update statement does not
provide a framework or syntax for such an action. It simply replaces column
values.

Java void instance methods
To use the “update-in-place” actions of Java void instance methods in the SQL
system, Java in Adaptive Server treats a call of a Java void instance method as
follows:

For a void instance method M() of an instance CI of a class C, written
“CI.M(...)”:

Type and void methods

44

• In SQL, the call is treated as a type method call. The result type is
implicitly class C, and the result value is a reference to CI. That reference
identifies a copy of the instance CI after the actions of the void instance
method call.

• In Java, this call is a void method call, which performs its actions and
returns no value.

For example, you can invoke the removeLeadingBlanks() method for the
home_addr column of selected rows of the emps table as follows:

update emps
 set home_addr = home_addr>>removeLeadingBlanks()
 where home_addr>>removeLeadingBlanks()>>street like “123%”

1 In the where clause, “home_addr>>removeLeadingBlanks()” calls the
removeLeadingBlanks() method for the home_addr column of a row of the
emps table. removeLeadingBlanks() strips the leading blanks from the
street and zip fields of a copy of the column. The SQL system then returns
a reference to the modified copy of the home_addr column. The
subsequent field reference:

home_addr>>removeLeadingBlanks()>>street

returns the street field that has the leading blanks removed. The references
to home_addr in the where clause are operating on a copy of the column.
This evaluation of the where clause does not modify the home_addr
column.

2 The update statement performs the set clause for each row of emps in
which the where clause is true.

3 On the right-side of the set clause, the invocation of
“home_addr>>removeLeadingBlanks()” is performed as it was for the
where clause: removeLeadingBlank() strips the leading blanks from street
and zip fields of that copy. The SQL system then returns a reference to the
modified copy of the home_addr column.

4 The Address instance denoted by the result of the right side of the set
clause is serialized and copied into the column specified on the left-side of
the set clause: the result of the expression on the right side of the set clause
is a copy of the home_addr column in which the leading blanks have been
removed from the street and zip fields. The modified copy is then assigned
back to the home_addr column as the new value of that column.

The expressions of the right and left side of the set clause are independent, as
is normal for the update statement.

Chapter 3 Using Java Classes in SQL

45

The following update statement shows an invocation of a void instance method
of the mailing_addr column on the right side of the set clause being assigned to
the home_address column on the left side.

update emps
 set home_addr = mailing_addr>>removeLeadingBlanks()
 where ...

In this set clause, the void method removeLeadingBlanks() of the mailing_addr
column yields a reference to a modified copy of the Address2Line instance in
the mailing_addr column. The instance denoted by that reference is then
serialized and assigned to the home_addr column. This action updates the
home_addr column; it has no effect on the mailing_addr column.

Java void static methods
You cannot invoke a void static method using a simple SQL execute command.
Rather, you must place the invocation of the void static method in a select
statement.

For example, suppose that a Java class C has a void static method M(...), and
assume that M() performs an action you want to invoke in SQL. For example,
M() can use JDBC calls to perform a series of SQL statements that have no
return values, such as create or drop, that would be appropriate for a void
method.

You must invoke the void static method in a select command, such as:

select C.M(...)

To allow void static methods to be invoked using a select, void static methods
are treated in SQL as returning a value of datatype int with a value of null.

Equality and ordering operations
You can use equality and ordering operators when you use Java in the database.
You cannot:

• Reference Java-SQL data items in ordering operations.

• Reference Java-SQL data items in equality operations if they are stored in
an off-row column.

Evaluation order and Java method calls

46

• Use the order by clause, which requires that you determine the sort order.

• Make direct comparisons using the “>”, “<”, “<=”, or “>=” operator.

These equality operations are allowed for in-row columns:

• Use of the distinct keyword, which is defined in terms of equality of rows,
including Java-SQL columns.

• Direct comparisons using the “=” and “!=” operators.

• Use of the union operator (not union all), which eliminates duplicates, and
requires the same kind of comparisons as the distinct clause.

• Use of the group by clause, which partitions the rows into sets with equal
values of the grouping column.

Evaluation order and Java method calls
Adaptive Server does not have a defined order for evaluating operands of
comparisons and other operations. Instead, Adaptive Server evaluates each
query and chooses an evaluation order based on the most rapid rate of
execution.

This section describes how different evaluation orders affect the outcome when
you pass columns or variables and parameters as arguments. The examples in
this section use the following Java-SQL class:

public class Utility implements java.io.Serializable {
 public static int F (Address A) {
 if (A.zip.length() > 5) return 0;
 else {A.zip = A.zip + "-1234"; return 1;}

}
 public static int G (Address A) {
 if (A.zip.length() > 5) return 0;
 else {A.zip = A.zip + "-1234"; return 1;}

}
}

Chapter 3 Using Java Classes in SQL

47

Columns
In general, avoid invoking in the same SQL statement multiple methods on the
same Java-SQL object. If at least one of them modifies the object, the order of
evaluation can affect the outcome.

For example, in this example:

select * from emp E
where Utility.F(E.home_addr) > Utility.F(E.home_addr)

the where clause passes the same home_addr column in two different method
invocations. Consider the evaluation of the where clause for a row whose
home_addr column has a 5-character zip, such as “95123.”

Adaptive Server can initially evaluate either the left or right side of the
comparison. After the first evaluation completes, the second is processed.
Because it executes faster this way, Adaptive Server may let the second
invocation see the modifications of the argument made by the first invocation.

In the example, the first invocation chosen by Adaptive Server returns 1, and
the second returns 0. If the left operand is evaluated first, the comparison is
1>0, and the where clause is true; if the right operand is evaluated first, the
comparison is 0>1, and the where clause is false.

Variables and parameters
Similarly, the order of evaluation can affect the outcome when passing
variables and parameters as arguments.

Consider the following statements:

declare @A Address
declare @Order varchar(20)

select @A = new Address(’95444’, ’123 Port Avenue’)
select case when Utility.F(@A)>Utility.G(@A)

then ‘Left’ else ‘Right’ end
select @Order = case when utility.F(@A) > utility.G(@A)
 then 'Left' else 'Right' end

The new Address has a five-character zip code field. When the case expression
is evaluated, depending on whether the left or right operand of the comparison
is evaluated first, the comparison is either 1>0 or 0>1, and the @Order variable
is set to ‘Left’ or ‘Right’ accordingly.

Static variables in Java-SQL classes

48

As for column arguments, the expression value depends on the evaluation
order. Depending on whether the left or right operand of the comparison is
evaluated first, the resulting value of the zip field of the Address instance
referenced by @A is either “95444-4321” or “95444-1234.”

Static variables in Java-SQL classes
A Java variable that is declared static is associated with the Java class, rather
than with each instance of the class. The variable is allocated once for the entire
class.

For example, you might include a static variable in the Address class that
specifies the recommended limit on the length of the Street field:

public class Address implements java.io.Serializable {

public static int recommendedLimit;
public String street;
public String zip;

// ...
}

You can specify that a static variable is final, which indicates that it is not
updatable:

 public static final int recommendedLimit;

Otherwise, you can update the variable.

 You reference a static variable of a Java class in SQL by qualifying the static
variable with an instance of the class. For example:

declare @a Address
select @a>>recommendedLimit

If you don't have an instance of the class, you can use the following technique:

select (convert(null, Address))>>recommendedLimit

The expression “(convert(null, Address))” converts a null value to an Address
type; that is, it generates a null Address instance, which you can then qualify
with the static variable name. You cannot reference a static variable of a Java
class in SQL by qualifying the static variable with the class name. For example,
the following are both incorrect:

select Address.recommendedLimit

Chapter 3 Using Java Classes in SQL

49

select Address>>recommendedLimit

Values assigned to non-final static variables are accessible only within the
current session.

Java classes in multiple databases
You can store Java classes of the same name in different databases in the same
Adaptive Server system. This section describes how you can use these classes.

Scope
When you install a Java class or set of classes, it is installed in the current
database. When you dump or load a database, the Java-SQL classes that are
currently installed in that database are always included—even if classes of the
same name exist in other databases in the Adaptive Server system.

You can install Java classes with the same name in different databases. These
synonymous classes can be:

• Identical classes that have been installed in different databases.

• Different classes that are intended to be mutually compatible. Thus, a
serialized value generated by either class is acceptable to the other.

• Different classes that are intended to be “upward” compatible. That is, a
serialized value generated by one of the classes should be acceptable to the
other, but not vice versa.

• Different classes that are intended to be mutually incompatible; for
example, a class named Sheet designed for supplies of paper, and other
classes named Sheet designed for supplies of linen.

Cross-database references
You can reference objects stored in table columns in one database from another
database.

For example, assume the following configuration:

• The Address class is installed in db1 and db2.

Java classes in multiple databases

50

• The emps table has been created in both db1 with owner Smith, and in db2,
with owner Jones.

In these examples, the current database is db1. You can invoke a join or a
method across databases. For example:

• A join across databases might look like this:

declare @count int
select @count(*)

from db2.Jones.emps, db1.Smith.emps
where db2.Jones.emps.home_addr>>zip =

db1.Smith.emps.home_addr>>zip

• A method invocation across databases might look like this:

select db2.Jones.emps.home_addr>>toString()
from db2.Jones.emps
where db2.Jones.emps.name = ’John Stone’

In these examples, instance values are not transferred. Fields and methods of
an instance contained in db2 are merely referenced by a routine in db1. Thus,
for across-database joins and method invocations:

• db1 need not contain an Address class.

• If db1 does contain an Address class, it can have completely different
properties than the Address class in db2.

Inter-class transfers
You can assign an instance of a class in one database to an instance of a class
of the same name in another database. Instances created by the class in the
source database are transferred into columns or variables whose declared type
is the class in the current (target) database.

You can insert or update from a table in one database to a table in another
database. For example:

insert into db1.Smith.emps select * from
db2.Jones.emps

update db1.Smith.emps
set home_addr = (select db2.Jones.emps.home_addr

from db2.Jones.emps
where db2.Jones.emps.name =

db1.Smith.emps.name)

Chapter 3 Using Java Classes in SQL

51

You can insert or update from a variable in one database to another database.
(The following fragment is in a stored procedure on db2.) For example:

declare @home_addr Address
select @home_addr = new Address(‘94608’, ‘222 Baker

Street’)
insert into db1.Janes.emps(name, home_addr)

values (‘Jone Stone’, @home_addr)

In these examples, instance values are transferred between databases. You can:

• Transfer instances between two local databases.

• Transfer instances between a local database and a remote database.

• Transfer instances between a SQL client and an Adaptive Server.

• Replace classes using install and update statements or remove and update
statements.

In an inter-class transfer, the Java serialization is transferred from the source to
the target.

Passing inter-class arguments
You can pass arguments between classes of the same name in different
databases.When passing inter-class arguments:

• A Java-SQL column is associated with the version of the specified Java
class in the database that contains the column.

• A Java-SQL variable (in Transact-SQL) is associated with the version of
the specified Java class in the current database.

• A Java-SQL intermediate result of class C is associated with the version of
class C in the same database as the Java method that returned the result.

• When a Java instance value JI is assigned to a target variable or column,
or passed to a Java method, JI is converted from its associated class to the
class associated with the receiving target or method.

Temporary and work databases
All rules for Java classes and databases also apply to temporary databases and
the model database:

Java classes

52

• Java-SQL columns of temporary tables contain byte string serializations
of the Java instances.

• A Java-SQL column is associated with the version of the specified class in
the temporary database.

You can install Java classes in a temporary database, but they persist only as
long as the temporary database persists.

The simplest way to provide Java classes for reference in temporary databases
is to install Java classes in the model database. They are then present in any
temporary database derived from the model.

 Java classes
This section shows the simple Java classes that this chapter uses to illustrate
Java in Adaptive Server. You can also find these classes and their Java source
code in $SYBASE/$SYBASE_ASE/sample/JavaSql. (UNIX) or
%SYBASE%\Ase-12_5\sample\JavaSql (Windows NT).

This is the Address class:

//
// Copyright (c) 1999
// Sybase, Inc
// Emeryville, CA 94608
// All Rights Reserved
//
/**
* A simple class for address data, to illustrate using a Java class
* as a SQL datatype.
*/

public class Address implements java.io.Serializable {

/**
* The street data for the address.
* @serial A simple String value.
*/
 public String street;

/**
* The zipcode data for the address.
* @serial A simple String value.

Chapter 3 Using Java Classes in SQL

53

*/
 String zip;

/** A default constructor.
*/

public Address () {
 street = "Unknown";
 zip = "None";
 }
/**
* A constructor with parameters
* @param S a string with the street information
* @param Z a string with the zipcode information
*/
 public Address (String S, String Z) {
 street = S;
 zip = Z;
 }
/**
* A method to return a display of the address data.
* @returns a string with a display version of the address data.
*/
 public String toString() {
 return "Street= " + street + " ZIP= " + zip;
 }
/**
* A void method to remove leading blanks.
* This method uses the static method
* <code>Misc.stripLeadingBlanks</code>.
*/

public void removeLeadingBlanks() {
 street = Misc.stripLeadingBlanks(street);
 zip = Misc.stripLeadingBlanks(street);
 }
}

This is the Address2Line class, which is a subclass of the Address class:

//
// Copyright (c) 1999
// Sybase, Inc
// Emeryville, CA 94608
// All Rights Reserved
//
/**
* A subclass of the Address class that adds a seond line of address data,
* <p>This is a simple subclass to illustrate using a Java subclass

Java classes

54

* as a SQL datatype.
*/
public class Address2Line extends Address implements java.io.Serializable {

/**
* The second line of street data for the address.
* @serial a simple String value
*/
 String line2;
/**
* A default constructor
*/
 public Address2Line () {
 street = "Unknown";
 line2 = " ";
 zip = "None";
 }
/**
* A constructor with parameters.
* @param S a string with the street information
* @param L2 a string with the second line of address data
* @param Z a string with the zipcode information
*/
public Address2Line (String S, String L2, String Z) {
 street = S;
 line2 = L2;
 zip = Z;
}

/**
* A method to return a display of the address data
* @returns a string with a display version of the address data
*/

public String toString() {
 return "Street= " + street + " Line2= " + line2 + " ZIP= " + zip;
}

/**
* A void method to remove leading blanks.
* This method uses the static method
* <code>Misc.stripLeadingBlanks</code>.
*/

public void removeLeadingBlanks() {
 line2 = Misc.stripLeadingBlanks(line2);

Chapter 3 Using Java Classes in SQL

55

 super.removeLeadingBlanks();
 }
}

The Misc class contains sets of miscellaneous routines:
//
// Copyright (c) 1999
// Sybase, Inc
// Emeryville, CA 94608
// All Rights Reserved
//
/**
* A non-instantiable class with miscellaneous static methods
* that illustrate the use of Java methods in SQL.
*/

public class Misc{

/**
* The Misc class contains only static methods and cannot be instantiated.
*/

private Misc() { }

/**
* Removes leading blanks from a String
*/

public static String stripLeadingBlanks(String s) {
 if (s == null) return null;
 for (int scan=0; scan<s.length(); scan++)
 if (!java.lang.Character.isWhitespace(s.charAt(scan)))
 break;
 } else if (scan == s.length()){

return "";
 } else return s.substring(scan);

}
 }

}
return "";

}
/**
* Extracts the street number from an address line.
* e.g., Misc.getNumber(" 123 Main Street") == 123
* Misc.getNumber(" Main Street") == 0
* Misc.getNumber("") == 0
* Misc.getNumber(" 123 ") == 123
* Misc.getNumber(" Main 123 ") == 0

Java classes

56

* @param s a string assumed to have address data
* @return a string with the extracted street number
*/

public static int getNumber (String s) {
 String stripped = stripLeadingBlanks(s);

if (s==null) return -1;
 for(int right=0; right < stripped.length(); right++){
 if (!java.lang.Character.isDigit(stripped.charAt(right))) {

break;
 } else if (right==0){

return 0;
 } else {

return java.lang.Integer.parseInt
(stripped.substring(0, right), 10);

 }
}
return -1;

}

/**
* Extract the "street" from an address line.
* e.g., Misc.getStreet(" 123 Main Street") == "Main Street"
* Misc.getStreet(" Main Street") == "Main Street"
* Misc.getStreet("") == ""
* Misc.getStreet(" 123 ") == ""
* Misc.getStreet(" Main 123 ") == "Main 123"
* @param s a string assumed to have address data
* @return a string with the extracted street name
*/

public static String getStreet(String s) {
 int left;

if (s==null) return null;
 for (left=0; left<s.length(); left++){

if(java.lang.Character.isLetter(s.charAt(left))) {
break;

} else if (left == s.length()) {
return "";

 } else {
return s.substring(left);

}
}
return "";

 }
}

57

C H A P T E R 4 Data Access Using JDBC

This chapter describes how to use Java Database Connectivity (JDBC) to
access data.

Overview
JDBC provides a SQL interface for Java applications. If you want to
access relational data from Java, you must use JDBC calls.

You can use JDBC with the Adaptive Server SQL interface in either of
two ways:

• JDBC on the client – Java client applications can make JDBC calls to
Adaptive Server using the Sybase jConnect JDBC driver.

• JDBC on the server – Java classes installed in the database can make
JDBC calls to the database using the JDBC driver native to Adaptive
Server.

The use of JDBC calls to perform SQL operations is essentially the same
in both contexts.

This chapter provides sample classes and methods that describe how you
might perform SQL operations using JDBC. These classes and methods
are not intended to serve as templates, but as general guidelines.

Topics Page
Overview 57

JDBC concepts and terminology 58

Differences between client- and server-side JDBC 58

Permissions 59

Using JDBC to access data 60

Error handling in the native JDBC driver 67

The JDBCExamples class 69

JDBC concepts and terminology

58

JDBC concepts and terminology
JDBC is a Java API and a standard part of the Java class libraries that
control basic functions for Java application development. The SQL
capabilities that JDBC provides are similar to those of ODBC and
dynamic SQL.

The following sequence of events is typical of a JDBC application:

1 Create a Connection object – call the getConnection() static method
of the DriverManager class to create a Connection object. This
establishes a database connection.

2 Generate a Statement object – use the Connection object to generate a
Statement object.

3 Pass a SQL statement to the Statement object – if the statement is a
query, this action returns a ResultSet object.

The ResultSet object contains the data returned from the SQL
statement, but provides it one row at a time (similar to the way a
cursor works).

4 Loop over the rows of the results set – call the next() method of the
ResultSet object to:

• Advance the current row (the row in the result set that is being
exposed through the ResultSet object) by one row.

• Return a Boolean value (true/false) to indicate whether there is a
row to advance to.

5 For each row, retrieve the values for columns in the ResultSet object
– use the getInt(), getString(), or similar method to identify either the
name or position of the column.

Differences between client- and server-side JDBC
The difference between JDBC on the client and in the database server is in
how a connection is established with the database environment.

When you use client-side or server-side JDBC, you call the
Drivermanager.getConnection() method to establish a connection to the
server.

Chapter 4 Data Access Using JDBC

59

• For client-side JDBC, you use the Sybase jConnect JDBC driver, and
call the Drivermanager.getConnection() method with the identification
of the server. This establishes a connection to the designated server.

• For server-side JDBC, you use the Adaptive Server native JDBC
driver, and call the Drivermanager.getConnection() method with one of
the following values:

• jdbc:default:connection

• jdbc:sybase:ase

• jdbc:default

• empty string

This establishes a connection to the current server. Only the first call
to the getConnection() method creates a new connection to the current
server. Subsequent calls return a wrapper of that connection with all
connection properties unchanged.

You can write JDBC classes to run at both the client and the server by
using a conditional statement to set the URL.

Permissions
• Java execution permissions – like all Java classes in the database,

classes containing JDBC statements can be accessed by any user.
There is no equivalent of the grant execute statement that grants
permission to execute procedures in Java methods, and there is no
need to qualify the name of a class with the name of its owner.

• SQL execution permissions – Java classes are executed with the
permissions of the connection executing them. This behavior is
different from that of stored procedures, which execute with granted
permission by the database owner.

Using JDBC to access data

60

Using JDBC to access data
This section describes how you can use JDBC to perform the typical
operations of a SQL application. The examples are extracted from the
class JDBCExamples, which is described in “The JDBCExamples class”
on page 69 and in $SYBASE/$SYBASE_ASE/sample/JavaSql (UNIX) or
%SYBASE%\Ase-12_5\sample\JavaSql (Windows NT).

JDBCExamples illustrates the basics of a user interface and shows the
internal coding techniques for SQL operations.

Overview of the JDBCExamples class
The JDBCExamples class uses the Address class shown in “Sample Java
classes” on page 11. To execute these examples on your machine, install
the Address class on the server and include it in the Java CLASSPATH of
the jConnect client.

You can call the methods of JDBCExamples from either a jConnect client
or Adaptive Server.

Note You must create or drop stored procedures from the jConnect client.
The Adaptive Server native driver does not support create procedure and
drop procedure statements.

JDBCExamples static methods perform the following SQL operations:

• Create and drop an example table, xmp:

 create table xmp (id int, name varchar(50), home Address)

• Create and drop a sample stored procedure, inoutproc:

create procedure inoutproc @id int, @newname varchar(50),
 @newhome Address, @oldname varchar(50) output, @oldhome
 Address output as

select @oldname = name, @oldhome = home from xmp
 where id=@id
update xmp set name=@newname, home = @newhome
 where id=@id

• Insert a row into the xmp table.

• Select a row from the xmp table.

Chapter 4 Data Access Using JDBC

61

• Update a row of the xmp table.

• Call the stored procedure inoutproc, which has both input parameters
and output parameters of datatypes java.lang.String and Address.

JDBCExamples operates only on the xmp table and inoutproc procedure.

The main() and serverMain() methods
JDBCExamples has two primary methods:

• main() – is invoked from the command line of the jConnect client.

• serverMain() – performs the same actions as main(), but is invoked
within Adaptive Server.

All actions of the JDBCExamples class are invoked by calling one of these
methods, using a parameter to indicate the action to be performed.

Using main()

You can invoke the main() method from a jConnect command line as
follows:

java JDBCExamples
“server-name:port-number?user=user-name&password=password” action

You can determine server-name and port-number from your interfaces
file, using the dsedit tool. user-name and password are your user name and
password. If you omit &password=password, the default is the empty
password. Here are two examples:

“antibes:4000?user=smith&password=1x2x3”
“antibes:4000?user=sa”

Make sure that you enclose the parameter in quotation marks.

The action parameter can be create table, create procedure, insert, select,
update, or call. It is case insensitive.

You can invoke JDBCExamples from a jConnect command line to create
the table xmp and the stored procedure inoutproc as follows:

java JDBCExamples “antibes:4000?user=sa” CreateTable
java JDBCExamples “antibes:4000?user=sa” CreateProc

You can invoke JDBCExamples for insert, select, update, and call actions
as follows:

Using JDBC to access data

62

java JDBCExamples “antibes:4000?user=sa” insert
java JDBCExamples “antibes:4000?user=sa” update
java JDBCExamples “antibes:4000?user=sa” call
java JDBCExamples “antibes:4000?user=sa” select

These invocations display the message “Action performed.”

To drop the table xmp and the stored procedure inoutproc, enter:

java JDBCExamples “antibes:4000?user=sa” droptable
java JDBCExamples “antibes:4000?user=sa” dropproc

Using serverMain()

Note Because the server-side JDBC driver does not support create
procedure or drop procedure, create the table xmp and the example stored
procedure inoutproc with client-side calls of the main() method before
executing these examples. Refer to “Overview of the JDBCExamples
class” on page 60.

After creating xmp and inoutproc, you can invoke the serverMain() method
as follows:

select JDBCExamples.serverMain(’insert’)
go
select JDBCExamples.serverMain(’select’)
go
select JDBCExamples.serverMain(’update’)
go
select JDBCExamples.serverMain(’call’)
go

Note Server-side calls of serverMain() do not require a server-name:port-
number parameter; Adaptive Server simply connects to itself.

Obtaining a JDBC connection: the Connecter() method
Both main() and serverMain() call the connecter() method, which returns
a JDBC Connection object. The Connection object is the basis for all
subsequent SQL operations.

Chapter 4 Data Access Using JDBC

63

Both main() and serverMain() call connecter() with a parameter that
specifies the JDBC driver for the server- or client-side environment. The
returned Connection object is then passed as an argument to the other
methods of the JDBCExamples class. By isolating the connection actions
in the connecter() method, JDBCExamples’ other methods are independent
of their server- or client-side environment.

Routing the action to other methods: the doAction() method
The doAction() method routes the call to one of the other methods, based
on the action parameter.

doAction() has the Connection parameter, which it simply relays to the
target method. It also has a parameter locale, which indicates whether the
call is server- or client-side. Connection raises an exception if either create
procedure or drop procedure is invoked in a server-side environment.

Executing imperative SQL operations: the doSQL() method
The doSQL() method performs SQL actions that require no input or output
parameters such as create table, create procedure, drop table, and drop
procedure.

doSQL() has two parameters: the Connection object and the SQL
statement it is to perform. doSQL() creates a JDBC Statement object and
uses it to execute the specified SQL statement.

Executing an update statement: the UpdateAction() method
The updateAction() method performs a Transact-SQL update statement.
The update action is:

String sql = "update xmp set name = ?, home = ? where id = ?";

It updates the name and home columns for all rows with a given id value.

The update values for the name and home column, and the id value, are
specified by parameter markers (?). updateAction() supplies values for
these parameter markers after preparing the statement, but before
executing it. The values are specified by the JDBC setString(),
setObject(), and setInt() methods with these parameters:

Using JDBC to access data

64

• The ordinal parameter marker to be substituted

• The value to be substituted

For example:

pstmt.setString(1, name);
pstmt.setObject(2, home);
pstmt.setInt(3, id);

After making these substitutions, updateAction() executes the update
statement.

To simplify updateAction(), the substituted values in the example are fixed.
Normally, applications compute the substituted values or obtain them as
parameters.

Executing a select statement: the selectAction() method
The selectAction() method executes a Transact-SQL select statement:

String sql = "select name, home from xmp where id=?";

The where clause uses a parameter marker (?) for the row to be selected.
Using the JDBC setInt() method, selectAction() supplies a value for the
parameter marker after preparing the SQL statement:

PreparedStatement pstmt =
con.prepareStatement(sql);

pstmt.setInt(1, id);

selectAction() then executes the select statement:

ResultSet rs = pstmt.executeQuery();

Note For SQL statements that return no results, use doSQL() and
updateAction(). They execute SQL statements with the executeUpdate()
method.

 For SQL statements that do return results, use the executeQuery()
method, which returns a JDBC ResultSet object.

The ResultSet object is similar to a SQL cursor. Initially, it is positioned
before the first row of results. Each call of the next() method advances the
ResultSet object to the next row, until there are no more rows.

Chapter 4 Data Access Using JDBC

65

selectAction() requires that the ResultSet object have exactly one row. The
selecter() method invokes the next method, and checks for the case where
ResultSet has no rows or more than one row.

 if (rs.next()) {
 name = rs.getString(1);
 home = (Address)rs.getObject(2);
 if (rs.next()) {
 throw new Exception("Error: Select returned multiple rows");
 } else { // No action
 }
 } else { throw new Exception("Error: Select returned no rows");
 }

In the above code, the call of methods getString() and getObject() retrieve
the two columns of the first row of the result set. The expression
“(Address)rs.getObject(2)” retrieves the second column as a Java object,
and then coerces that object to the Address class. If the returned object is
not an Address, then an exception is raised.

selectAction() retrieves a single row and checks for the cases of no rows or
more than one row. An application that processes a multiple row ResultSet
would simply loop on the calls of the next() method, and process each row
as for a single row.

Executing in batch mode If you want to execute a batch of SQL statements, make sure that you use
the execute() method. If you use executeQuery() for batch mode:

• If the batch operation does not return a result set (contains no select
statements), the batch executes without error.

• If the batch operation returns one result set, all statements after the
statement that returns the result are ignored. If getXXX() is called to
get an output parameter, the remaining statements execute and the
current result set is closed.

• If the batch operation returns more than one result set, an exception is
raised and the operation aborts.

Using execute() ensures that the complete batch executes for all cases.

Calling a SQL stored procedure: the callAction() method
The callAction() method calls the stored procedure inoutproc:

create proc inoutproc @id int, @newname varchar(50), @newhome Address,
 @oldname varchar(50) output, @oldhome Address output as

Using JDBC to access data

66

 select @oldname = name, @oldhome = home from xmp where id=@id
 update xmp set name=@newname, home = @newhome where id=@id

This procedure has three input parameters (@id, @newname, and
@newhome) and two output parameters (@oldname and @oldhome).
callAction() sets the name and home columns of the row of table xmp with
the ID value of @id to the values @newname and @newhome, and returns
the former values of those columns in the output parameters @oldname
and @oldhome.

The inoutproc procedure illustrates how to supply input and output
parameters in a JDBC call.

callAction() executes the following call statement, which prepares the call
statement:

CallableStatement cs = con.prepareCall("{call inoutproc (?, ?, ?, ?, ?)}");

All of the parameters of the call are specified as parameter markers (?).

callAction() supplies values for the input parameters using JDBC setInt(),
setString(), and setObject() methods that were used in the doSQL(),
updatAction(), and selectAction() methods:

 cs.setInt(1, id);
 cs.setString(2, newName);
 cs.setObject(3, newHome);

These set methods are not suitable for the output parameters. Before
executing the call statement, callAction() specifies the datatypes expected
of the output parameters using the JDBC registerOutParameter() method:

 cs.registerOutParameter(4, java.sql.Types.VARCHAR);
 cs.registerOutParameter(5, java.sql.Types.JAVA_OBJECT);

callAction() then executes the call statement and obtains the output values
using the same getString() and getObject() methods that the selectAction()
method used:

 int res = cs.executeUpdate();
 String oldName = cs.getString(4);
 Address oldHome = (Address)cs.getObject(5);

Chapter 4 Data Access Using JDBC

67

Error handling in the native JDBC driver
Sybase supports and implements all methods from the
java.sql.SQLException and java.sql.SQLWarning classes. SQLException
provides information on database access errors. SQLWarning extends
SQLException and provides information on database access warnings.

Errors raised by Adaptive Server are numbered according to severity.
Lower numbers are less severe; higher numbers are more severe. Errors
are grouped according to severity:

• Warnings (EX_INFO: severity 10) – are converted to SQLWarnings.

• Exceptions (severity 11 to18) – are converted to SQLExceptions.

• Fatal errors (severity 19 to 24) – are converted to fatal
SQLExceptions.

SQLExceptions can be raised through JDBC, Adaptive Server, or the
native JDBC driver. Raising a SQLException aborts the JDBC query that
caused the error. Subsequent system behavior differs depending on where
the error is caught:

• If the error is caught in Java – a “try” block and subsequent “catch”
block process the error.

Adaptive Server provides several extended JDBC driver-specific
SQLException error messages. All are EX_USER (severity 16) and
can always be caught. There are no driver-specific SQLWarning
messages.

• If the error is not caught in Java – the Java VM returns control to
Adaptive Server, Adaptive Server catches the error, and an unhandled
SQLException error is raised.

The raiserror command is used typically with stored procedures to
raise an error and to print a user-defined error message. When a stored
procedure that calls the raiserror command is executed via JDBC, the
error is treated as an internal error of severity EX_USER, and a
nonfatal SQLException is raised.

Note You cannot access extended error data using the raiserror
command; the with errordata clause is not implemented for
SQLException.

If an error causes a transaction to abort, the outcome depends on the
transaction context in which the Java method is invoked:

Error handling in the native JDBC driver

68

• If the transaction contains multiple statements – the transaction aborts
and control returns to the server, which rolls back the entire
transaction. The JDBC driver ceases to process queries until control
returns from the server.

• If the transaction contains a single statement – the transaction aborts,
the SQL statement it contains rolls back, and the JDBC driver
continues to process queries.

The following scenarios illustrate the different outcomes. Consider a Java
method jdbcTests.Errorexample() that contains these statements:

stmt.executeUpdate(“delete from parts where partno = 0”); Q2
stmt.executeQuery(“select 1/0”); Q3
stmt.executeUpdate(“delete from parts where partno = 10”); Q4

A transaction containing multiple statements includes these SQL
commands:

begin transaction
delete from parts where partno = 8 Q1
select JDBCTests.Errorexample()

In this case, these actions result from an aborted transaction:

• A divide-by-zero exception is raised in Q3.

• Changes from Q1 and Q2 are rolled back.

• The entire transaction aborts.

A transaction containing a single statement includes these SQL
commands:

set chained off
delete from parts where partno = 8 Q1
select JDBCTests.Errorexample()

In this case:

• A divide-by-zero exception is raised in Q3.

• Changes from Q1 and Q2 are not rolled back

• The exception is caught in “catch” and “try” blocks in
JDBCTests.Errorexample.

• The deletion specified in Q4 does not execute because it is handled in
the same “try” and “catch” blocks as Q3.

• JDBC queries outside of the current “try” and “catch” blocks can be
executed.

Chapter 4 Data Access Using JDBC

69

The JDBCExamples class
// An example class illustrating the use of JDBC facilities
// with the Java in Adaptive Server feature.
//
// The methods of this class perform a range of SQL operations.
// These methods can be invoked either from a Java client,
// using the main method, or from the SQL server, using
// the internalMain method.
//
import java.sql.*; // JDBC
public class JDBCExamples {
{

The main() method
// The main method, to be called from a client-side command line
//
 public static void main(String args[]) {
 if (args.length!=2) {
 System.out.println("\n Usage: "
 + "java ExternalConnect server-name:port-number
 action ");
 System.out.println(" The action is connect, createtable,
 " + "createproc, drop, "
 + "insert, select, update, or call \n");
 return;
 }
 try{
 String server = args[0];
 String action = args[1].toLowerCase();
 Connection con = connecter(server);
 String workString = doAction(action, con, client);
 System.out.println("\n" + workString + "\n");
 } catch (Exception e) {
 System.out.println("\n Exception: ");
 e.printStackTrace();
 }
 }

The internalMain() method
// A JDBCExamples method equivalent to ’main’,

The JDBCExamples class

70

// to be called from SQL or Java in the server

 public static String internalMain(String action) {
 try {
 Connection con = connecter("default");
 String workString = doAction(action, con, server);
 return workString;
 } catch (Exception e) {
 if (e.getMessage().equals(null)) {
 return "Exc: " + e.toString();
 } else {
 return "Exc - " + e.getMessage();
 }
 }
 }

The connecter() method
// A JDBCExamples method to get a connection.
// It can be called from the server with argument ’default’,
// or from a client, with an argument that is the server name.

public static Connection connecter(String server)
 throws Exception, SQLException, ClassNotFoundException {

 String forName="";
 String url="";

 if (server=="default") { // server connection to current server
 forName = "sybase.asejdbc.ASEDriver";
 url = "jdbc:default:connection";
 } else if (server!="default") { //client connection to server
 forName= "com.sybase.jdbc.SybDriver";
 url = "jdbc:sybase:Tds:"+ server;
 }

 String user = "sa";
 String password = "";

 // Load the driver
 Class.forName(forName);
 // Get a connection
 Connection con = DriverManager.getConnection(url,
 user, password);
 return con;

Chapter 4 Data Access Using JDBC

71

 }

The doAction() method
// A JDBCExamples method to route to the ’action’ to be performed

 public static String doAction(String action, Connection con,
 String locale)
 throws Exception {

 String createProcScript =
 " create proc inoutproc @id int, @newname varchar(50),
 @newhome Address, "
 + " @oldname varchar(50) output, @oldhome Address
 output as "
 + " select @oldname = name, @oldhome = home from xmp
 where id=@id "
 + " update xmp set name=@newname, home = @newhome
 where id=@id ";
 String createTableScript =
 " create table xmp (id int, name varchar(50),
 home Address)" ;

 String dropTableScript = "drop table xmp ";
 String dropProcScript = "drop proc inoutproc ";

 String insertScript = "insert into xmp "
 + "values (1, ’Joe Smith’, new Address(’987 Shore’,
 ’12345’))";

 String workString = "Action (" + action +) ;
 if (action.equals("connect")) {
 workString += "performed";
 } else if (action.equals("createtable")) {
 workString += doSQL(con, createTableScript);
 } else if (action.equals("createproc")) {
 if (locale.equals(server)) {
 throw new exception (CreateProc cannot be performed
 in the server);
 } else {
 workString += doSQL(con, createProcScript);
 }
 } else if (action.equals("droptable")) {
 workString += doSQL(con, dropTableScript);
 } else if (action.equals("dropproc")) {
 if (locale.equals(server)) {

The JDBCExamples class

72

 throw new exception (CreateProc cannot be performed
 in the server);
 } else {
 workString += doSQL(con, dropProcScript);
 }
 } else if (action.equals("insert")) {
 workString += doSQL(con, insertScript);
 } else if (action.equals("update")) {
 workString += updateAction(con);
 } else if (action.equals("select")) {
 workString += selectAction(con);
 } else if (action.equals("call")) {
 workString += callAction(con);
 } else { return "Invalid action: " + action ;
 }
 return workString;
 }

The doSQL() method
// A JDBCExamples method to execute an SQL statement.

 public static String doSQL (Connection con, String action)
 throws Exception {

 Statement stmt = con.createStatement();
 int res = stmt.executeUpdate(action);
 return "performed";
 }

The updateAction() method
// A method that updates a certain row of the ’xmp’ table.
// This method illustrates prepared statements and parameter markers.

 public static String updateAction(Connection con)
 throws Exception {

 String sql = "update xmp set name = ?, home = ? where id = ?";
 int id=1;
 Address home = new Address("123 Main", "98765");
 String name = "Sam Brown";
 PreparedStatement pstmt = con.prepareStatement(sql);

Chapter 4 Data Access Using JDBC

73

 pstmt.setString(1, name);
 pstmt.setObject(2, home);
 pstmt.setInt(3, id);
 int res = pstmt.executeUpdate();
 return "performed";
 }

The selectAction() method
// A JDBCExamples method to retrieve a certain row
// of the ’xmp’ table.
// This method illustrates prepared statements, parameter markers,
// and result sets.

 public static String selectAction(Connection con)
 throws Exception {

 String sql = "select name, home from xmp where id=?";
 int id=1;
 Address home = null;
 String name = "";
 String street = "";
 String zip = "";
 PreparedStatement pstmt = con.prepareStatement(sql);
 pstmt.setInt(1, id);
 ResultSet rs = pstmt.executeQuery();
 if (rs.next()) {
 name = rs.getString(1);
 home = (Address)rs.getObject(2);
 if (rs.next()) {
 throw new Exception("Error: Select returned
 multiple rows");
 } else { // No action
 }
 } else { throw new Exception("Error: Select returned no rows");
 }
 return "- Row with id=1: name("+ name +)
 + " street(" + home.street +) zip("+ home.zip +);

The callAction() method
// A JDBCExamples method to call a stored procedure,
// passing input and output parameters of datatype String

The JDBCExamples class

74

 // and Address.
 // This method illustrates callable statements, parameter markers,
 // and result sets.

 public static String callAction(Connection con)
 throws Exception {
 CallableStatement cs = con.prepareCall("{call inoutproc
 (?, ?, ?, ?, ?)}");
 int id = 1;
 String newName = "Frank Farr";
 Address newHome = new Address("123 Farr Lane", "87654");
 cs.setInt(1, id);
 cs.setString(2, newName);
 cs.setObject(3, newHome);
 cs.registerOutParameter(4, java.sql.Types.VARCHAR);
 cs.registerOutParameter(5, java.sql.Types.JAVA_OBJECT);
 int res = cs.executeUpdate();
 String oldName = cs.getString(4);
 Address oldHome = (Address)cs.getObject(5);
 return "- Old values of row with id=1: name("+oldName+)
 street(" + oldHome.street + ") zip("+ oldHome.zip +);
 }
}

75

C H A P T E R 5 SQLJ Functions and Stored
Procedures

This chapter describes how to wrap Java methods in SQL names and use
them as Adaptive Server functions and stored procedures.

Overview
You can enclose Java static methods in SQL wrappers and use them
exactly as you would Transact-SQL stored procedures or built-in
functions. This functionality:

• Allows Java methods to return output parameters and result sets to the
calling environment.

• Complies with Part 1 of the ANSI SQLJ standard specification.

• Allows you to take advantage of traditional SQL syntax, metadata,
and permission capabilities.

• Allows you to use existing Java methods as SQLJ procedures and
functions on the server, on the client, and on any SQLJ-compliant,
third-party database.

Name Page
Overview 75

Invoking Java methods in Adaptive Server 78

General issues 76

Using Sybase Central to manage SQLJ functions and procedures 80

SQLJ user-defined functions 81

SQLJ stored procedures 87

Viewing information about SQLJ functions and procedures 97

Advanced topics 98

SQLJ and Sybase implementation: a comparison 102

SQLJExamples class 105

Overview

76

❖ Creating a SQLJ stored procedure or function

Perform these steps to create and execute a SQLJ stored procedure or
function.

1 Create and compile the Java method. Install the method class in the
database using the installjava utility.

Refer to Chapter 2, “Preparing for and Maintaining Java in the
Database,” for information on creating, compiling, and installing Java
methods in Adaptive Server.

2 Using the SQLJ create procedure or create function statement, define
a SQL name for the method.

3 Execute the procedure or function. The examples in this chapter use
JDBC method calls or isql. You can also execute the method using
Embedded SQL or ODBC.

Compliance with SQLJ Part 1 specifications
Adaptive Server SQLJ stored procedures and functions comply with SQLJ
Part 1 of the standard specifications for using Java with SQL. See
“Standards” on page 4 for a description of the SQLJ standards.

Adaptive Server supports most features described in the SQLJ Part 1
specification; however, there are some differences. Unsupported features
are listed in Table 5-3 on page 103; partially supported features are listed
in Table 5-4 on page 103. Sybase-defined features—those not defined by
the standard but left to the implementation—are listed in Table 5-5 on
page 104.

In those instances where Sybase proprietary implementation differs from
the SQLJ specifications, Sybase supports the SQLJ standard. For example,
non-Java Sybase SQL stored procedures support two parameter modes: in
and inout. The SQLJ standard supports three parameter modes: in, out, and
inout. The Sybase syntax for creating SQLJ stored procedures supports all
three parameter modes.

General issues
This section describes general issues and constraints that apply to SQLJ
functions and stored procedures.

CHAPTER 5 SQLJ Functions and Stored Procedures

77

• Only public static (class) methods can be referenced in a SQLJ
function or stored procedure.

• Datatype mapping is checked when the SQLJ routine is created.
During the execution of a SQLJ routine, data is passed from SQL to
Java and back to SQL. Any data conversions required during
execution must follow the rules for datatype mapping outlined in the
JDBC standard.

Refer to “Mapping Java and SQL datatypes” on page 98 for a
discussion of datatype mapping and conversions for SQLJ routines.

• If a method referenced by a SQLJ function or stored procedure
invokes SQL, returns parameters from the SQL system to the calling
environment, or returns result sets from SQL to the calling
environment, you must use an Adaptive Server JDBC interface, such
as Sybase jConnect or the internal Adaptive Server JDBC driver, that
enables object-oriented access to the relational database.

Security and permissions
Sybase provides different security models for SQLJ stored procedures and
SQLJ functions.

SQLJ functions and user-defined functions (UDFs) (see “Invoking Java
methods in SQL” on page 30) use the same security model. Permission to
execute any UDF or SQLJ function is granted implicitly to public. If the
function performs SQL queries via JDBC, permission to access the data is
checked against the invoker of the function. Thus, if user A invokes a
function that accesses table t1, user A must have select permission on t1 or
the query fails.

SQLJ stored procedures use the same security model as Transact-SQL
stored procedures. The user must be granted explicit permission to execute
a SQLJ or Transact-SQL stored procedure. If a SQLJ procedure performs
SQL queries via JDBC, implicit permission grant support is applied. This
security model allows the owner of the stored procedure, if the owner
owns all SQL objects referenced by the procedure, to grant execute
permission on the procedure to another user. The user who has execute
permission can execute all SQL queries in the stored procedure, even if the
user does not have permission to access those objects.

For a more detailed description of security for stored procedures, see the
System Administration Guide.

Invoking Java methods in Adaptive Server

78

SQLJExamples
The examples used in this chapter assume a SQL table called sales_emps
with these columns:

• name – the employee’s name

• id – the employee’s identification number

• state – the state in which the employee is located

• sales – amount of the employee’s sales

• jobcode – the employee’s job code

The table definition is:

create table sales_emps
(name varchar(50), id char(5),
state char(20), sales decimal (6,2),
jobcode integer null)

he example class is SQLJExamples, and the methods are:

• region() – maps a U.S. state code to a region number. The method does
not use SQL.

• correctStates() – performs a SQL update command to correct the
spelling of state codes. Old and new spellings are specified by input
parameters.

• bestTwoEmps() – determines the top two employees by their sales
records and returns those values as output parameters.

• SQLJExamplesorderedEmps() – creates a SQL result set consisting of
selected employee rows ordered by values in the sales column, and
returns the result set to the client.

• job() – returns a string value corresponding to an integer job code
value.

See “SQLJExamples class” on page 105 for the text of each method.

Invoking Java methods in Adaptive Server
You can invoke Java methods in two different ways in Adaptive Server:

CHAPTER 5 SQLJ Functions and Stored Procedures

79

• Invoke Java methods directly in SQL. Directions for invoking
methods in this way are presented in Chapter 3, “Using Java Classes
in SQL.”

• Invoke Java methods indirectly using SQLJ stored procedures and
functions that provide Transact-SQL aliases for the method name.
This chapter describes invoking Java methods in this way.

Whichever way you choose, you must first create your Java methods and
install them in the Adaptive Server database using the installjava utility.
See Chapter 2, “Preparing for and Maintaining Java in the Database,” for
more information.

Invoking Java methods
directly with their Java
names

You can invoke Java methods in SQL by referencing them with their fully
qualified Java names. Reference instances for instance methods, and either
instances or classes for static methods.

You can use static methods as user-defined functions (UDFs) that return a
value to the calling environment. You can use a Java static method as a
UDF in stored procedures, triggers, where clauses, select statements, or
anywhere that you can use a built-in SQL function.

When you call a Java method using its name, you cannot use methods that
return output parameters or result sets to the calling environment. A
method can manipulate the data it receives from a JDBC connection, but
the method can only return the single return value declared in its definition
to the calling environment.

You cannot use cross-database invocations of UDF functions.

See Chapter 3, “Using Java Classes in SQL,” for information about using
Java methods in this way.

Invoking Java methods
indirectly using SQLJ

You can invoke Java methods as SQLJ functions or stored procedures. By
wrapping the Java method in a SQL wrapper, you take advantage of these
capabilities:

• You can use SQLJ stored procedures to return result sets and output
parameters to the calling environment.

• You can take advantage of SQL metadata capabilities. For example,
you can view a list of all stored procedures or functions in the
database.

• SQLJ provides a SQL name for a method, which allows you to protect
the method invocation with standard SQL permissions.

Using Sybase Central to manage SQLJ functions and procedures

80

• Sybase SQLJ conforms to the recognized SQLJ Part 1 standard,
which allows you to use Sybase SQLJ procedures and functions in
conforming non-Sybase environments.

• You can invoke SQLJ functions and SQLJ stored procedures across
databases.

• Because Adaptive Server checks datatype mapping when the SQLJ
routine is created, you need not be concerned with datatype mapping
when executing the routines.

You must reference static methods in a SQLJ routine; you cannot reference
instance methods.

This chapter describes how you can use Java methods as SQLJ stored
procedures and functions.

Using Sybase Central to manage SQLJ functions and
procedures

You can manage SQLJ functions and procedures from the command line
using isql and from the Adaptive Server plug-in to Sybase Central. From
the Adaptive Server plug-in you can:

• Create a SQLJ function or procedure

• Execute a SQLJ function or procedure

• View and modify the properties of a SQLJ function or procedure

• Delete a SQLJ function or procedure

• View the dependencies of a SQLJ function or procedure

• Create permissions for a SQLJ procedure

The following procedures describes how to create and view the properties
of a SQLJ routine. You can view dependencies and create and view
permissions from the routine’s property sheet.

❖ Creating a SQLJ function/procedure

First, create and compile the Java method. Install the method class in the
database using installjava. Then follow these steps:

1 Start the Adaptive Server plug-in and connect to Adaptive Server.

CHAPTER 5 SQLJ Functions and Stored Procedures

81

2 Double-click on the database in which you want to create the routine.

3 Open the SQLJ Procedures/SQLJ Functions folder.

4 Double-click the Add new Java Stored Procedure/Function icon.

5 Use the Add new Java Stored Procedure/Function wizard to create the
SQLJ procedure or function.

When you have finished using the wizard, the Adaptive Server plug-
in displays the SQLJ routine you have created in an edit screen, where
you can modify the routine and execute it.

❖ To view the properties of a SQLJ function or procedure

1 Start the Adaptive Server plug-in and connect to Adaptive Server.

2 Double-click on the database in which the routine is stored.

3 Open the SQLJ Procedures/SQLJ Functions folder.

4 Highlight a function or procedure icon.

5 Select File | Properties.

SQLJ user-defined functions
The create function command specifies a SQLJ function name and
signature for a Java method. You can use SQLJ functions to read and
modify SQL and to return a value described by the referenced method.

The SQLJ syntax for create function is:

create function [owner].sql_function_name
([sql_parameter_name sql_datatype

[(length)| (precision[, scale])]
[, sql_parameter_name sql_datatype

[(length) | (precision[, scale])]]
...])

returns sql_datatype
[(length)| (precision[, scale])]

[modifies sql data]
[returns null on null input |

called on null input]
[deterministic | not deterministic]
[exportable]
language java

SQLJ user-defined functions

82

parameter style java
external name ’java_method_name

[([java_datatype[{, java_datatype }
...]])]’

When creating a SQLJ function:

• The SQL function signature is the SQL datatype sql_datatype of
each function parameter.

• To comply with the ANSI standard, do not include an @ sign before
parameter names.

Sybase adds an @ sign internally to support parameter name binding.
You will see the @ sign when using sp_help to print out information
about the SQLJ stored procedure.

• When creating a SQLJ function, you must include the parentheses that
surround the sql_parameter_name and sql_datatype information—
even if you do not include that information.

For example:

create function sqlj_fc()
language java
parameter style java

external name ’SQLJExamples.method’

• The modifies sql data clause specifies that the method invokes SQL
operations and reads and modifies SQL data. This is the default value.
You do not need to include it except for syntactic compatibility with
the SQLJ Part 1 standard.

• es returns null on null input and called on null input specify how
Adaptive Server handles null arguments of a function call. returns null
on null input specifies that if the value of any argument is null at
runtime, the return value of the function is set to null and the function
body is not invoked. called on null input is the default. It specifies that
the function is invoked regardless of null argument values.

Function calls and null argument values are described in detail in
“Handling nulls in the function call” on page 86.

• You can include the deterministic or not deterministic keywords, but
Adaptive Server does not use them. They are included for syntactic
compatibility with the SQLJ Part 1 standard.

CHAPTER 5 SQLJ Functions and Stored Procedures

83

• Clauses exportable keyword specifies that the function is to run on a
remote server using Sybase OmniConnect™ capabilities. Both the
function and the method on which it is based must be installed on the
remote server.

• Clauses language java and parameter style java specify that the
referenced method is written in Java and that the parameters are Java
parameters. You must include these phrases when creating a SQLJ
function.

• The external name clause specifies that the routine is not written in
SQL and identifies the Java method, class and, package name (if any).

• The Java method signature specifies the Java datatype java_datatype
of each method parameter. The Java method signature is optional. If
it is not specified, Adaptive Server infers the Java method signature
from the SQL function signature.

Sybase recommends that you include the method signature as this
practice handles all datatype translations. See “Mapping Java and
SQL datatypes” on page 98.

• You can define different SQL names for the same Java method using
create function and then use them in the same way.

Writing the Java method Before you can create a SQLJ function, you must write the Java method
that it references, compile the method class, and install it in the database.

In this example, SQLJExamples.region() maps a state code to a region
number and returns that number to the user.

public static int region(String s)
throws SQLException {

s = s.trim();
if (s.equals(“MN”) || s.equals(“VT”) ||

s.equals(“NH”)) return 1;
if (s.equals(“FL”) || s.equals(“GA”) ||

s.equals(“AL”)) return 2;
if (s.equals(“CA”) || s.equals(“AZ”) ||

s.equals(“NV”)) return 3;
else throw new SQLException

(“Invalid state code”, “X2001”);

}

Creating the SQLJ function After writing and installing the method, you can create the SQLJ function.
For example:

SQLJ user-defined functions

84

create function region_of(state char(20))
returns integer

language java parameter style java
external name

’SQLJExamples.region(java.lang.String)’

The SQLJ create function statement specifies an input parameter (state
char(20))and an integer return value. The SQL function signature is
char(20). The Java method signature is java.lang.String.

Calling the function You can call a SQLJ function directly, as if it were a built-in function. For
example:

select name, region_of(state) as region
from sales_emps

where region_of(state)=3

Note The search sequence for functions in Adaptive Server is:

1 Built-in functions

2 SQLJ functions

3 Java-SQL functions that are called directly

Handling null argument values
Java class datatypes and Java primitive datatypes handle null argument
values in different ways.

• Java object datatypes that are classes—such as java.lang.Integer,
java.lang.String, java.lang.byte[], and java.sql.Timestamp—can hold
both actual values and null reference values.

• Java primitive datatypes—such as boolean, byte, short, and int—
have no representation for a null value. They can hold only non-null
values.

When a Java method is invoked that causes a SQL null value to be passed
as an argument to a Java parameter whose datatype is a Java class, it is
passed as a Java null reference value.When a SQL null value is passed as
an argument to a Java parameter of a Java primitive datatype, however, an
exception is raised because the Java primitive datatype has no
representation for a null value.

CHAPTER 5 SQLJ Functions and Stored Procedures

85

Typically, you will write Java methods that specify Java parameter
datatypes that are classes. In this case, nulls are handled without raising an
exception. If you choose to write Java functions that use Java parameters
that cannot handle null values, you can either:

• Include the returns null on null input clause when you create the SQLJ
function, or

• Invoke the SQLJ function using a case or other conditional
expression to test for null values and call the SQLJ function only for
the non-null values.

You can handle expected nulls when you create the SQLJ function or when
you call it. The following sections describe both scenarios, and reference
this method:

public static String job(int jc)
throws SQLException {

if (jc==1) return “Admin”;
 else if (jc==2) return “Sales”;

else if (jc==3) return “Clerk”;
else return “unknown jobcode”;
}

Handling nulls when creating the function

If null values are expected, you can include the returns null on null input
clause when you create the function. For example:

create function job_of(jc integer)
returns varchar(20)

returns null on null input
language java parameter style java
external name 'SQLJExamples.job(int)'

You can then call job_of in this way:

select name, job_of(jobcode)
from sales_emps

where job_of(jobcode) <> “Admin”

When the SQL system evaluates the call job_of(jobcode) for a row of
sales_emps in which the jobcode column is null, the value of the call is set
to null without actually calling the Java method SQLJExamples.job. For
rows with non-null values of the jobcode column, the call is performed
normally.

SQLJ user-defined functions

86

Thus, when a SQLJ function created using the returns null on null input
clause encounters a null argument, the result of the function call is set to
null and the function is not invoked.

Note If you include the returns null on null input clause when creating a
SQLJ function, the returns null on null input clause applies to all function
parameters, including nullable parameters.

If you include the called on null input clause (the default), null arguments
for non-nullable parameters generates an exception.

Handling nulls in the function call

You can use a conditional function call to handle null values for non-
nullable parameters. The following example uses a case expression:

select name,
case when jobcode is not null

then job_of(jobcode)
else null end

from sales_emps where
case when jobcode is not null

then job_of(jobcode)
else null end <> “Admin”

In this example, we assume that the function job_of was created using the
default clause called on null input.

Deleting a SQLJ function name
You can delete the SQLJ function name for a Java method using the drop
function command. For example, enter:

drop function region_of

which deletes the region_of function name and its reference to the
SQLJExamples.region method. drop function does not affect the referenced
Java method or class.

See the Reference Manual for complete syntax and usage information.

CHAPTER 5 SQLJ Functions and Stored Procedures

87

SQLJ stored procedures
Using Java-SQL capabilities, you can install Java classes in the database
and then invoke those methods from a client or from within the SQL
system. You can also invoke Java static (class) methods in another way—
as SQLJ stored procedures.

SQLJ stored procedures:

• Can return result sets and/or output parameters to the client

• Behave exactly as Transact-SQL stored procedures when executed

• Can be called from the client using ODBC, isql, or JDBC

• Can be called within the server from other stored procedures or native
Adaptive Server JDBC

The end user need not know whether the procedure being called is a SQLJ
stored procedure or a Transact-SQL stored procedure. They are both
invoked in the same way.

The SQLJ syntax for create procedure is:

create procedure [owner.]sql_procedure_name
([[in | out | inout] sql_parameter_name

sql_datatype [(length) |
(precision[, scale])]

[, [in | out | inout] sql_parameter_name
sql_datatype [(length) |
(precision[, scale])]]

...])
[modifies sql data]
[dynamic result sets integer]
[deterministic | not deterministic]
language java
parameter style java
external name ’java_method_name

[([java_datatype[, java_datatype
...]])]’

Note To comply with the ANSI standard, the SQLJ create procedure
command syntax is different from syntax used to create Sybase Transact-
SQL stored procedures.

Refer to the Reference Manual for a detailed description of each keyword
and option in this command.

SQLJ stored procedures

88

When creating SQLJ stored procedures:

• The SQL procedure signature is the SQL datatype sql_datatype of
each procedure parameter.

• When creating a SQLJ stored procedure, do not include an @ sign
before parameter names. This practise is compliant with the ANSI
standard.

Sybase adds an @ sign internally to support parameter name binding.
You will see the @ sign when using sp_help to print out information
about the SQLJ stored procedure.

• When creating a SQLJ stored procedure, you must include the
parentheses that surround the sql_parameter_name and sql_datatype
information—even if you do not include that information.

For example:

create procedure sqlj_sproc ()
language java
parameter style java

external name ‘SQLJExamples.method1’

• You can include the keywords modifies sql data to indicate that the
method invokes SQL operations and reads and modifies SQL data.
This is the default value.

• You must include the dynamic result sets integer option when result
sets are to be returned to the calling environment. Use the integer
variable to specify the maximum number of result sets expected.

• You can include the keywords deterministic or not deterministic for
compatibility with the SQLJ standard. However, Adaptive Server
does not make use of this option.

• You must include the language java parameter and style java
keywords, which tell Adaptive Server that the external routine is
written in Java and the runtime conventions for arguments passed to
the external routine are Java conventions.

• The external name clause indicates that the external routine is written
in Java and identifies the Java method, class, and package name (if
any).

• The Java method signature specifies the Java datatype java_datatype
of each method parameter. The Java method signature is optional. If
one is not specified, Adaptive Server infers one from the SQL
procedure signature.

CHAPTER 5 SQLJ Functions and Stored Procedures

89

Sybase recommends that you include the method signature as this
practice handles all datatype translations. See “Mapping Java and
SQL datatypes” on page 98 for more information.

• You can define different SQL names for the same Java method using
create procedure and then use them in the same way.

Modifying SQL data
You can use a SQLJ stored procedure to modify information in the
database. The method referenced by the SQLJ procedure must be either:

• A method of type void, or

• A method with an int return type (incorporation of the int return type
is a Sybase extension of the SQLJ standard).

Writing the Java method The method SQLJExamples.correctStates() performs a SQL update
statement to correct the spelling of state codes. Input parameters specify
the old and new spellings. correctStates() is a void method; no value is
returned to the caller.

public static void correctStates(String oldSpelling,
String newSpelling) throws SQLException {

Connection conn = null;
PreparedStatement pstmt = null;
try {

Class.forName(”sybase.asejdbc.ASEDriver”);
conn = DriverManager.getConnection

(“jdbc:default:connection”);
}
catch (Exception e) {

System.err.println(e.getMessage() +
“:error in connection”);

}
try {

pstmt = conn.prepareStatement
(“UPDATE sales_emps SET state = ?
WHERE state = ?”);

pstmt.set.String(1, newSpelling);
pstmt.set.String(2, oldSpelling);
pstmt.executeUpdate();

}
catch (SQLException e) {

System.err.println(“SQLException: “ +

SQLJ stored procedures

90

e.getErrorCode() + e.getMessage());
}
return;

}

Creating the stored
procedure

Before you can call a Java method with a SQL name, you must create the
SQL name for it using the SQLJ create procedure command. The modifies
sql data clause is optional.

create procedure correct_states(old char(20),
not_old char(20))

modifies sql data
language java parameter style java
external name

’SQLJExamples.correctStates
(java.lang.String, java.lang.String)’

The correct_states procedure has a SQL procedure signature of char(20),
char(20). The Java method signature is java.lang.String, java.lang.String.

Calling the stored
procedure

You can execute the SQLJ procedure exactly as you would a Transact-
SQL procedure. In this example, the procedure executes from isql:

execute correct_states ’GEO’, ’GA’

Using input and output parameters
Java methods do not support output parameters. When you wrap a Java
method in SQL, however, you can take advantage of Sybase SQLJ
capabilities that allow input, output, and input/output parameters for SQLJ
stored procedures.

When you create a SQLJ procedure, you identify the mode for each
parameter as in, out, or inout.

• For input parameters, use the in keyword to qualify the parameter. in
is the default; Adaptive Server assumes an input parameter if you do
not enter a parameter mode.

• For output parameters, use the out keyword.

CHAPTER 5 SQLJ Functions and Stored Procedures

91

• For parameters that can pass values both to and from the referenced
Java method, use the inout keyword.

Note You create Transact-SQL stored procedures using only the in and out
keywords. The out keyword corresponds to the SQLJ inout keyword. See
the create procedure reference pages in the Adaptive Server Reference
Manual for more information.

To create a SQLJ stored procedure that defines output parameters, you
must:

• Define the output parameter(s) using either the out or inout option
when you create the SQLJ stored procedure.

• Declare those parameters as Java arrays in the Java method. SQLJ
uses arrays as containers for the method’s output parameter values.

For example, if you want an Integer parameter to return a value to the
caller, you must specify the parameter type as Integer[] (an array of
Integer) in the method.

The array object for an out or inout parameter is created implicitly by
the system. It has a single element. The input value (if any) is placed
in the first (and only) element of the array before the Java method is
called. When the Java method returns, the first element is removed
and assigned to the output variable. Typically, this element will be
assigned a new value by the called method.

The following examples illustrate the use of output parameters using a
Java method bestTwoEmps() and a stored procedure best2 that references
that method.

Writing the Java method The SQLJExamples.bestTwoEmps() method returns the name, ID, region,
and sales of the two employees with the highest sales performance records.
The first eight parameters are output parameters requiring a containing
array. The ninth parameter is an input parameter and does not require an
array.

public static void bestTwoEmps(String[] n1,
String[] id1, int[] r1,
BigDecimal[] s1, String[] n2,
String[] id2, int[] r2, BigDecimal[] s2,
int regionParm) throws SQLException {

n1[0] = “****”;
id1[0] = ““;

SQLJ stored procedures

92

r1[0] = 0;
s1[0] = new BigDecimal(0):
n2[0] = “****”;
id2[0] = ““;
r2[0] = 0;
s2[0] = new BigDecimal(0);

try {
Connection conn = DriverManager.getConnection

(“jdbc:default:connection”);
java.sql.PreparedStatement stmt =

conn.prepareStatement(“SELECT name, id,”
+ “region_of(state) as region, sales FROM”
+ “sales_emps WHERE”
+ “region_of(state)>? AND”
+ “sales IS NOT NULL ORDER BY sales DESC”);

stmt.setInteger(1, regionParm);
ResultSet r = stmt.executeQuery();

if(r.next()) {
n1[0] = r.getString(“name”);
id1[0] = r.getString(“id”);
r1[0] = r.getInt(“region”);
s1[0] = r.getBigDecimal(“sales”);

}
else return;

if(r.next()) {
n2[0] = r.getString(“name”);
id2[0] = r.getString(“id”);
r2[0] = r.getInt(“region”);
s2[0] = r.getBigDecimal(“sales”);

}
else return;

}
catch (SQLException e) {

System.err.println(“SQLException: “ +
e.getErrorCode() + e.getMessage());

}
}

Creating the SQLJ
procedure

Create a SQL name for the bestTwoEmps method. The first eight
parameters are output parameters; the ninth is an input parameter.

create procedure best2

CHAPTER 5 SQLJ Functions and Stored Procedures

93

(out n1 varchar(50), out id1 varchar(5),
out s1 decimal(6,2), out r1 integer,
out n2 varchar(50), out id2 varchar(50),
out r2 integer, out s2 decimal(6,2),
in region integer)
language java
parameter style java
external name

’SQLJExamples.bestTwoEmps (java.lang.String,
java.lang.String, int, java.math.BigDecimal,
java.lang.String, java.lang.String, int,
java.math.BigDecimal, int)’

The SQL procedure signature for best2 is: varchar(20), varchar(5), decimal
(6,2) and so on. The Java method signature is String, String, int, BigDecimal
and so on.

Calling the procedure After the method is installed in the database and the SQLJ procedure
referencing the method has been created, you can call the SQLJ procedure.

At runtime, the SQL system:

1 Creates the needed arrays for the out and inout parameters when the
SQLJ procedure is called.

2 Copies the contents of the parameter arrays into the out and inout
target variables when returning from the SQLJ procedure.

The following example calls the best2 procedure from isql. The value for
the region input parameter specifies the region number.

declare @n1 varchar(50), @id1 varchar(5),
@s1 decimal (6,2), @r1 integer, @n2 varchar(50),
@id2 varchar(50), @r2 integer, @s2 decimal(6,2),
@region integer

select @region = 3
execute best2 @n1 out, @id1 out, @s1 out, @r1 out,

@n2 out, @id2 out, @r2 out, @s2 out, @region

Note Adaptive Server calls SQLJ stored procedures exactly as it calls
Transact-SQL stored procedures. Thus, when using isql or any other non-
Java client, you must precede parameter names by the @ sign.

SQLJ stored procedures

94

Returning result sets
A SQL result set is a sequence of SQL rows that is delivered to the calling
environment.

When a Transact-SQL stored procedure returns one or more results sets,
those result sets are implicit output from the procedure call. That is, they
are not declared as explicit parameters or return values.

Java methods can return Java result set objects, but they do so as explicitly
declared method values.

To return a SQL-style result set from a Java method, you must first wrap
the Java method in a SQLJ stored procedure. When you call the method as
a SQLJ stored procedure, the result sets, which are returned by the Java
method as Java result set objects, are transformed by the server to SQL
result sets.

When writing the Java method to be invoked as a SQLJ procedure that
returns a SQL-style result set, you must specify an additional parameter to
the method for each result set that the method can return. Each such
parameter is a single-element array of the Java ResultSet class.

This section describes the basic process of writing a method, creating the
SQLJ stored procedure, and calling the method. See “Specifying Java
method signatures explicitly or implicitly” on page 99 for more
information about returning result sets.

Writing the Java method The following method, SQLJExamples.orderedEmps, invokes SQL,
includes a ResultSet parameter, and uses JDBC calls for securing a
connection and opening a statement.

public static void orderedEmps
(int regionParm, ResultSet[] rs) throws
SQLException {

Connection conn = null;
PreparedStatement pstmt = null;

try {
Class.forName

(“sybase.asejdbc.ASEDriver”);
Connection conn =

DriverManager.getConnection
(“jdbc:default:connection”);

}
catch (Exception e) {

CHAPTER 5 SQLJ Functions and Stored Procedures

95

System.err.println(e.getMessage()
+ “:error in connection”);

}

try {
java.sql.PreparedStatement

stmt = conn.prepareStatement
(“SELECT name, region_of(state)”
“as region, sales FROM sales_emps”
“WHERE region_of(state) > ? AND”
“sales IS NOT NULL”
“ORDER BY sales DESC”);

stmt.setInt(1, regionParm);
rs[0] = stmt.executeQuery();
return;

}
catch (SQLException e) {

System.err.println(“SQLException:”
+ e.getErrorCode() + e.getMessage());

}
return;

}

orderedEmps returns a single result set. You can also write methods that
return multiple result sets. For each result set returned, you must:

• Include a separate ResultSet array parameter in the method signature.

• Create a Statement object for each result set.

• Assign each result set to the first element of its ResultSet array.

Adaptive Server always returns the current open ResultSet object for each
Statement object. When creating Java methods that return result sets:

• Create a Statement object for each result set that is to be returned to
the client.

SQLJ stored procedures

96

• Do not explicitly close ResultSet and Statement objects. Adaptive
Server closes them automatically.

Note Adaptive Server ensures that ResultSet and Statement objects
are not closed by garbage collection unless and until the affected
result sets have been processed and returned to the client.

• If some rows of the result set are fetched by calls of the Java next()
method, only the remaining rows of the result set are returned to the
client.

Creating the SQLJ stored
procedure

When you create a SQLJ stored procedure that returns result sets, you
must specify the maximum number of result sets that can be returned. In
this example, the ranked_emps procedure returns a single result set.

create procedure ranked_emps(region integer)
dynamic result sets 1
language java parameter style java
external name ’SQLJExamples.orderedEmps(int,

ResultSet[]’

If ranked_emps generates more result sets than are specified by create
procedure, a warning displays and the procedure returns only the number
of result sets specified. As written, the ranked_emps SQLJ stored
procedures matches only one Java method.

Note Some restrictions apply to method overloading when you infer a
method signature involving result sets. See “Mapping Java and SQL
datatypes” on page 98 for more information.

Calling the procedure After you have installed the method’s class in the database and created the
SQLJ stored procedure that references the method, you can call the
procedure. You can write the call using any mechanism that processes
SQL result sets.

For example, to call the ranked_emps procedure using JDBC, enter the
following:

java.sql.CallableStatement stmt =
conn.prepareCall(“{call ranked_emps(?)}”);

stmt.setInt(1,3);
ResultSet rs = stmt.executeQuery();
while (rs.next()) {

String name = rs.getString(1);
int.region = rs.getInt(2);

CHAPTER 5 SQLJ Functions and Stored Procedures

97

BigDecimal sales = rs.get.BigDecimal(3);
System.out.print(“Name = “ + name);
System.out.print(“Region = “ + region);
System.out.print(“Sales = “ + sales);
System.out.printIn():

}

The ranked_emps procedure supplies only the parameter declared in the
create procedure statement. The SQL system supplies an empty array of
ResultSet parameters and calls the Java method, which assigns the output
result set to the array parameter. When the Java method completes, the
SQL system returns the result set in the output array element as a SQL
result set.

Note You can return result sets from a temporary table only when using
an external JDBC driver such as jConnect. You cannot use the Adaptive
Server native JDBC driver for this task.

Deleting a SQLJ stored procedure name

You can delete the SQLJ stored procedure name for a Java method using
the drop procedure command. For example, enter:

drop procedure correct_states

which deletes the correct_states procedure name and its reference to the
SQLJExamples.correctStates method. drop procedure does not affect the
Java class and method referenced by the procedure.

Viewing information about SQLJ functions and
procedures

Several system stored procedures can provide information about SQLJ
routines:

• sp_depends lists database objects referenced by the SQLJ routine and
database objects that reference the SQLJ routine.

• sp_help lists each parameter name, type, length, precision, scale,
parameter order, parameter mode and return type of the SQLJ routine.

Advanced topics

98

• sp_helpjava lists information about Java classes and JARs installed in
the database. The depends parameter lists dependencies of specified
classes that are named in the external name clause of the SQLJ create
function or SQLJ create procedure statement.

• sp_helprotect reports the permissions of SQLJ stored procedures and
SQLJ functions.

See the Adaptive Server Reference Manual for complete syntax and usage
information for these system procedures.

Advanced topics
The following topics present a detailed description of SQLJ topics for
advanced users.

Mapping Java and SQL datatypes
When you create a stored procedure or function that references a Java
method, the datatypes of input and output parameters or result sets must
not conflict when values are converted from the SQL environment to the
Java environment and back again. The rules for how this mapping takes
place are consistent with the JDBC standard implementation. They are
shown below and in Table 5-1 on page 99.

Each SQL parameter and its corresponding Java parameter must be
mappable. SQL and Java datatypes are mappable in these ways:

• A SQL datatype and a primitive Java datatype are simply mappable if
so specified in Table 5-1.

• A SQL datatype and a non-primitive Java datatype are object
mappable if so specified in Table 5-1.

• A SQL abstract datatype (ADT) and a non-primitive Java datatype are
ADT mappable if both are the same class or interface.

• A SQL datatype and a Java datatype are output mappable if the Java
datatype is an array and the SQL datatype is simply mappable, object
mappable, or ADT mappable to the Java datatype. For example,
character and String[] are output mappable.

CHAPTER 5 SQLJ Functions and Stored Procedures

99

• A Java datatype is result-set mappable if it is an array of the result set-
oriented class: java.sql.ResultSet.

In general, a Java method is mappable to SQL if each of its parameters is
mappable to SQL and its result set parameters are result-set mappable and
the return type is either mappable (functions) or void or int (procedures).

Support for int return types for SQLJ stored procedures is a Sybase
extension of the SQLJ Part 1 standard.

Table 5-1: Simply and object mappable SQL and Java datatypes

Specifying Java method
signatures explicitly or
implicitly

When you create a SQLJ function or stored procedure, you typically
specify a Java method signature. You can also allow Adaptive Server to
infer the Java method signature from the routine’s SQL signature
according to standard JDBC datatype correspondence rules described
earlier in this section and in Table 5-1.

Sybase recommends that you include the Java method signature as this
practise ensures that all datatype translations are handled as specified.

SQL datatype Corresponding Java datatypes

Simply mappable Object mappable

char/unichar java.lang.String

nchar java.lang.String

varchar/univarchar java.lang.String

nvarchar java.lang.String

text java.lang.String

numeric java.math.BigDecimal

decimal java.math.BigDecimal

money java.math.BigDecimal

smallmoney java.math.BigDecimal

bit boolean Boolean

tinyint byte Integer

smallint short Integer

integer int Integer

real float Float

float double Double

double precision double Double

binary byte[]

varbinary byte[]

datetime java.sql.Timestamp

smalldatetime java.sql.Timestamp

Advanced topics

100

You can allow Adaptive Server to infer the method signature for datatypes
that are:

• Simply mappable

• ADT mappable

• Output mappable

• Result-set mappable

For example, if you want Adaptive Server to infer the method signature for
correct_states, the create procedure statement is:

create procedure correct_states(old char(20),
not_old char(20))

modifies sql data
language java parameter style java
external name ‘SQLJExamples.correctStates’

Adaptive Server infers a Java method signature of java.lang.String and
java.lang.String. If you explicitly add the Java method signature, the create
procedure statement looks like this:

create procedure correct_states(old char(20),
not_old char(20))

modifies sql data
language java parameter style java
external name ‘SQLJExamples.correctStates

(java.lang.String, java.lang.String)’

You must explicitly specify the Java method signature for datatypes that
are object mappable. Otherwise, Adaptive Server infers the primitive,
simply mappable datatype.

For example, the SQLJExamples.job method contains a parameter of type
int. (See “Handling null argument values” on page 84.) When creating a
function referencing that method, Adaptive Server infers a Java signature
of int, and you need not specify it.

However, suppose the parameter of SQLJExamples.job was Java Integer,
which is the object-mappable type. For example:

public class SQLJExamples {
public static String job(Integer jc)

throws SQLException ...

Then, you must specify the Java method signature when you create a
function that references it:

create function job_of(jc integer)

CHAPTER 5 SQLJ Functions and Stored Procedures

101

...
external name

’SQLJExamples.job(java.lang.Integer)’

Returning result sets and
method overloading

When you create a SQLJ stored procedure that returns result sets, you
specify the maximum number of result sets that can be returned.

If you specify a Java method signature, Adaptive Server looks for the
single method that matches the method name and signature. For example:

create procedure ranked_emps(region integer)
dynamic result sets 1
language java parameter style java
external name ’SQLJExamples.orderedEmps

(int, java.sql.ResultSet[])’

In this case, Adaptive Server resolves parameter types using normal Java
overloading conventions.

Suppose, however, that you do not specify the Java method signature:

create procedure ranked_emps(region integer)
dynamic result sets 1
language java parameter style java
external name ’SQLJExamples.orderedEmps’

If two methods exist, one with a signature of int, RS[], the other with a
signature of int, RS[], RS[], Application Server cannot distinguish between
the two methods and the procedure fails. If you allow Adaptive Server to
infer the Java method signature when returning result sets, make sure that
only one method satisfies the inferred conditions.

Note The number of dynamic result sets specified only affects the
maximum number of results that can be returned. It does not affect method
overloading.

Ensuring signature validity If an installed class has been modified, Adaptive Server checks to make
sure that the method signature is valid when you invoke a SQLJ procedure
or function that references that class. If the signature of a modified method
is still valid, the execution of the SQLJ routine succeeds.

SQLJ and Sybase implementation: a comparison

102

Using the command main method
In a Java client, you typically begin Java applications by running the Java
Virtual Machine (VM) on the command main method of a class. The
JDBCExamples class, for example, contains a main method. When you
execute the class from the command line as in the following:

java JDBCExamples

it is the command main method that executes.

Note You cannot reference a Java main method in a SQLJ create function
statement.

If you reference a Java main method in a SQLJ create procedure statement,
the command main method must have the Java method signature
String[] as in:

public static void main(java.lang.String[]) {
...
}

If the Java method signature is specified in the create procedure statement,
it must be specified as (java.lang.String[]). If the Java method
signature is not specified, it is assumed to be (java.lang.String[]).

If the SQL procedure signature contains parameters, those parameters
must be char, unichar, varchar, or univarchar. At runtime, they are passed
as a Java array of java.lang.String.

Each argument you provide to the SQLJ procedure must be char, unichar,
varchar, univarchar, or a literal string because it is passed to the main
method as an element of the java.lang.String array. You cannot use the
dynamic result sets clause when creating a main procedure.

SQLJ and Sybase implementation: a comparison
This section describes differences between SQLJ Part 1 standard
specifications and the Sybase proprietary implementation for SQLJ stored
procedures and functions.

Table 5-2 describes Adaptive Server enhancements to the SQLJ
implementation.

CHAPTER 5 SQLJ Functions and Stored Procedures

103

Table 5-2: Sybase enhancements

Table 5-3 describes SQLJ standard features not included in the Sybase
implementation.

Table 5-3: SQLJ features not supported

Table 5-4 describes the SQLJ standard features supported in part by the
Sybase implementation.

Table 5-4: SQLJ features partially supported

Category SQLJ standard Sybase implementation

create procedure command Supports only Java methods that do
not return values. The methods must
have void return type.

Supports Java methods that allow an
integer value return. The methods
referenced in create procedure can
have either void or integer return
types.

create procedure and create function
commands

Supports only SQL datatypes in
create procedure or create function
parameter list.

Supports SQL datatypes and
nonprimitive Java datatypes as
abstract data types (ADTs).

SQLJ function and SQLJ procedure
invocation

Does not support implicit SQL
conversion to SQLJ datatypes.

Supports implicit SQL conversion to
SQLJ datatypes.

SQLJ functions Does not allow SQLJ functions to
run on remote servers.

Allows SQLJ functions to run on
remote servers using Sybase
OmniConnect capabilities.

drop procedure and drop function
commands

Requires complete command name:
drop procedure or drop function.

Supports complete function name
and abridged names: drop proc and
drop func.

SQLJ category SQLJ standard Sybase implementation

create function command Allows users to specify the same
SQL name for multiple SQLJ
functions.

Requires unique names for all stored
procedure and functions.

utilities Supports sqlj.install_jar,
sqlj.replace_jar, sqlj.remove_jar, and
similar utilities to install, replace,
and remove JAR files.

Supports the installjava utility and
the remove java Transact-SQL
command to perform similar
functions.

SQLJ category SQLJ standard Sybase implementation

create procedure and create function
commands

Allows users to install different
classes with the same name in the
same database if they are in different
JAR files.

Requires unique class names in the
same database.

SQLJ and Sybase implementation: a comparison

104

Table 5-5 describes the SQLJ implementation-defined features in the
Sybase implementation.

Table 5-5: SQLJ features defined by the implementation

create procedure and create function
commands

Supports the key words no sql,
contains sql, reads sql data, and
modifies sql data to specify the SQL
operations the Java method can
perform.

Supports modifies sql data only.

create procedure command Supports java.sql.ResultSet and the
SQL/OLB iterator declaration.

Supports java.sql.ResultSet only.

drop procedure and drop function
commands

Supports the key word restrict, which
requires the user to drop all SQL
objects (tables, views, and routines)
that invoke the procedure or function
before dropping the procedure or
function.

Does not support the restrict key
word and functionality.

SQLJ category SQLJ standard Sybase implementation

SQLJ category SQLJ standard Sybase implementation

create procedure and create function
commands

Supports the deterministic |
not deterministic keywords, which
specify whether or not the procedure
or function always returns the same
values for the out and inout
parameters and the function result.

Supports only the syntax for
deterministic | not deterministic, not
the functionality.

create procedure and create function
commands

The validation of the mapping
between the SQL signature and the
Java method signature can be
performed either when the create
command is executed or when the
procedure or function is invoked.
The implementation defines when
the validation is performed.

If the referenced class has been
changed, performs all validations
when the create command is
executed, which enables faster
execution.

create procedure and create function
commands

Can specify the create procedure or
create function commands within
deployment descriptor files or as
SQL DDL statements. The
implementation defines which way
(or ways) the commands are
supported.

Supports create procedure and
create function as SQL DDL
statements outside of deployment
descriptors.

CHAPTER 5 SQLJ Functions and Stored Procedures

105

SQLJExamples class
This section displays the SQLJExamples class used to illustrate SQLJ
stored procedures and functions. They are also in
$SYBASE/$SYBASE_ASE/sample/JavaSql. (UNIX) or %SYBASE%\Ase-
12_5\sample\JavaSql (Windows NT).

import java.lang.*;
import java.sql.*;
import java.math.*;

static String _url = “jdbc:default:connection”;

public class SQLExamples {

public static int region(String s)
throws SQLException {

s = s.trim();
if (s.equals(“MN”) || s.equals(“VT”) ||

s.equals(“NH”)) return 1;
if (s.equals(“FL”) || s.equals(“GA”) ||

Invoking SQLJ routines When a Java method executes a SQL
statement, any exception conditions
are raised in the Java method as a
Java exception of the
Exception.SQLException subclass.
The effect of the exception condition
is defined by the implementation.

Follows the rules for Adaptive
Server JDBC.

Invoking SQLJ routines The implementation defines whether
a Java method called using a SQL
name executes with the privileges of
the user who created the procedure
or function or those of the invoker of
the procedure or function.

SQLJ procedures and functions
inherit the security features of SQL
stored procedures and Java-SQL
functions, respectively.

drop procedure and drop function
commands

Can specify the drop procedure or
drop function commands within
deployment descriptor files or as
SQL DDL statements. The
implementation defines which way
(or ways) the commands are
supported.

Supports create procedure and
create function as SQL DDL
statements outside of deployment
descriptors.

SQLJ category SQLJ standard Sybase implementation

SQLJExamples class

106

s.equals(“AL”)) return 2;
if (s.equals(“CA”) || s.equals(“AZ”) ||

s.equals(“NV”)) return 3;
else throw new SQLException

(“Invalid state code”, “X2001”);

}
public static void correctStates

(String oldSpelling, String newSpelling)
throws SQLException {

Connection conn = null;
PreparedStatement pstmt = null;
try {

Class.forName
(”sybase.asejdbc.ASEDriver”);

conn = DriverManager.getConnection(_url);
}
catch (Exception e) {

System.err.println(e.getMessage() +
“:error in connection”);

}
try {

pstmt = conn.prepareStatement
(“UPDATE sales_emps SET state = ?
WHERE state = ?”);

pstmt.setString(1, newSpelling);
pstmt.setString(2, oldSpelling);
pstmt.executeUpdate();

}
catch (SQLException e) {

System.err.println(“SQLException: “ +
e.getErrorCode() + e.getMessage());

}

}
public static String job(int jc)

throws SQLException {
if (jc==1) return “Admin”;

 else if (jc==2) return “Sales”;
else if (jc==3) return “Clerk”;
else return “unknown jobcode”;

}
public static String job(int jc)

throws SQLException {
if (jc==1) return “Admin”;

 else if (jc==2) return “Sales”;

CHAPTER 5 SQLJ Functions and Stored Procedures

107

else if (jc==3) return “Clerk”;
else return “unknown jobcode”;
}

public static void bestTwoEmps(String[] n1,
String[] id1, int[] r1,
BigDecimal[] s1, String[] n2,
String[] id2, int[] r2, BigDecimal[] s2,
int regionParm) throws SQLException {

n1[0] = “****”;
id1[0] = ““;
r1[0] = 0;
s1[0] = new BigDecimal(0):
n2[0] = “****”;
id2[0] = ““;
r2[0] = 0;
s2[0] = new BigDecimal(0);

try {
Connection conn = DriverManager.getConnection

(“jdbc:default:connection”);
java.sql.PreparedStatement stmt =

conn.prepareStatement(“SELECT name, id,”
+ “region_of(state) as region, sales FROM”
+ “sales_emps WHERE”
+ “region_of(state)>? AND”
+ “sales IS NOT NULL ORDER BY sales DESC”);

stmt.setInteger(1, regionParm);
ResultSet r = stmt.executeQuery();

if(r.next()) {
n1[0] = r.getString(“name”);
id1[0] = r.getString(“id”);
r1[0] = r.getInt(“region”);
s1[0] = r.getBigDecimal(“sales”);

}
else return;

if(r.next()) {
n2[0] = r.getString(“name”);
id2[0] = r.getString(“id”);
r2[0] = r.getInt(“region”);
s2[0] = r.getBigDecimal(“sales”);

}
else return;

}

SQLJExamples class

108

catch (SQLException e) {
System.err.println(“SQLException: “ +

e.getErrorCode() + e.getMessage());
}

}

public static void orderedEmps
(int regionParm, ResultSet[] rs) throws
SQLException {

Connection conn = null;
PreparedStatement pstmt = null;

try {
Class.forName

(“sybase.asejdbc.ASEDriver”);
Connection conn =

DriverManager.getConnection
(“jdbc:default:connection”);

}
catch (Exception e) {

System.err.println(e.getMessage()
+ “:error in connection”);

}

try {
java.sql.PreparedStatement

stmt = conn.prepareStatement
(“SELECT name, region_of(state)”
“as region, sales FROM sales_emps”
“WHERE region_of(state) > ? AND”
“sales IS NOT NULL”
“ORDER BY sales DESC”);

stmt.setInt(1, regionParm);
rs[0] = stmt.executeQuery();
return;

}
catch (SQLException e) {

System.err.println(“SQLException:”
+ e.getErrorCode() + e.getMessage());

}
return;

} return;
}

}

109

C H A P T E R 6 Introduction to XML in the
Database

This chapter provides an overview of the eXtensible Markup Language
(XML), and methods for storing XML documents in Adaptive Server and
generating them from SQL data.

Other XML topics are described in these chapters:

• Chapter 7, “Selecting Data with XQL,” describes how to select raw
data from Adaptive Server using the XQL language and displaying it
as an XML document.

• Chapter 8, “Specialized XML Processing,” describes the OrderXML
class, which is designed for an example application that uses XML
documents for customer order data, and is written specifically to
process XML documents for order data.

• Chapter 9, “XML for SQL Result Sets,” describes the ResultSetXML
class, which allows you to generate an XML document representing
a SQL result set, and to access and update such an XML document.

Introduction
Like Hypertext Markup Language (HTML), XML is a markup language
and a subset of Standardized General Markup Language (SGML). XML,
however, is more complete and disciplined, and it allows you to define
your own application-oriented markup tags. These properties make XML
particularly suitable for data interchange.

Topic Page
Introduction 109

An overview of XML 111

Introduction

110

You can generate XML-formatted documents from data stored in Adaptive
Server and, conversely, store XML documents and data extracted from them in
Adaptive Server. You can also use Adaptive Server to search XML documents
stored on the Web.

Adaptive Server uses the XML Query Language (XQL) to search XML
documents. XQL is a path-based query language that searches the XML
documents using the XML structure.

Many of the XML tools needed to generate and process XML documents are
written in Java. Java in Adaptive Server provides a good base for XML-SQL
applications using both general and application-specific tools.

The XQL processor is a Java ficility that is included with the Adaptive Server.
It allows you to query and access XML data stored in Adaptive Server, and to
display the result set as XML documents. See Chapter 7, “Selecting Data with
XQL.”

Source code and javadoc
Adaptive Server includes the Java source code for the XMLResultSet and
OrderXML classes. These classes provide an introduction for coding Java
classes to process XML. The Java source code is in:

• $SYBASE/ASE-12_5/sample/JavaSql (UNIX)

• %SYBASE%\Ase-12_5\sample\JavaSql (Windows NT)

These directories also contain javadoc-generated HTML pages containing
specifications for the referenced packages, classes, and methods.

References
This chapter presents an overview of XML. For detailed information, refer to
these Web documents:

• World Wide Web Consortium (W3C), at http://www.w3.org

• W3C, Document Object Model (DOM), at http://www.w3.org/DOM/

• W3C, Extensible Markup Language (XML), at http://www.w3.org/XML/

• W3C, Extensible Stylesheet Language (XSL), at
http://www.w3.org/TR/WD-xsl/

Chapter 6 Introduction to XML in the Database

111

An overview of XML
XML is a markup language and subset of SGML. It was created to provide
functionality that goes beyond that of HTML for Web publishing and
distributed document processing.

XML is less complex than SGML, but more complex and flexible than HTML.
Although XML and HTML can usually be read by the same browsers and
processors, XML has characteristics that make it better able to share
documents:

• XML documents possess a strict phrase structure that makes it easy to find
and access data. For example, opening tags of all elements must have both
an opening tag and a corresponding closing tag, for example, <p> A
paragraph.</p>.

• XML lets you develop and use tags that distinguish different types of data,
for example, customer numbers or item numbers.

• XML lets you create an application-specific document type, which makes
it possible to distinguish one kind of document from another.

• XML documents allow different displays of the XML data. XML
documents, like HTML documents, contain only markup and content; they
do not contain formatting instructions. Formatting instructions are
normally provided on the client using eXtensible Style Language (XSL)
specifications.

You can store XML documents in Adaptive Server as:

• XML in a field of a Java object

• XML in a text or image column

• XML in a char or varchar column

• Parsed XML in an image column

A sample XML document
The sample Order document is designed for a purchase order application.
Customers submit orders, which are identified by a date and a customer ID.
Each order item has an item ID, an item name, a quantity, and a unit
designation.

It might display on screen like this:

An overview of XML

112

ORDER

Date: July 4, 1999

Customer ID: 123

Customer Name: Acme Alpha

Items:

The following is one representation of this data in XML:

<?xml version="1.0"?>
<Order>

 <Date>1999/07/04</Date>
 <CustomerId>123</CustomerId>
 <CustomerName>Acme Alpha</CustomerName>
 <Item>
 <ItemId> 987</ItemId>
 <ItemName>Coupler</ItemName>
 <Quantity>5</Quantity>
 </Item>
<Item>
 <ItemId>654</ItemId>
 <ItemName>Connector</ItemName>
 <Quantity unit="12">3</Quantity>
 </Item>
<Item>
 <ItemId>579</ItemId>
 <ItemName>Clasp</ItemName>
 <Quantity>1</Quantity>
 </Item>
</Order>

The XML document has two unique characteristics:

• The XML document does not indicate type, style, or color for specifying
item display.

• The markup tags are strictly nested. Each opening tag (<tag>) has a
corresponding closing (</tag>).

The XML document for the order data consists of:

Item ID Item Name Quantity

987 Coupler 5

654 Connector 3 dozen

579 Clasp 1

Chapter 6 Introduction to XML in the Database

113

• The XML declaration, <?xml version=“1.0”?>, identifying “Order” as an
XML document.

XML represents documents as character data. In each document, you
specify the character encoding (character set), either explicitly or
implicitly. To explicitly specify the character set, include it in the XML
declaration. For example:

<?xml version=”1.0” encoding=”ISO-8859-1”>

If you do not include the character set in the XML declaration, the default,
UTF8, is used.

Note When the default character sets of the client and server differ,
Adaptive Server bypasses normal character-set translations so that the
declared character set continues to match the actual character set. See
“Character sets and XML data” on page 118.

• User-created element tags, such as <Order>…</Order>,
<CustomerId>…</CustomerId>, <Item>….</Item>.

• Text data, such as “Acme Alpha,” “Coupler,” and “579.”

• Attributes embedded in element tags, such as <Quantity unit = “12”>. This
embedding allows you to customize elements.

If your document contains these components, and the element tags are strictly
nested, it is called a well-formed XML document. In the example above,
element tags describe the data they contain, and the document contains no
formatting instructions.

Here is another example of an XML document:

<?xml version="1.0"?>
 <Info>
 <OneTag>1999/07/04</OneTag>
 <AnotherTag>123</AnotherTag>
 <LastTag>Acme Alpha</LastTag>
 <Thing>
 <ThingId> 987</ThingId>
 <ThingName>Coupler</ThingName>
 <Amount>5</Amount>
 <Thing/>
 <Thing>
 <ThingId>654</ThingId>
 <ThingName>Connecter</ThingName>
 </Thing>

An overview of XML

114

<Thing>
 <ThingId>579</ThingId>
 <ThingName>Clasp</ThingName>
 <Amount>1</Amount>
 </Thing>
 </Info>

This example, called “Info,” is also a well-formed document and has the same
structure and data as the XML Order document. However, it would not be
recognized by a processor designed for Order documents because Info uses a
different document type definition (DTD). For more information about DTDs,
see “XML document types” on page 116).

HTML display of Order data

Consider a purchase order application. Customers submit orders, which are
identified by a Date and the CustomerID, and which list one or more items,
each of which has an ItemID, ItemName, Quantity, and units.

The data for such an order might be displayed on a screen as follows:

ORDER

Date: July 4, 1999

Customer ID: 123

Customer Name: Acme Alpha

Items:

This data indicates that the customer named “Acme Alpha,” whose Customer
Id is “123”, submitted an order on 1999/07/04 for couplers, connectors, and
clasps.

The HTML text for this display of order data is as follows:

<html>
<body>
<p>ORDER

Item ID Item Name Quantity

987 Coupler 5

654 Connector 3 dozen

579 Clasp 1

Chapter 6 Introduction to XML in the Database

115

<p>Date: July 4, 1999
<p>Customer ID: 123
<p>Customer Name: Acme Alpha
<p>Items:</p>
<table bgcolor=white align=left border=”3”

cellpadding=3>
<tr><td>Item ID </tr>

<td>Item Name </tr>
<td>Quantity
</td></td></tr>

<tr><td>987</td>
<td>Coupler</td>
<td>5</td></tr>

<tr><td>654</td>
<td>Connector</td>
<td>3 dozen</td></tr>

<tr><td>579</td>
<td>Clasp</td>
<td>1</td></tr>

</table>
</body>
</html>

This HTML text has certain limitations:

• It contains both data and formatting specifications.

• The data is the Customer Id, , and the various Customer Name, Item
Names, and Quantities.

• The formatting specifications are the indications for type style
(....), color (bcolor=white), and layout
(<table>....</table>, and also the supplementary field names, such as
“Customer Name”, etc.

• The structure of HTML documents is not well suited for extracting data.

Some elements, such as tables, require strictly bracketed opening and
closing tags, but other elements, such as paragraph tags (“<p>”), have
optional closing tags.

Some elements, such as paragraph tags (“<p>”) are used for many sorts
of data, so it is difficult to distinguish between a “123” that is a Customer
IDand a “123” that is an Item ID, without specialized inference from
surrounding field names.

An overview of XML

116

This merging of data and formatting, and the lack of strict phrase structure,
makes it difficult to adapt HTML documents to different presentation styles,
and makes it difficult to use HTML documents for data interchange and
storage. XML is similar to HTML, but includes restrictions and extensions that
address these drawbacks.

XML document types
A document type definition (DTD) defines the structure of a class of XML
documents, making it possible to distinguish between classes. A DTD is a list
of element and attribute definitions unique to a class. Once you have set up a
DTD, you can reference that DTD in another document, or embed it in the
current XML document.

The DTD for XML Order documents, discussed in “A sample XML
document” looks like this:

<!ELEMENT Order (Date, CustomerId, CustomerName,Item+)>
 <!ELEMENT Date (#PCDATA)>
 <!ELEMENT CustomerId (#PCDATA)>
 <!ELEMENT CustomerName (#PCDATA)>
 <!ELEMENT Item (ItemId, ItemName, Quantity)>
 <!ELEMENT ItemId (#PCDATA)>
 <!ELEMENT ItemName (#PCDATA)>
 <!ELEMENT Quantity (#PCDATA)>
 <!ATTLIST Quantity units CDATA #IMPLIED>

Read line by line, this DTD specifies that:

• An order must consist of a date, a customer ID, a customer name, and one
or more items. The plus sign, “+”, indicates one or more items. Items
signaled by a plus sign are required. A question mark in the same place
indicates an optional element. An asterisk in the element indicates that an
element can occur zero or more times. (For example, if the word“Item*”
in the first line above were starred, there could be no items in the order, or
any number of items.)

• Elements defined by “(#PCDATA)” are character text.

• The “<ATTLIST…>” definition in the last line specifies that quantity
elements have a “units” attribute; “#IMPLIED”, at the end of the last line,
indicates that the “units” attribute is optional.

The character text of XML documents is not constrained. For example, there is
no way to specify that the text of a quantity element should be numeric, and
thus the following display of data would be valid:

Chapter 6 Introduction to XML in the Database

117

<Quantity unit=”Baker’s dozen”>three</Quantity>
<Quantity unit=”six packs”>plenty</Quantity>

Restrictions on the text of elements must be handled by the applications that
process XML data.

An XML’s DTD must follow the <?xml version="1.0"?> instruction. You can
either include the DTD within your XML document, or you can reference an
external DTD.

• To reference a DTD externally, use something similar to:

<?xml version="1.0"?>
 <!DOCTYPE Order SYSTEM "Order.dtd”>
 <Order>
…
 </Order>

• Here’s how an embedded DTD might look:

<?xml version="1.0"?>
 <!DOCTYPE Order [
 <!ELEMENT Order (Date, CustomerId, CustomerName,
 Item+)>
 <!ELEMENT Date (#PCDATA)
 <!ELEMENT CustomerId (#PCDATA)>
 <!ELEMENT CustomerName (#PCDATA)>
 <!ELEMENT Item (ItemId, ItemName, Quantity)>
 <!ELEMENT ItemId (#PCDATA)>
 <!ELEMENT ItemName (#PCDATA)>
 <!ELEMENT Quantity (#PCDATA)>
 <!ATTLIST Quantity units CDATA #IMPLIED>

]>
 <Order>
 <Date>1999/07/04</Date>
 <CustomerId>123</CustomerId>
 <CustomerName>Acme Alpha</CustomerName>

 <Item>
 …
 </Item>
 </Order>

DTDs are not required for XML documents. However, a valid XML
document has a DTD and conforms to that DTD.

An overview of XML

118

XSL: formatting XML information
You can use XSL to format XML documents. XSL specifications (style sheets)
consist of a set of rules that define the transformation of an XML document into
either an HTML document or a different XML document:

• XSL specifications that transform an XML document into HTML can
specify normal HTML formatting details in the output HTML.

• XSL specifications that transform an XML document into another XML
document can map the input XML document to an output XML document
with different element names and phrase structure.

You can create your own style sheets to display particular classes for particular
applications. XSL is normally used with presentation applications rather than
with applications for data interchange or storage.

Character sets and XML data
If the declared character sets of your client and server differ, you must be
careful when declaring the character set of your XML documents.

Every XML document has a character-set value. If that encoding is not
declared in the XML declaration, the default value of UTF8 is assumed. The
XML processor, when parsing the XML data, reads this value and handles the
data accordingly. When the default character set of the client and server differ,
Adaptive Server bypasses normal character-set conversions to ensure that the
declared character set and the actual character set remain the same.

• If you introduce an XML document into the database by providing the
complete text in the values clause of an insert statement, Adaptive Server
translates the entire SQL statement into the server’s character set before
processing the insertion. This is the way Adaptive Server normally
translates character text, and you must make sure that the declared
character set of the XML document matches that of the server.

• If you introduce an XML document into the database using writetext or
Open Client CT-Library or Open Client DB-Library programs, Adaptive
Server recognizes the XML document from the XML declaration and does
not translate the character set to that of the server.

• If you read an XML document from the database, Adaptive Server does
not translate the character set of the data to that of the client, since doing
so might compromise the integrity of the XML document.

Chapter 6 Introduction to XML in the Database

119

XML parsers
You can analyze XML documents and extract their data using SQL character-
string operations, such as substring, charindex, and patindex. However, it is
more efficient to use Java in SQL, and to use tools written in Java, such as
XML parsers.

XML parsers can:

• Check that a document is well-formed and valid.

• Handle character-set issues.

• Generate a Java representation of a document’s parse tree.

• Build or modify a document’s parse tree.

• Generate a document’s text from its parse tree.

Many XML parsers are available with a free license or are in the public
domain. They normally implement two standard interfaces: the Simple API for
XML (SAX) and the Document Object Model (DOM).

• SAX is an interface for parsing. It specifies input sources, character sets,
and routines to handle external references. While parsing, it generates
events so that user routines can process the document incrementally, and
it returns a DOM object that is the parse tree of the document.

• DOM is an interface for the parse tree of an XML document. It provides
facilities for stepping through and assembling a parse tree.

Applications that use the SAX and DOM interfaces are portable across XML
parsers.

An overview of XML

120

121

C H A P T E R 7 Selecting Data with XQL

This chapter describes how you use XQL to select raw data from Adaptive
Server, using the XQL language and display the results as an XML
document.

Note isql displays only the first 50 characters of a result set that is derived
from XML data. However, the examples in this chapter display the entire
result set for purposes of illustration. To see the entire result set for any of
the examples, use com.sybase.xml.xql.XqlDriver to run the query. See
“Other usages of the XQL package” on page 130. You can also use the
JDBC client, which helps you to store the result as a java.lang.String.

Adaptive Server features a query engine written in Java, which you can
either install in the server, or run outside the server. Running it outside the
server is like running any Java program on the command line.

This chapter first addresses running the query engine as a standalone
program, outside Adaptive Server. See“Installing XQL in Adaptive
Server” on page 122 for instructions on running the query engine inside
Adaptive Server.

Accessing the XML parser
Whether you install your query engine as a standalone program or inside
Adaptive Server, you must first access the XML parser. Sybase
recommends the xerces.jar (vs.1.3.1) parser, available at

Topic Page
Accessing the XML parser 121

Setting the CLASSPATH environment variable 122

Installing XQL in Adaptive Server 122

Other usages of the XQL package 130

XQL methods 136

Setting the CLASSPATH environment variable

122

• $SYBASE/ASE-12_5/lib/xerces.jar (UNIX)

• %SYBASE%\5\ASE-12_5\lib/xerces.jar (Windows NT)

You can download the parser from:

Xerces Java Parser at http://xml.apache.org/xerces-j.

You can also use any parser that is compliant with SAX 2.0.

Setting the CLASSPATH environment variable
To create a standalone program outside Adaptive Server, you must set your
CLASSPATH environment variable to include the directories that contain
xerces.jar and xml.zip. For UNIX , enter:

setenv CLASSPATH $SYBASE/ASE-12_5/lib/xerces.jar
$SYBASE/ASE-12_5/lib/xml.zip

For Windows NT, enter:

set CLASSPATH = D:\%SYBASE%\ASE-12_5\lib\xerces.jar
D:\%SYBASE%\ASE-12_5\lib\xml.zip

Installing XQL in Adaptive Server
This section assumes you have already enabled Java in Adaptive Server. For
information, see Chapter 2, “Preparing for and Maintaining Java in the
Database.”

installjava copies a JAR file into Adaptive Server and makes the Java classes in
that JAR file available for use in the current database. The syntax is:

installjava
 -f file_name
 [-new | -update]
 ...

Where:

• file_name is the name of the JAR file you are installing in the server.

• new informs the server this is a new file.

Chapter 7 Selecting Data with XQL

123

• update informs the server you are updating an existing JAR file.

For more information about installjava, see the Utility Guide.

To add support for XML in Adaptive Server, you must install the xml.zip and
xerces.jar files. These files are located in the directories $SYBASE/ASE-
12_5/lib/xml.zip and $SYBASE/ASE-12_5/lib/xerces.jar

For example, to install xml.zip, enter:

installjava -Usa -P -Sserver_name -f $SYBASE/ASE-12_5/lib/xml.zip

To install xerces.jar, enter:

installjava -Usa -P -Sserver_name -f $SYBASE/ASE-12_5/lib/xerces.jar

Note To install xerces.jar in a database, you must increase the size of tempdb
by 10MB.

Converting a raw XML document to a parsed version
Use the parse() method to convert and parse a raw text or image XML
document and store the result. Use the alter table command to convert the raw
XML document. For example:

alter table XMLTEXT add xmldoc IMAGE null
update XMLTEXT
set xmldoc = com.sybase.xml.xql.Xql.query.parse(xmlcol)

This example converts the xmlcol column of the XMLTEXT table to parsed data
and stores it in the xmldoc column.

Inserting XML documents
Use the parse() method to insert an XML document, which takes the XML
document as the argument and returns sybase.aseutils.SybXmlStream.

Installing XQL in Adaptive Server

124

Adaptive Server has an implicit mapping between image or text data and
InputStream. You can pass image or text columns to parse() without doing any
casting. The parse() UDF parses the document and returns
sybase.ase.SybXmlStream, which Adaptive Server uses to write the data to the
image column. Adaptive Server writes this data to image columns only, not to
text columns. The following is an insert statement; where XMLDAT is an image
column:

insert XMLDAT
values (..,
com.sybase.xml.xql.Xql.parse(“<xmldoc></xmldoc>”,..))

Updating XML documents
To update a document, delete the original data and then insert the new data. The
number of updates to a document or portion of a document are infrequent
compared to the number of reads. An update is similar to:

update XMLDAT
set xmldoc =
com.sybase.xml.xql.Xql.parse("<xmldoc></xmldoc>")

Deleting XML documents
Deleting an XML document is similar to deleting any text column. For
example, to delete a table named XMLDAT, enter:

delete XMLDAT

Memory requirements for running the query engine inside Adaptive
Server

Depending on the size of the XML data you want to select and present as an
XQL document, you may need to increase memory. For a typical XML
document of size 2K, Sybase recommends that you set the configuration
parameters in Java Services to the values shown in Table 7-1. For more
information on configuration parameters, see the Sybase Adaptive Server
System Administration Guide.

Chapter 7 Selecting Data with XQL

125

Table 7-1: Java Services memory parameters

Using XQL
XML Query Language (XQL) has been designed as a general-purpose query
language for XML. XQL is a path-based query language for addressing and
filtering the elements and text of XML documents, and is a natural extension
to XSL syntax. XQL provides a concise, understandable notation for pointing
to specific elements and for searching for nodes with particular characteristics.
XQL navigation is through elements in the XML tree.

Note SQL and XQL are independent languages. The examples presented here
apply to XQL only.

The most common XQL operators include:

• Child operator, / – indicates hierarchy. The following example returns
<book> elements that are children of <bookstore> elements from the
xmlcol column of the xmlimage table:

select
com.sybase.xml.xql.Xql.query("/bookstore/book",
xmlcol)
from xmlimage

<xql_result>
<book style=autobiography>

<title>S

• Descendant operator, // – indicates that the query searches through any
number of intervening levels. That is, a search using the descendant
operator finds an occurrence of an element at any level of the XML
structure. The following query finds all the instances of <emph> elements
that occur in an <excerpt> element:

select com.sybase.xml.xql.Xql.query
("/bookstore/book/excerpt//emph",xmlcol)

from xmlimage

Section Reset value

enable java 1

size of process object heap 5000

size of shared class heap 5000

size of global fixed heap 5000

Installing XQL in Adaptive Server

126

<xql_result>
<emph>I</emph>

</xql_result>

• Equals operator, = – specifies the content of an element or the value of an
attribute. The following query finds all examples where “last-name =
Bob”:

select com.sybase.xml.xql.Xql.query
("/bookstore/book/author[last-name=’Bob’]", xmlcol)

from xmlimage

<xql_result>
<author>
<first-name>Joe</first-name>
<last-name>Bob</last-name>
<award>Trenton Literary Review Honorable Mention</award></author>
<author>
<first-name>Mary</first-name>
<last-name>Bob</last-name>
<publication>Selected Short Stories of
<first-name>Mary</first-name>
<last-name>Bob</last-name></publication></author>
<author>
<first-name>Toni</first-name>
<last-name>Bob</last-name>
<degree from=Trenton U>B.A.</degree>
<degree from=Harvard>Ph.D.</degree>
<award>Pulizer</award>
<publication>Still in Trenton</publication>
<publication>Trenton Forever</publication></author>

“</xql_result>

• Filter operator, [] – filters the set of nodes to its left, based on the
conditions inside the brackets. This example finds any occurrences of
authors whose first name is Mary that are listed in a book element:

select com.sybase.xml.xql.Xql.query
("/bookstore/book[author/first-name = ’Mary’]", xmlcol)

from xmlimage
<xql_result>

<book style=textbook>
<title>History of Trenton</title>
<author>
<first-name>Mary</first-name>
<last-name>Bob</last-name>
<publication>Selected Short Stories of

Chapter 7 Selecting Data with XQL

127

<first-name>Mary</first-name>
<last-name>Bob</last-name></publication></author>

<price>55</price></book>

• Subscript operator, [index_ordinal] – finds a specific instance of an
element. This example finds the second book listed in the XML document.
Remember that XQL is zero-based, so it begins numbering at 0:

select com.sybase.xml.xql.Xql.query("/bookstore/book[1]", xmlcol)
from xmlimage
Query returned true and the result is
<xql_result>

<book style=textbook>
<title>History of Trenton</title>
<author>
<first-name>Mary</first-name>
<last-name>Bob</last-name>
<publication>Selected Short Stories of
<first-name>Mary</first-name>
<last-name>Bob</last-name></publication></author>
<price>55</price></book>

</xql_result>

• Boolean expressions – you can use Boolean expressions within filter
operators. For example, this query returns all <author> elements that
contain at least one <degree> and one <award>:

select com.sybase.xml.xql.Xql.query
("/bookstore/book/author[degree and award]", xmlcol)

from xmlimage

<xql_result>
<author>
<first-name>Toni</first-name>
<last-name>Bob</last-name>
<degree from=Trenton U>B.A.</degree>
<degree from=Harvard>Ph.D.</degree>
<award>Pulizer</award>
<publication>Still in Trenton</publication>
<publication>Trenton Forever</publication></author>

</xql_result>

Query structures that affect performance
This section describes examples that use the XML query engine in different
ways.

Installing XQL in Adaptive Server

128

Examples
The placement of the where clause in a query affects processing. For example,
this query selects all the books whose author’s first name is Mary:

select com.sybase.xml.xql.Xql.query
("/bookstore/book[author/first-name ='Mary']”, xmlcol)

from XMLDAT
where

com.sybase.xml.xql.Xql.query(“/bookstore/book
[author/first-name= ‘Mary’]”, xmlcol)!=

convert(com.sybase.xml.xql.Xql, null)>>EmptyResult
<xql_result ><book style="textbook">

<title>History of Trenton</title>
<author>
<first-name>Mary</first-name>
<last-name>Bob</last-name>
<publication>
Selected Short Stories of
<first-name>Mary</first-name>
<last-name>Bob</last-name>
</publication>
</author>
<price>55</price>

</book></xql_result>

query() is invoked twice, once in the where clause and once in the select clause,
which means the query executes twice and may be slow for large documents.

Thus, you can save the result set in an object while executing the query in the
where clause and then restore the result in the select clause.

Or, you can write a class like HoldString, thats concatenates the results obtained
from every invocation of com.sybase.xml.xql.Xql.query(), for each XML
document in each row:

declare @result HoldString
select @result = new HoldString()
select @result>>get()
from XMLDAT
where

@result>>put(com.sybase.xml.xql.Xql.query
(“/bookstore/book[author/first-name= ‘Mary’]”,

xmlcol))!=
convert(com.sybase.xml.xql.Xql,null)>>EmptyResult

Chapter 7 Selecting Data with XQL

129

Sybase advises that you do not store the result set in the where clause. The
query does not always execute the where clause, so trying to retrieve its result
in the select clause may generate an erroneous result set. HoldString is an
example class.

Because Adaptive Server stores each document in a column of a given row,
when the query scans a set of rows in the where clause, more than one row may
satisfy the search criteria. If this occurs, the query returns a separate XML
result document for each qualified row. For example, if you create the
following table:

create table XMLTAB (xmlcol image)
insert XMLTAB values

(com.sybase.xml.xql.Xql.parse(<xml><A><C>c</C></xml>));
insert XMLTAB values

(com.sybase.xml.xql.Xql.parse(<xml><D><E><C>c</C></E></D></xml>));

Then execute this query:

select com.sybase.xml.xql.Xql.query("//C", xmlcol)
from XMLTAB

You would expect to get the following result set:

<xql_result>
<C>c</C>
<C>c</C>
</xql_result>

Instead, the result set returns the same row twice, once from the select clause
and once from the where clause:

<xql_result>
<C>c</C>
</xql_result>

<xql_result>
<C>c</C>
</xql_result>

Other usages of the XQL package

130

Other usages of the XQL package

Note Sybase does not support these usages of the XQL package. These usages
require JDK 1.2 or higher.

You can query XML documents from the command line, using the standalone
application com.sybase.xml.xql.XqlDriver.

You can use Java package methods provided in com.sybase.xml.xql.Xql to query
XML documents in Java applications. You can also use these Java package
methods to query XML documents in Adaptive Server 12.5, using the Java VM
feature.

com.sybase.xml.xql.XqlDriver can parse and query only XML documents stored
as files on your local system. You cannot use com.sybase.xml.xql.XqlDriver to
parse or query XML documents stored in a database or over the network.

com.sybase.xml.xql.XqlDriver can be useful for developing XQL scripts and
learning XQL. However, Sybase recommends that you use
com.sybase.xml.xql.XqlDriver only as a standalone program, and not as part of
another Java application, because com.sybase.xml.xql.XqlDriver includes a
main() method. A Java program can only include one main() method, and if you
include com.sybase.xml.xql.XqlDriver in another Java program that includes
main(), the application attempts to implement both main() methods, which
causes an error in Java.

Sybase recommends that applications use the com.sybase.xml.xql.Xql class to
interface with the XML query engine. The methods of this class are specified
in the section “Methods in com.sybase.xml.xql.Xql” on page 136.

com.sybase.xml.xql.XqlDriver syntax
The syntax for com.sybase.xml.xql.XqlDriver is:

java com.sybase.xml.xql.XqlDriver
-qstring XQL_query
-validate true | false
-infile string
-outfile string
-help
-saxparser string

Where:

Chapter 7 Selecting Data with XQL

131

• qstring specifies the XQL query you are running.

• validate checks the validity of the XML documents.

• infile is the XML document you are querying.

• outfile is the operating system file where you are storing the parsed XML
document.

• help displays the com.sybase.xml.xql.XqlDriver syntax.

• saxparser specifies the name of a CLASSPATH parser that is compliant
with SAX 2.0.

For information about XQL, see “Using XQL” on page 125.

Sample queries

This query selects all the book titles from bookstore.xml:

java com.sybase.xml.xql.XqlDriver -qstring "/bookstore/book/title"
-infile bookstore.xml

Query returned true and the result is

<xql_result>
<title>Seven Years in Trenton</title>
<title>History of Trenton</title>
<title>Trenton Today, Trenton Tomorrow</title>
</xql_result>

This example lists all the author’s first names from bookstore.xml. XQL uses a
zero-based numbering system; that is, “0” specifies the first occurrence of an
element in a file.

java com.sybase.xml.xql.XqlDriver
-qstring "/bookstore/book/author/first-name[0]"
-infile bookstore.xml

Query returned true and the result is

<xql_result>
<first-name>Joe</first-name>
<first-name>Mary</first-name>
<first-name>Toni</first-name>

</xql_result>

The following example lists all the authors in bookstore.xml whose last name
is “Bob”:

Other usages of the XQL package

132

java com.sybase.xml.xql.XqlDriver
-qstring "/bookstore/book/author[last-name=’Bob’]"
-infile bookstore.xml

Query returned true and the result is

<xql_result>
<author>
<first-name>Joe</first-name>
<last-name>Bob</last-name>
<award>Trenton Literary Review Honorable Mention</award></author>
<author>
<first-name>Mary</first-name>
<last-name>Bob</last-name>
<publication>Selected Short Stories of
<first-name>Mary</first-name>
<last-name>Bob</last-name></publication></author>
<author>
<first-name>Toni</first-name>
<last-name>Bob</last-name>
<degree from=Trenton U>B.A.</degree>
<degree from=Harvard>Ph.D.</degree>
<award>Pulizer</award>
<publication>Still in Trenton</publication>
<publication>Trenton Forever</publication></author>

</xql_result>

Validating your document
The valid option invokes a parser that makes sure the XML document you are
querying conforms to its DTD. Your standalone XML document must have a
valid DTD before you run the validate option.

For example, this command makes sure the bookstore.xml document conforms
to its DTD:

java com.sybase.xml.xql.XqlDriver -qstring "/bookstore" -validate
-infile bookstore.xml

Chapter 7 Selecting Data with XQL

133

Using XQL to develop standalone applications
You can use XQL to develop standalone applications, JDBC clients,
JavaBeans, and EJBs to process XML data. The query() and parse() methods in
com.sybase.xml.xql.Xql enable you to query and parse XML documents.
Because you can write standalone applications, you do not have to depend on
Adaptive Server to supply the result set. Instead, you can query XML
documents stored as operating system files or stored out on the Web.

Example standalone application
The following example uses the FileInputStream() query to read bookstore.xml,
and the URL() method to read a Web page named bookstore.xml which contains
information about all the books in the bookstore:

String result;
FileInputStream XmlFile = new FileInputStream("bookstore.xml");
if ((result =

Xql.query("/bookstore/book/author/first-name", XmlFile))
!= Xql.EmptyResult)

{
System.out.println(result);

}else{
System.out.println("Query returned false\n");

}

URL _url = new URL("http://mybookstore/bookstore.xml");
if ((result =

Xql.query("/bookstore/book/author/first-name",url.openStream()))
!= Xql.EmptyResult)

{
System.out.println(result);

}else{
System.out.println("Query returned false\n");

}

Example JDBC client

The following code fragment uses the Xql.query method to query the xmlcol
column in the XMLTEXT file:

String selectQuery = “select xmlcol from XMLTEXT”;
Statement stmt = _con.createStatement();
ResultSet rs = (SybResultSet)stmt.executeQuery(selectQuery);

Other usages of the XQL package

134

String result;

InputStream is = null;
while ((rs != null) && (rs.next()))
{

is = rs.getAsciiStream(1);
result = Xql.query(“/bookstore/book/author”, is);

}

the following example assumes that the parsed XML data is stored in an image
column of the XMLDOC table. Although this application fetches an image
column as a binary stream, it does not parse this during the query because it
identifies the content of this binary stream as a parsed XML document. Instead,
the application creates a SybXmlStream instance from it and then executes the
query. All this is done using the Xql.query() method, and does not require any
input from the user.

String selectQuery = “select xmlcol from XMLDOC”;
Statement stmt = _con.createStatement();
ResultSet rs = (SybResultSet)stmt.executeQuery(selectQuery);
InputStream is = null;
String result
while ((rs != null) && (rs.next()))
{

is = rs.getBinaryStream(1);
result = Xql.query(“/bookstore/book/author/first-name”, is));

}

Example EJB example

You can write EJB code fragments that serve as query engines on an EJB
server.

The code fragment below includes an EJB called XmlBean. XmlBean includes
the query() method, which allows you to query any XML document on the Web.
In this component, query() first creats an XmlDoc object, then queries the
document.

The remote interface looks like:

public interface XmlBean extends javax.ejb.EJBObject
{

/**
* XQL Method

Chapter 7 Selecting Data with XQL

135

*/
public String XQL(String query, URL location) throws

java.rmi.RemoteException
;
}

The Bean implementation looks like:

public class XmlBean extends java.lang.Object implements
javax.ejb.SessionBean
{

....
/***
* XQL Method
*/

public String XQL(String query, java.net.URL location) throws
java.rmi.RemoteException

{
try {

String result;

if((result =
Xql.query(query, location.openStream())) !=
Xql.EmptyResult)

{
return (result);

}else{
return (null);

}
}catch(Exception e){

throw new java.rmi.RemoteException(e.getMessage()));
}

}
....
}

And the client code looks like:

....
Context ctx = getInitialContext();
// make the instance of the class in Jaguar
XmlBeanHome -beanHome =
(XmlBeanHome)ctx.lookup(“XmlBean”);
_xmlBean = (XmlBean)_beanHome.create();
URL u = new URL(“http://mywebsite/bookstore.xml”);
String res= xmlBean.XQL(“/bookstore/book/author/first-name”,u);

XQL methods

136

XQL methods
The XQL methods that Sybase supports and provides with Adaptive Server
follow. For more information on these methods see the Web sites in the
Reference section of Chapter 6, “Introduction to XML in the Database”.

• attribute

• comment

• element

• id

• node

• pi

• textNode

• textName

• text

• value

Methods in com.sybase.xml.xql.Xql
The following methods are specific to com.sybase.xml.xql.Xql.

parse(String xmlDoc)
Description Takes a Java string as an argument and returns SybXmlStream. You can use this

to query a document using XQL.

Syntax parse(String xml_document)

Where:

• String is a Java string.

• xml_document is the XML document where the string is located.

Examples The following example:

Chapter 7 Selecting Data with XQL

137

SybXmlStream xmlStream = Xql.parse("<xml>..</xml>);)

Returns SybXmlStream.

Usage The parser does not:

• Validate the document if a DTD is provided.

• Parse any external DTDs

• Perform any external links (for example, XLinks)

• Navigate through IDREFs

parse(InputStream xml_document, boolean validate)
Description Takes an InputStream and a boolean flag as arguments.The flag indicates that

the parser should validate the document according to a specified DTD. Returns
SybXmlStream. You can use this to query a document using XQL.

Syntax parse(InputStream xml_document, boolean validate)

Where:

• InputStream is an input stream.

• xml_document is the XML document where the input stream originates.

Examples The following example

SybXmlStream is = Xql.parse(new

FileInputStream("file.xml"), true);

Returns SybXmlStream.

Usage • A true value in the flag indicates that the parser should validate the
document according to the specified DTD.

• A false value in the flag indicates that the parser does not validate the
document according to the specified DTD.

• The parser does not:

• Parse any external DTDs

• Perform any external links (for example, XLinks)

• Navigate through IDREFs

query(String query, String xmlDoc)

138

query(String query, String xmlDoc)
Description Queries an XML document. Uses the XML document as the input argument.

Syntax query(String query,String xmlDoc)

Where:

• String query is the string you are searching for.

• String xmldoc is the XML document you are querying.

Examples The following returns the result as a Java string:

String result= Xql.query("/bookstore/book/author",
"<xml>...</xml>");

Usage Returns a Java string.

query(String query, InputStream xmlDoc)
Description Queries an XML document using an input stream as the second argument.

Syntax query(String query,InputStream xmlDoc)

Where:

• String query is the string you are searching for.

• Input Stream xmlDoc is the XML document you are querying.

Examples This example queries the bookstore for authors listed in bookstore.Xql.

FileInputStream xmlStream = new FileInputStream("doc.xml");
String result = Xql.query("/bookstore/book/author", xmlStream);

The following example queries an XML document on the Web using a URL as
the search argument:

URL xmlURL = new URL("http://mywebsite/doc.xml");
String result = Xql.query("/bookstore/book/author", xmlURL.openStream());

Usage Returns a Java string.

Chapter 7 Selecting Data with XQL

139

query(String query, SybXmlStream xmlDoc)
Description Queries the XML document using a parsed XML document as the second

argument.

Syntax query(String query, SybXmlStream)

Where:

• String query is the string you are searching for.

• xmldoc is the parsed XML document you are querying.

Examples This example queries the bookstore for authors listed in bookstore.Xml.

SybXmlStream xmlStream = Xql.parse("<xml>..</xml>);
String result = Xql.query("/bookstore/book/author",xmlStream);

query(String query, JXml jxml)
Description Queries an XML document stored in a JXML format.

Syntax query(String query, JXml jxml)

Where:

• String query is the string you are searching.

• JXml jxml is an object created from the classes located in $SYBASE/ASE-
12_5/samples/

Examples This example queries for authors in bookstore.Xql

JXml xDoc = new JXml("<xml>...</xml>");;
String result = Xql.query("/bookstore/book/author", xDoc);

Usage Allows you to execute a query on an JXML document using XQL.

sybase.aseutils.SybXmlStream
Description Defines an interface that an InputStream needs to access parsed XML data

while querying.

Syntax sybase.aseutils.SybXmlStream interface

com.sybase.xml.xql.store.SybMemXmlStream

140

com.sybase.xml.xql.store.SybMemXmlStream
Description Holds the parsed XML document in main memory, an implementation of

SybXMLStream that Sybase provides.

Syntax com.sybase.xml.xql.store.SybMemXmlStream

Usage The parse() method returns an instance of SybMemXmlStream after parsing an
XML document.

com.sybase.xml.xql.store.SybFileXmlStream
Description Allows you to query a file in which you have stored a parsed XML document.

Syntax com.sybase.xml.xql.store.SybFileXmlStream {file_name}

Where file_name is the name of the file in which you stored the parsed XML
document.

Examples In the following, a member of the RandomAccessFile reads a file and positions
the data stream:

SybXmlStream xis = Xql.parse("<xml>..</xml>");
FileOutputStream ofs = new FileOutputStream("xml.data");
((SybMemXmlStream)xis).writeToFile(ofs);

SybXmlStream is = new SybFileXmlStream("xml.data");
String result = Xql.query("/bookstore/book/author", is);

setParser(String parserName)
Description This static method specifies the parser that the parse method should use. You

should make sure that the specified parser class is accessible through the
CLASSPATH and is compliant with SAX 2.0.

Syntax setParser (String parserName)

Where string is the name of the parser class.

Examples

Xql.setParser("com.yourcompany.parser")

Chapter 7 Selecting Data with XQL

141

reSetParser
Description This static method resets the parser to the default parser that Sybase supplies

(xerces.jar, Version. 1.3.1).

Syntax reSetParser

Examples This example resets your parser to the Sybase default parser.

xql.resetParser()

reSetParser

142

143

C H A P T E R 8 Specialized XML Processing

When you store XML documents of a particular type in Adaptive Server,
you may want to update them or to process them in specialized ways. One
way is to write a Java class specifically designed for the updates and
processing of that type of XML document. This chapter shows an example
of such a Java class, designed for the OrderXML documents described in
Chapter 6, “Introduction to XML in the Database.”

This section first describes the OrderXML class and its methods, and then
provides a simple example that demonstrates how you can store XML
documents or the data that they contain in an Adaptive Server database.

The source code and Javadoc for the OrderXML class is located in:

• $SYBASE/ASE-12_5/sample/JavaSql (UNIX)

• %SYBASE%\ASE-12_5\sample\JavaSql (Windows NT)

The OrderXml class for order documents
The examples in this section use the OrderXML class and its methods for
basic operations on XML Order documents.

OrderXML is a subclass of the JXml class, which is specialized for XML
Order documents. The OrderXML constructor validates the document for
the Order DTD. Methods of the OrderXml class support referencing and
updating the elements of the Order document.

Topic Page
The OrderXml class for order documents 143

Storing XML documents 147

Creating and populating SQL tables for order data 149

Using the element storage technique 151

Using the document storage technique 154

Using the hybrid storage technique 159

The OrderXml class for order documents

144

OrderXml(String) constructor
Validates that the String argument contains a valid XML Order document, and
then constructs an OrderXml object containing that document. For example,
assume that “doc” is a Java string variable containing an XML Order
document, perhaps one read from a file:

xml.order.OrderXml ox = new xml.order.OrderXml(doc);

OrderXml(date, customerid, server)
The parameters are all String.

This method assumes a set of SQL tables containing Order data. The method
uses JDBC to execute a SQL query that retrieves Order data for the given date
and customerId. The method then assembles an XML Order document with the
data.

server identifies the Adaptive Server on which to execute the query.

• If you invoke the method in a client environment, specify the server name.

• If you invoke the method in Adaptive Server (in a SQL statement or in
isql), specify either an empty string or the string “jdbc:default:connection”,
which indicates that the query should be executed on the current Adaptive
Server.

For example:

xml.order.OrderXml ox = new OrderXml(“990704”, “123”,
“antibes:4000?user=sa”);

void order2Sql(String ordersTableName, String server)
Extracts the elements of the Order document and stores them in a SQL table
created by the createOrderTable() method. ordersTableName is the name of the
target table. server is as described for the OrderXml constructor. For example,
if ox is a Java variable of type OrderXml:

ox.order2Sql(“current_orders”, “antibes:4000?user=sa”);

This call extracts the elements of the Order document contained in ox, and uses
JDBC to insert the extracted elements into rows and columns of the table
named current_orders.

static void createOrderTable(String ordersTableName, String server)

Chapter 8 Specialized XML Processing

145

static void createOrderTable
(String ordersTableName, String server)

Creates a SQL table with columns suitable for storing Order data: customer_id,
order_date, item_id, quantity, and unit. ordersTableName is the name of the new
table. The server parameter is as described for the OrderXml constructor. For
example:

xml.order.OrderXml.createOrderTable
 (“current_orders”, “antibes:4000?user=sa”);

String getOrderElement(String elementName)

elementName is “Date,” “CustomerId,” or “CustomerName.” The method
returns the text of the element. For example, if ox is a Java variable of type
OrderXml:

String customerId = ox.getOrderElement(“CustomerId”);
String customerName = ox.getOrderElement(“CustomerName”);
String date = ox.getOrderElement(“Date”);

void setOrderElement
(String elementName, String newValue)

elementName is as described for getOrderElement().The method sets that
element to newValue. For example, if ox is a Java variable of type OrderXml:

ox.setOrderElement(“CustomerName”, “Acme Alpha Consolidated”);
ox.setOrderElement(“CustomerId”, “987a”);
ox.setOrderElement(“Date”, “1999/07/05”);

String getItemElement
(int itemNumber, String elementName)

itemNumber is the index of an item in the order. elementName is “ItemId,”
“ItemName,” or “Quantity.” The method returns the text of the item. For
example, if ox is a Java variable of type OrderXml:

String itemId = ox.getItemElement(2, “ItemId”);
String itemName = ox.getItemElement(2, “ItemName”);
String quantity = ox.getItemElement(2, “Quantity”);

The OrderXml class for order documents

146

void setItemElement
(int itemNumber, String elementName, String newValue

itemNumber and elementName are as described for the getItemElement method.
setItemElement sets the element to newValue. For example, if ox is a Java
variable of type OrderXml:

ox.setItemElement(2, “ItemId”, “44”);
ox.setItemElement(2, “ItemName”, “cord”);
ox.setItemElement(2, “Quantity”, “3”);

String getItemAttribute
(int itemNumber, elementName, attributeName)

itemNumber and elementName are described as for getItemElement().
elementName and attributeName are both String. attributeName must be
“unit.” The method returns the text of the unit attribute of the item.

Note Since the Order documents currently have only one attribute, the
attributeName parameter is unnecessary. It is included to illustrate the general
case.

For example, if ox is a Java variable of type OrderXml
String itemid - ox.getItemAttribute(2,“unit”)

void setItemAttribute (int itemNumber, elementName,
attributeName, newValue)

itemNumber, elementName, and attributeName are as described for
getItemAttribute(). elementName, attributeName, and newValue are String. The
method sets the text of the unit attribute of the item to newValue. For example,
if ox is a Java variable of type OrderXml:

ox.setItemAttribute(2, “unit”, “13”);

The parameters are all String. The method appends a new item to the document,
with the given element values. For example, if ox is a Java variable of type
OrderXml:

ox.appendItem(“77”, “spacer”, “5”, “12”);

Chapter 8 Specialized XML Processing

147

void appendItem
(newItemid, newItemName, newQuantity, newUnit)

The parameters are all String. The method appends a new item to the
document, with the given element values. For example, if ox is a Java variable
of type OrderXML:

ox.appendItem(“77”, “spacer”, “5”, “12”);

void deleteItem(int itemNumber)
itemNumber is the index of an item in the order. The method deletes that item.
For example, if ox is a Java variable of type OrderXml:

ox.deleteItem(2);

Storing XML documents
To use XML documents for data interchange in Adaptive Server, you must be
able to store XML documents or the data that they contain in the database. To
determine how best to accomplish this, consider the following:

• Mapping and storage: What sort of correspondence between XML
documents and SQL data is most suitable for your system?

• Client or server considerations: Should the mapping take place on the
client or the server?

• Accessing XML in SQL: How do you want to access the elements of an
XML document in SQL?

The rest of this section discusses each of these considerations; the remainder of
the chapter discusses the classes and methods you can use with XML,
including:

• A simple example to illustrate the basics of data storage and exchange of
XML documents

• A generalized example that you can customize for your own XML
documents

Storing XML documents

148

Mapping and storage
There are three basic ways to store XML data in Adaptive Server: element
storage, document storage, or hybrid storage, which is a mixture of both.

• Element storage – in this method, you extract data elements from an XML
document and store them as data rows and columns in Adaptive Server.

For example, using the XML Order document, you can create SQL tables
with columns for the individual elements of an order: Date, CustomerId,
CustomerName, ItemId, ItemName, Quantity, and Units. You can then
manage that data in SQL with normal SQL operations:

• To produce an XML document for Order data contained in SQL,
retrieve the data, and assemble an XML document with it.

• To store an XML document with new Order data, extract the elements
of that document, and update the SQL tables with that data.

• Document storage – in this method, you store an entire XML document in
a single SQL column.

• For example, using the Order document, you can create one or more SQL
tables having a column for Order documents. The datatype of that column
could be:

• SQL text, or

• A generic Java class designed for XML documents, or

• Java class designed specifically for XML Order documents

• Hybrid storage – in this method, you store an XML document in a SQL
column, and also extract some of its data elements into separate columns
for faster and more convenient access.

Again, using the Order example, you can create SQL tables as you would for
document storage, and then include (or later add) one or more columns to store
elements extracted from the Order documents.

Advantages and disadvantages of storage options
Each storage option has advantages and disadvantages. You must choose the
option or options best for your operation.

Chapter 8 Specialized XML Processing

149

• If you use element storage, all of the data from the XML document is
available as normal SQL data that you can query and update using SQL
operations. However, element storage has the overhead of assembling and
disassembling the XML documents for interchange.

• Document storage eliminates the need for assembling and disassembling
the data for interchange. However, you need to use Java methods to
reference or update the elements of the XML documents while they are in
SQL, which is slower and less convenient than the direct SQL access of
element storage.

• Hybrid storage balances the advantages of element storage and document
storage, but has the cost and complexity of redundant storage of the
extracted data.

Client or server considerations
You can execute Java methods either on a client or on a server, which is a
consideration for element storage and hybrid storage. Document storage
involves little or no processing of the document.

• Element storage – if you map individual elements of an XML document to
SQL data, in most cases the XML document is larger than the SQL data.
It is generally more efficient to assemble and disassemble the XML
document on the client and transfer only the SQL data between the client
and the server.

• Hybrid storage – if you store both the complete XML document and
extracted elements, then it is generally more efficient to extract the data
from the server, rather than transfer it from the client.

Creating and populating SQL tables for order data
In this section, we create several tables that are designed to contain data from
XML Order documents, so that we can demonstrate techniques for element,
document, and hybrid data storage.

Creating and populating SQL tables for order data

150

Tables for element storage
The following statements create SQL tables customers, orders, and items,
whose columns correspond with the elements of the XML Order documents.

create table customers
 (customer_id varchar(5) not null unique,
 customer_name varchar(50) not null)

create table orders
 (customer_id varchar(5) not null,
 order_date datetime not null,
 item_id varchar(5) not null,
 quantity int not null,
 unit smallint default 1)

create table items
 (item_id varchar(5) unique,
 item_name varchar(20))

These tables need not have been specifically created to accommodate XML
Order documents.

The following SQL statements populate the tables with the data in the example
XML Order document (see “A sample XML document” on page 111):

insert into customers values("123", "Acme Alpha")

insert into orders values ("123", "1999/05/07",
 "987", 5, 1)

insert into orders values ("123", "1999/05/07",
 "654", 3, 12)

insert into orders values ("123", "1999/05/07",
 "579", 1, 1)

insert into items values ("987", "Widget")

insert into items values ("654", "Medium connecter")

insert into items values ("579", "Type 3 clasp")

Use select to retrieve data from the tables:

select order_date as Date, c.customer_id as CustomerId,
 customer_name as CustomerName,
 o.item_id as ItemId, i.item_name as ItemName,
 quantity as Quantity, o.unit as unit
 from customers c, orders o, items i
 where c.customer_id=o.customer_id and

o.item_id=i.item_id

Chapter 8 Specialized XML Processing

151

Tables for document and hybrid storage
The following SQL statement creates a SQL table for storing complete XML
Order documents, either with or without extracted elements (for hybrid
storage).

create table order_docs
 (id char(10) unique,
 customer_id varchar(5) null,
-- For an extracted “CustomerId” element
 order_doc xml.order.OrderXml)

Using the element storage technique
This section describes the element storage technique for bridging XML and
SQL.

• “Composing order documents from SQL data” on page 151 discusses the
composition of an XML Order document from SQL data.

• “Translating data from an XML order into SQL” on page 153 discusses
the decomposition of an XML Order document to SQL data.

Composing order documents from SQL data
In this example, Java methods generate an XML Order document from the
SQL data in the tables created in “Creating and populating SQL tables for
order data” on page 149.

A constructor method of the OrderXml class maps the data. An example call of
that constructor might be:

new xml.order.OrderXml("990704", "123",
"antibes:4000?user=sa");

Date CustomerId CustomerName ItemId ItemName Quantity Unit

July 4 1999 123 Acme Alpha 987 Coupler 5 1

July 4 1999 123 Acme Alpha 654 Connector 3 12

July 4 1999 123 Acme Alpha 579 Clasp 1 1

Using the element storage technique

152

This constructor method uses internal JDBC operations to:

• Execute a SQL query for the order data

• Generate an XML Order document with the data

• Return the OrderXml object that contains the Order document

You can invoke the OrderXml constructor in the client or the Adaptive Server.

• If you invoke the OrderXml constructor in the client, the JDBC operations
that it performs use jConnect to connect to the Adaptive Server and
perform the SQL query. It then reads the result set of that query and
generates the order document on the client.

• If you invoke the OrderXml constructor in Adaptive Server, the JDBC
operations that it performs use the native JDBC driver to connect to the
current Adaptive Server and perform the SQL query. It then reads the
result set and generates the Order document in Adaptive Server.

Generating an order on the client

Designed to be implemented on the client, main() invokes the constructor of
the OrderXML class to generate an XML Order from the SQL data. That
constructor executes a select for the given date and customer ID, and assembles
an XML Order document from the result.

import java.io.*;
import util.*;
public class Sql2OrderClient {
 public static void main (String args[]) {
 try{
 xml.order.Order order =
 new xml.order.OrderXml("990704", "123","antibes:4000?user=sa");
 FileUtil.string2File("Order-sql2Order.xml",order.getXmlText());
 } catch (Exception e) {
 System.out.println("Exception:");
 e.printStackTrace();
 }
 }
 }

Generating an order on the server

Designed for the server environment, the following SQL script invokes the
constructor of the OrderXml class to generate an XML order from the SQL data:

Chapter 8 Specialized XML Processing

153

declare @order xml.order.OrderXml
select @order =
 new xml.order.OrderXml(’990704’, ’123’,’’)
insert into order_docs (id, order_doc) values(“3”,
 @order)

Translating data from an XML order into SQL
In this section, you extract elements from an XML Order document and store
them in the rows and columns of the Orders tables. The examples illustrate this
procedure in both server and client environments.

You translate the elements using the Java method order2Sql() of the OrderXml
class. Assume that xmlOrder is a Java variable of type OrderXml:
xmlOrder.order2Sql(“orders_received”, “antibes:4000?user=sa”);

The order2Sql() call extracts the elements of the XML Order document
contained in variable xmlOrder, and then uses JDBC operations to insert that
data into the orders_received table. You can call this method on the client or on
Adaptive Server:

• Invoked from the client, order2Sql() extracts the elements of the XML
Order document in the client, uses jConnect to connect to the Adaptive
Server, and then uses the Transact-SQL insert command to place the
extracted data into the table.

• Invoked from the server, order2Sql() extracts the elements of the XML
Order document in the Adaptive Server, uses the native JDBC driver to
connect to the current Adaptive Server, and then use the Transact-SQL
insert command to place the extracted data into the table.

Translating the XML document on the client

Invoked from the client, the main() method of the Order2SqlClient class creates
a table named orders_received with columns suitable for order data. It then
extracts the elements of the XML order contained in the file Order.xml into
rows and columns of orders received. It performs these actions with calls to
static method OrderXml.createOrderTable() and instance method order2Sql().

import util.*;
import xml.order.*;
import java.io.*;
import java.sql.*;
import java.util.*;

Using the document storage technique

154

public class Order2SqlClient {
 public static void main (String args[]) {
 try{
 String xmlOrder =
 FileUtil.file2String("order.xml");
 OrderXml.createOrderTable("orders_received",
 "antibes:4000?user=sa");
 xmlOrder.order2Sql("orders_received",
 "antibes:4000?user=sa");
 } catch (Exception e) {
 System.out.println("Exception:");
 e.printStackTrace();
 }
 }
 }

Translating the XML document on the server

Invoked from the server, the following SQL script invokes the OrderXml
constructor to generate an XML Order document from the SQL tables, and then
invokes the method OX.sql2Order(), which extracts the Order data from the
generated XML and inserts it into the orders_received table.

declare @xmlorder OrderXml
select @xmlorder = new OrderXml(’19990704’, ’123’,’’)
select @xmlorder>>order2Sql(’orders_received’, ’’)

Using the document storage technique
When using the document storage technique, you store a complete XML
document in a single SQL column.This approach avoids the cost of mapping
the data between SQL and XML when documents are stored and retrieved, but
access to the stored elements can be slow and inconvenient.

Storing XML order documents in SQL columns
This section provides examples of document storage from the client and from
the server.

Chapter 8 Specialized XML Processing

155

Inserting an order document from a client file

The following command-line call is representative of how you can insert XML
data into Adaptive Server from a client file. It copies the contents of the
Order.xml file (using the -I parameter) to the Adaptive Server and executes the
SQL script (using the -Q parameter) using the contents of Order.xml as the
value of the question-mark (?) parameter.

java util.FileUtil -A putstring -I "Order.xml" \
 -Q "insert into order_docs (id, order_doc) \
 values (‘1’, new xml.order.OrderXml(?)) " \
 –S "antibes:4000?user=sa"

Note The constructor invocation new xml.order.OrderXml validates the
XML Order document.

Inserting a generated order document on the server

Executed on the server, the following SQL command generates an XML Order
document from SQL data, and immediately inserts the generated XML
document into the column of the order_docs table.

insert into order_docs (ID, order_doc)
 select “2”, new xml.order.OrderXml("990704", "123","")

Accessing the elements of stored XML order documents
We have created a table named order_docs with a column named order_doc.
The datatype of the order_doc column is OrderXml, a Java class that contains an
XML Order document.

The OrderXml class contains several instance methods that let you reference
and update elements of the XML Order document. They are described in “The
OrderXml class for order documents” on page 143.

This section uses these methods to update the order document.

<?xml version="1.0"?>
<!DOCTYPE Order SYSTEM "Order.dtd">
<Order>
 <Date>1999/07/04</Date>
 <CustomerId>123</CustomerId>
 <CustomerName>Acme Alpha</CustomerName>
 <Item>

Using the document storage technique

156

 <ItemId> 987</ItemId>
 <ItemName>Coupler</ItemName>
 <Quantity>5</Quantity>
 </Item><Item>
 <ItemId>654</ItemId>
 <ItemName>Connecter</ItemName>
 <Quantity unit="12">3</Quantity>
 </Item><Item>
 <ItemId>579</ItemId>
 <ItemName>Clasp</ItemName>
 <Quantity>1</Quantity>
 </Item>
 </Order>

Each XML Order document has exactly one Date, CustomerId, and
CustomerName, and zero or more Items, each of which has an ItemId,
ItemName, and Quantity.

Client access to order elements

The main() method of the OrderElements class is executed on the client. It reads
the Order.xml file into a local variable, and constructs an OrderXml document
from it. The method then extracts the “header” elements (Date, CustomerId,
and CustomerName) and the elements of the first item of the order, prints those
elements, and finally updates those elements of the order with new values.

import java.io.*;
import util.*;
public class OrderElements {
 public static void main (String[] args) {
 try{

String xml = FileUtil.file2String("Order.xml");
 xml.order.OrderXml ox =
 new xml.order.OrderXml(xml);

// Get the header elements
 String cname = ox.getOrderElement("CustomerName");
 String cid = ox.getOrderElement("CustomerId");
 String date = ox.getOrderElement("Date");

// Get the elements for item 1 (numbering from 0)
 String iName1 = ox.getItemElement(1, "ItemName");
 String iId1 = ox.getItemElement(1, "ItemId");
 String iQ1 = ox.getItemElement(1, "Quantity");
 String iU = ox.getItemAttribute(1, "Quantity", "unit");
 System.out.println("\nBEFORE UPDATE: ")

Chapter 8 Specialized XML Processing

157

 System.out.println("\n "+date+ " "+ cname + " " +cid);
 System.out.println("\n "+ iName1+" "+iId1+" "
 + iQ1 + " " + iU + "\n");

// Set the header elements
 ox.setOrderElement("CustomerName", "Best Bakery"
 ox.setOrderElement("CustomerId", "531");
 ox.setOrderElement("Date", "1999/07/31");

// Set the elements for item 1 (numbering from 0)
 ox.setItemElement(1, "ItemName", "Flange");
 ox.setItemElement(1, "ItemId", "777");
 ox.setItemElement(1, "Quantity","3");
 ox.setItemAttribute(1, "Quantity", "unit", "13");

//Get the updated header elements
 cname = ox.getOrderElement("CustomerName");
 cid = ox.getOrderElement("CustomerId");
 date = ox.getOrderElement("Date");

// Get the updated elements for item 1
 // (numbering from 0)
 iName1 = ox.getItemElement(1, "ItemName");
 iId1 = ox.getItemElement(1, "ItemId");
 iQ1 = ox.getItemElement(1, "Quantity");
 iU = ox.getItemAttribute(1, "Quantity", "unit");

System.out.println("\nAFTER UPDATE: ");
 System.out.println("\n "+date+ " "+ cname + " " +cid);
 System.out.println("\n "+ iName1+" "+iId1+" "
 + iQ1 + " " + iU + "\n");

//Copy the updated document to another file
 FileUtil.string2File("Order-updated.xml", ox.getXmlText())

} catch (Exception e) {
 System.out.println("Exception:");
 e.printStackTrace();
 }
 }
 }

After implementing the methods in OrderElements, the order document stored
in Order-updated.xml is:

<?xml version="1.0"?>
 <!DOCTYPE Order SYSTEM ’Order.dtd’>
 <Order>
 <Date>1999/07/31</Date>
 <CustomerId>531</CustomerId>

Using the document storage technique

158

 <CustomerName>Best Bakery</CustomerName>
 <Item>
 <ItemId> 987</ItemId>
 <ItemName>Coupler</ItemName>
 <Quantity>5</Quantity>
 </Item>
 <Item>
 <ItemId>777</ItemId>
 <ItemName>Flange</ItemName>
 <Quantity unit="13">3</Quantity>
 </Item>
 <Item>
 <ItemId>579</ItemId
 <ItemName>Clasp</ItemName
 <Quantity>1</Quantity>

 </Item>
 </Order>

Server access to order elements
The preceding example showed uses of get and set methods in a client
environment. You can also call those methods in SQL statements in the server:

select order_doc>>getOrderElement("CustomerId"),
 order_doc>>getOrderElement("CustomerName"),
 order_doc>>getOrderElement("Date")
 from order_docs

select order_doc>>getItemElement(1, "ItemId"),
 order_doc>>getItemElement(1, "ItemName"),
 order_doc>>getItemElement(1, "Quantity"),
 order_doc>>getItemAttribute(1, "Quantity", "unit")
 from order_docs

update order_docs
 set order_doc = order_doc>>setItemElement(1, "ItemName",
 "Wrench")

update order_docs
 set order_doc = order_doc>>setItemElement(2, "ItemId", "967")

select order_doc>>getItemElement(1, "ItemName"),
 order_doc>>getItemElement(2, "ItemId")
 from order_docs

update order_docs
 set order_doc = order_doc>>setItemAttribute(2, "Quantity",

Chapter 8 Specialized XML Processing

159

 "unit", "6")

select order_doc>>getItemAttribute(2, "Quantity", "unit")
 from order_docs

Appending and deleting items in the XML document
The Order class provides methods for adding and removing items from the
Order document.

You can append a new item to the Order document with the appendItem()
method, whose parameters specify ItemId, ItemName, Quantity, and units for
the new item:

update order_docs
 set order_doc = order_doc>>appendItem("864",
 "Bracket", "3","12")

appendItem() is a void method that modifies the instance. When you invoke
such a method in an update statement, you reference it as shown, as if it were
an order-valued method that returns the updated item.

Delete an existing item from the order document using deleteItem().
deleteItem() specifies the number of the item to be deleted. The numbering
begins with zero, so the following command deletes the second item from the
specified row.

update order_docs
 set order_doc = order_doc>>deleteItem(1)
 where id = “1”

Using the hybrid storage technique
In the hybrid storage technique, you store the complete XML document in a
SQL column and, at the same time, store elements of that document in separate
columns. This technique often balances the advantages and disadvantages of
element and document storage.

“Using the document storage technique” on page 154 demonstrates how to
store the entire XML order document in the single column
order_docs.order_doc. Using document storage, you must reference and access
the CustomerId element in this way:

Using the hybrid storage technique

160

select order_doc>>getOrderElement(“CustomerID”) from order_docs
 where order_doc>>getOrderElement(“CustomerID”) > “222”

To access CustomerId more quickly and conveniently than with the method
call, but without first translating the Order into SQL rows and columns:

1 Add a column to the order_docs table for the customer_id:

alter table order_docs
 add customer_id varchar(5) null

2 Update that new column with extracted customerId values.

update order_docs
 set customer_id =
 order_doc>>getOrderElement("CustomerId")

3 Reference CustomerId values directly:

select customer_id from order_docs
where customer_id > “222”

You can also define an index on the column.

Note This technique does not synchronize the extracted customer_id column
with the CustomerId element of the order_doc column if you update either
value.

161

C H A P T E R 9 XML for SQL Result Sets

This chapter describes the ResultSetXml class, which allows you to
generate an XML document representing an SQL result set, and to access
and update such an XML document.

The source code for the ResultSetXml class is in the following directories:

• $SBASE/ASE-12_5/sample/JavaSql (UNIX)

• %SYBASE%\ASE-12_5\sample\JavaSql (Windows NT)

You can use the ResultSetXML class to process SQL result sets with XML
and as an example of how to write Java code for accessing XML. Chapter
8, “Specialized XML Processing,” provides an additional example of
Java code.

The ResultSetXML class
The ResultSetXml class is a subclass of the JXml class, which validates a
document with the XML ResultSet DTD, and also provides methods for
accessing and updating the elements of the contained XML ResultSet
document.

ResultSetXml(String)
Validates that the argument contains a valid XML ResultSet document and
constructs a ResultSetXml object containing that document. For example,
if doc is a Java String variable containing an XML ResultSet document,
read from a file:

Topic Page
The ResultSetXML class 161

Generating a ResultSet in the client 171

Generating a result set in Adaptive Server 171

The ResultSetXML class

162

xml.resultset.ResultSetXml rsx =
new xml.resultset.ResultSetXml(doc);

Constructor: ResultSetXml
(query, cdataColumns, colNames, server)

• The parameters are all String.

• query is any SQL query that returns a result set.

• server identifies the Adaptive Server on which to execute the query. If you
invoke the method in a client environment, specify the server name.

If you invoke the method in an Adaptive Server (in a SQL statement or
isql), specify either an empty string or the string “jdbc:default:connection,”
indicating that the query should be executed on the current Adaptive
Server

• cdata columns indicates which columns should be XML CDATA sections.

• colNames indicates whether the resulting XML should specify “name”
attributes in the “Column” elements

ResultXml example
The method connects to the server, executes the query, retrieves the SQL result
set, and constructs a ResultSetXml object with that result set.

For example:

xml.resultset.ResultSetXml rsx =
 new xml.resultset.ResultSetXml
 (“select 1 as ‘a’, 2 as ‘b’, 3 ”, “none”, “yes”,
 “antibes:4000?user=sa”);

This constructor call connects to the server specified in the last argument,
evaluates the SQL query given in the first argument, and returns an XML
ResultSet containing the data from the result set of the query.

String toSqlScript
(resultTableName, columnPrefix, goOption)

• The parameters are all String.

Chapter 9 XML for SQL Result Sets

163

• resultTableName is the table name for the create and insert statements.
(SQL result sets do not specify a table name because they may be derived
from joins or unions.)

• columnPrefix is the prefix to use in generated column names, which are
needed for unnamed columns in the result set.

• goOption indicates whether the script is to include the go commands,
which are required in isql, not in JDBC.

The method returns a SQL script with a create statement and a list of insert
statements that create the result set data again.

For example, if rsx is a Java variable of type ResultSetXml:

rsx>>toSqlScript(“systypes_copy”, “column_”, “yes”)

String getColumn(int rowNumber, int columnNumber)
• rowNumber is the index of a row in the result set.

• columnNumber is the index of a column of the result set. The method
returns the text of the specified column.

For example, if rsx is a Java variable of type ResultSetXml:

select rsx>>getColumn(3, 4)

String getColumn(int rowNumber, String columnName)
• rowNumber is the index of a row in the result set.

• columnName is the name of a column of the result set.

The method returns the text of the specified column.

For example, if rsx is a Java variable of type ResultSetXml:

select rsx>>getColumn(3, “name”)

void setColumn
(int rowNumber, int columnNumber, newValue)

rowNumber and columnNumber are as described for getColumn().

The ResultSetXML class

164

The method sets the text of the specified column to newValue.

For example, if rsx is a Java variable of type ResultSetXml:

select rsx = rsx>>setColumn(3, 4, “new value”)

void setColumn
(int rowNumber, String columnName, newValue)

rowNumber and columnName are as described for getColumn().

The method sets the text of the specified column to newValue.

For example, if rsx is a Java variable of type ResultSetXml:

select rsx = rsx>>setColumn(3, “name”, “new value”)

Boolean allString
(int ColumnNumber, String compOp, String comparand)

• columnNumber is the index of a column of the result set.

• compOp is a SQL comparison operator (<, >, =, !=, <=, >=).

• comparand is a comparison value.

The method returns a value indicating whether the specified comparison is true
for all rows of the result set.

For example, if rsx is a Java variable of type ResultSetXml:

if rsx>>allString(3, “<”, “compare value”)…

This condition is true if in the result set represented by rsx, for all rows, the
value of column 3 is less than “compare value.” This is a String comparison.
Similar methods can be used for other datatypes.

Boolean someString
(int columnNumber, String compOp, String comparand)

• columnNumber is the index of a column of the result set.

• compOp is a SQL comparison operator (<, >, =, !=, <=, >=).

• comparand is a comparison value.

Chapter 9 XML for SQL Result Sets

165

The method returns a value indicating whether the specified comparison is true
for some row of the result set.

For example, if rsx is a Java variable of type ResultSetXml:

if rxs>>someString(3, “<“, “compare value”) ...

This condition is true if in the result set represented by rsx, for some row, the
value of column 3 is less than “compare value.”

A customizable example for different result sets
This section demonstrates how you can store XML documents or the data that
they contain in an Adaptive Server database using the ResultSet class and its
methods for handling result sets. You can customize the ResultSet class for
your database application.

Contrast the ResultSet document type and the Order document type:

• The Order document type is a simplified example designed for a specific
purchase-order application, and its Java methods are designed for a
specific set of SQL tables for purchase order data. See “The OrderXml
class for order documents” on page 143.

• The ResultSet document type is designed to accommodate many kinds of
SQL result sets, and the Java methods designed for it include parameters
to accommodate different kinds of SQL queries.

For this example, you create and work with XML ResultSet documents that
contain the same data as the XML Order documents.

First, create the orders table and its data:

create table orders
 (customer_id varchar(5) not null,
 order_date datetime not null,
 item_id varchar(5) not null,
 quantity int not null,
 unit smallint default 1)
insert into orders values ("123", "1999/05/07", "987", 5, 1)
insert into orders values ("123", "1999/05/07", "654", 3, 12)
insert into orders values ("123", "1999/05/07", "579", 1, 1)

Also, create the following SQL table to store complete XML ResultSet
documents:

A customizable example for different result sets

166

create table resultset_docs
 (id char(5),
 rs_doc xml.resultsets.ResultSetXml)

The ResultSet document type
ResultSet documents consist of ResultSetMetaData followed by ResultSetData,
as shown in the following general form:

<?xml version="1.0"?>
 <!DOCTYPE ResultSet SYSTEM ’ResultSet.dtd’>
 <ResultSet>

<ResultSetMetaData>
…
</ResultSetMetaData>

<ResultSetData>
…
</ResultSetData>

</ResultSet>

The ResultSetMetaData portion of an XML ResultSet consists of the SQL
metadata returned by the methods of the JDBC ResultSet class. The
ResultSetMetaData for the example result set is:

<ResultSetMetaData
 getColumnCount="7">
 <ColumnMetaData
 getColumnDisplaySize="25"
 getColumnLabel="Date"
 getColumnName="Date"
 getColumnType="93"
 getPrecision="0"
 getScale="0"
 isAutoIncrement="false"
 isCurrency="false"
 isDefinitelyWritable="false"
 isNullable="false"

 isSigned="false" />
<ColumnMetaData

 getColumnDisplaySize="5"
 getColumnLabel="CustomerId"
 getColumnName="CustomerId"
 getColumnType="12"
 getPrecision="0"
 getScale="0"

Chapter 9 XML for SQL Result Sets

167

 isAutoIncrement="false"
 isCurrency="false"
 isDefinitelyWritable="false"
 isNullable="false"

 isSigned="false" />
 <ColumnMetaData
 getColumnDisplaySize="50"
 getColumnLabel="CustomerName"
 getColumnName="CustomerName"
 getColumnType="12"
 getPrecision="0"
 getScale="0"
 isAutoIncrement="false"
 isCurrency="false"
 isDefinitelyWritable="false"
 isNullable="false"

 isSigned="false" />
<ColumnMetaData

 getColumnDisplaySize="5"
 getColumnLabel="ItemId"
 getColumnName="ItemId"
 getColumnType="12"
 getPrecision="0"
 getScale="0"
 isAutoIncrement="false"
 isCurrency="false"
 isDefinitelyWritable="false"
 isNullable="false"

 isSigned="false" />
 <ColumnMetaData
 getColumnDisplaySize="20"
 getColumnLabel="ItemName"
 getColumnName="ItemName"
 getColumnType="12"
 getPrecision="0"
 getScale="0"
 isAutoIncrement="false"
 isCurrency="false"
 isDefinitelyWritable="false"
 isNullable="false"

 isSigned="false" />
 <ColumnMetaData
 getColumnDisplaySize="11"
 getColumnLabel="Quantity"
 getColumnName="Quantity"
 getColumnType="4"

A customizable example for different result sets

168

 getPrecision="0"
 getScale="0"
 isAutoIncrement="false"
 isCurrency="false"
 isDefinitelyWritable="false"
 isNullable="false"

 isSigned="true" />
 <ColumnMetaData
 getColumnDisplaySize="6"
 getColumnLabel="unit"
 getColumnName="unit"
 getColumnType="5"
 getPrecision="0"
 getScale="0"
 isAutoIncrement="false"
 isCurrency="false"
 isDefinitelyWritable="false"
 isNullable="false"

 isSigned="true" />
</ResultSetMetaData>

The names of the attributes of ColumnMetaData are simply the names of the
methods of the JDBC ResultSetMetaData class, and the values of those
attributes are the values returned by those methods.

The ResultSetData portion of an XML ResultSet document is a list of Row
elements, each having a list of Column elements. The text value of a Column
element is the value returned by the JDBC getString() method for the column.
The ResultSetData for the example is:

<ResultSetData>
 <Row>
 <Column name="Date">1999-07-04 00:00:00.0</Column>
 <Column name="CustomerId">123</Column>
 <Column name="CustomerName">Acme Alpha</Column>
 <Column name="ItemId">987</Column>
 <Column name="ItemName">Coupler</Column>
 <Column name="Quantity">5</Column>
 <Column name="unit">1</Column>
 </Row>
 <Row>
 <Column name="Date">1999-07-04 00:00:00.0</Column>
 <Column name="CustomerId">123</Column>
 <Column name="CustomerName">Acme Alpha</Column>
 <Column name="ItemId">654</Column>
 <Column name="ItemName">Connecter</Column>
 <Column name="Quantity">3</Column>

Chapter 9 XML for SQL Result Sets

169

 <Column name="unit">12</Column>
 </Row>
 <Row>
 <Column name="Date">1999-07-04 00:00:00.0</Column>
 <Column name="CustomerId">123</Column>
 <Column name="CustomerName">Acme Alpha</Column>
 <Column name="ItemId">579</Column>
 <Column name="ItemName">Clasp</Column>
 <Column name="Quantity">1</Column>
 <Column name="unit">1</Column>
 </Row>
 </ResultSetData>
 </ResultSet>

The XML DTD for the ResultSetXml document type

The DTD for the XML ResultSet document type is:

<!ELEMENT ResultSet (ResultSetMetaData ,
 ResultSetData)>
 <!ELEMENT ResultSetMetaData (ColumnMetaData)+>
 <!ATTLIST ResultSetMetaData getColumnCount CDATA
 #IMPLIED>
 <!ELEMENT ColumnMetaData EMPTY>
 <!ATTLIST ColumnMetaData
 getCatalogName CDATA #IMPLIED
 getColumnDisplaySize CDATA #IMPLIED
 getColumnLabel CDATA #IMPLIED
 getColumnName CDATA #IMPLIED
 getColumnType CDATA #REQUIRED
 getColumnTypeName CDATA #IMPLIED
 getPrecision CDATA #IMPLIED
 getScale CDATA #IMPLIED
 getSchemaName CDATA #IMPLIED
 getTablename CDATA #IMPLIED
 isAutoIncrement (true|false) #IMPLIED
 isCaseSensitive (true|false) #IMPLIED
 isCurrency (true|false) #IMPLIED
 isDefinitelyWritable (true|false) #IMPLIED
 isNullable (true|false) #IMPLIED
 isReadOnly (true|false) #IMPLIED
 isSearchable (true|false) #IMPLIED
 isSigned (true|false) #IMPLIED
 isWritable (true|false) #IMPLIED
 >

<!ELEMENT ResultSetData (Row)*>
<!ELEMENT Row (Column)+>
<!ELEMENT Column (#PCDATA)>
<!ATTLIST Column

A customizable example for different result sets

170

 null (true | false) "false"
 name CDATA #IMPLIED

Using the element storage technique
This section uses the orders table to illustrate mapping between SQL data and
XML ResultSet documents.

In “Composing a ResultSet XML document from the SQL data” on page 170,
we generate an XML ResultSet document from the SQL data, assuming that we
are the originator of the XML ResultSet document. We use the resulting XML
ResultSet document to describe the ResultSet DTD.

Composing a ResultSet XML document from the SQL data

You can use Java methods to evaluate a given query and generate an XML
result set with the query’s data. This example uses a constructor method of the
ResultSetXml class. For example:

new xml.resultset.ResultSetXml
 (“select 1 as ‘a’, 2 as ‘b’, 3 ”, “none”,
 “yes”, “antibes:4000?user=sa”);

The method uses internal JDBC operations to execute the argument query, and
then constructs the XML ResultSet for the query’s data.

We can invoke this constructor in a client or in the Adaptive Server:

• If you invoke the constructor in a client, specify a server parameter that
identifies the Adaptive Server to be used when evaluating the query. The
query is evaluated in the Adaptive Server, but the XML document is
assembled in the client.

• If you invoke the constructor in the Adaptive Server, specify a null value
or jdbc:default:connection for the server. The query is evaluated in the
current server and the XML document is assembled there.

Chapter 9 XML for SQL Result Sets

171

Generating a ResultSet in the client
The main() method of the OrderResultSetClient class is invoked in a client
environment. main() invokes the constructor of the ResultSetXml class to
generate an XML ResultSet. The constructor executes the query, retrieves its
metadata and data using JDBC ResultSet methods, and assembles an XML
ResultSet document with the data.

import java.io.*;
import util.*;
public class OrderResultSetClient {
 public static void main (String[] args) {
 try{
 String orderQuery = "select order_date as Date,”
 + "c.customer_id as CustomerId, "
 + "customer_name as CustomerName, "
 + "o.item_id as ItemId, i.item_name as ItemName, "
 + "quantity as Quantity, o.unit as unit "
 + "from customers c, orders o, items i "
 + "where c.customer_id=o.customer_id and
 + " o.item_id=i.item_id " ;

xml.resultset.ResultSetXml rsx
 = new xml.resultset.ResultSetXml(orderQuery,
 "none", "yes", "external",
 "antibes:4000?user=sa");
 FileUtil.string2File("OrderResultSet.xml",rsx.getXmlText());

} catch (Exception e) {
 System.out.println("Exception:");
 e.printStackTrace();
 }
 }
 }

Generating a result set in Adaptive Server
The following SQL script invokes the constructor of the ResultSetXml class in
a server environment:

declare @rsx xml.resultset.ResultSetXml
select @rsx = new xml.resultset.ResultSetXml
 (“select 1 as ‘a’, 2 as ‘b’, 3 ”, “none”, “yes”, “”);
insert into resultset_docs values (“1”, @rsx)

Translating the XML ResultSet document in the client

172

Translating the XML ResultSet document in the client
The main() method of ResultSetXml is executed in a client environment. It
copies the file OrderResultSet.xml, constructs a ResultSetXml object
containing the contents of that file, and invokes the toSqlScript() method of that
object to generate a SQL script that re-creates the data of the result set. The
method stores the SQL script in the file order-resultset-copy.sql.

import java.io.*;
import jcs.util.*;
public class ResultSet2Sql{
 public static void main (String[] args) {
 try{
 String xml = FileUtil.file2String("OrderResultSet.xml");

xml.resultset.ResultSetXml rsx
 = new xml.resultset.ResultSetXml(xml);
 String sqlScript
 = rsx.toSqlScript("orderresultset_copy", "col_","no");
 FileUtil.string2File("order-resultset-copy.sql",sqlScript);

ExecSql.statement(sqlScript,“antibes:4000?user=sa”);
 } catch (Exception e) {
 System.out.println("Exception:");
 e.printStackTrace();
 }
 }
 }

This is the SQL script generated by ResultSet2Sql.

set quoted_identifier on
 create table orderresultset_copy (
 Date datetime not null ,
 CustomerId varchar (5) not null ,
 CustomerName varchar (50) not null ,
 ItemId varchar (5) not null ,
 ItemName varchar (20) not null ,
 Quantity integer not null ,
 unit smallint not null
)
insert into orderresultset_copy values (
 '1999-07-04 00:00:00.0', '123',
 'Acme Alpha', '987', 'Widget', 5, 1)
 insert into orderresultset_copy values (
 '1999-07-04 00:00:00.0', '123',
 'Acme Alpha', '654',
 'Medium connecter', 3, 12)
 insert into orderresultset_copy values (

Chapter 9 XML for SQL Result Sets

173

 ’1999-07-04 00:00:00.0’, ’123’,
 ’Acme Alpha’, ’579’, ’Type 3 clasp’, 1, 1)

The SQL script includes the set quoted_identifier on command for those cases
where the generated SQL uses quoted identifiers.

Translating the XML ResultSet Document in Adaptive
Server

The following SQL script invokes the toSqlScript() method in Adaptive Server
and then creates and populates a table with a copy of the result set data.

declare @rsx xml.resultset.ResultSetXml
select @rsx = rs_doc from resultset_docs where id=1
select @script = @rsx>>toSqlScript(“resultset_copy”,

“column_”, “no”)
declare @I integer
select @I = util.ExecSql.statement(@script, “”)

Using the document storage technique
This section shows examples of storing XML ResultSet documents in single
SQL columns and techniques for referencing and updating the column
elements.

Storing an XML ResultSet document in a SQL column
The following SQL script generates an XML ResultSet document and stores it
in a table:

declare @query java.lang.StringBuffer
select @query = new java.lang.StringBuffer()
 -- The following “appends” build up a SQL select statement in
 the @query variable
 -- We use a StringBuffer, and the append method, so that the
 @query can be as long as needed.
select @query>>append("select order_date as Date,

c.customer_id as CustomerId, ")

Using the document storage technique

174

select @query>>append("customer_name as CustomerName, ")
select @query>>append("o.item_id as ItemId, i.item_name as ItemName, ")
select @query>>append("quantity as Quantity, o.unit as unit ")
select @query>>append("from customers c, orders o, items i ")
select @query>>append("where c.customer_id=o.customer_id and"
 + "o.item_id=i.item_id ")
declare @rsx xml.resultset.ResultSetXml
select @rsx = new xml.resultset.ResultSetXml
 (@query>>toString(), ’none’, ’yes’, ’’)
insert into resultset_docs values("1", @rsx)

Accessing the columns of stored ResultSet documents
In “Storing an XML ResultSet document in a SQL column” on page 173 , you
inserted a complete XML ResultSet document into the rs_doc column of the
resultset_docs table. This section shows examples of using methods of the
ResultSetXml class to reference and update a stored ResultSet.

A client-side call

The main() method of the ResultSetElements class is executed in a client
environment. It copies the file OrderResultSet.xml, constructs a ResultSetXml
document from it, and then accesses and updates the columns of the ResultSet.

import java.io.*;
import util.*;
public class ResultSetElements {
 public static void main (String[] args) {
 try{

String xml =
 FileUtil.file2String("OrderResultSet.xml");
 xml.resultset.ResultSetXml rsx
 = new xml.resultset.ResultSetXml(xml);

// Get the columns containing customer and date info
 String cname = rsx.getColumn(0, "CustomerName");
 String cid = rsx.getColumn(0, "CustomerId");
 String date = rsx.getColumn(0, "Date");

// Get the elements for item 1 (numbering from 0)
 String iName1 = rsx.getColumn(1, "ItemName");
 String iId1 = rsx.getColumn(1, "ItemId");
 String iQ1 = rsx.getColumn(1, "Quantity");
 String iU = rsx.getColumn(1, "unit");

System.out.println("\nBEFORE UPDATE: ");
 System.out.println("\n "+date+ " "+ cname + " " +

Chapter 9 XML for SQL Result Sets

175

 cid);
 System.out.println("\n "+ iName1+" "+iId1+" "
 + iQ1 + " " + iU + "\n");

// Set the elements for item 1 (numbering from 0)
 rsx.setColumn(1, "ItemName", "Flange");
 rsx.setColumn(1, "ItemId", "777");
 rsx.setColumn(1, "Quantity","3");
 rsx.setColumn(1, "unit", "13");

// Get the updated elements for item 1 (numbering
 from 0) iName1 = rsx.getColumn(1, "ItemName");
 iId1 = rsx.getColumn(1, "ItemId");
 iQ1 = rsx.getColumn(1, "Quantity");
 iU = rsx.getColumn(1, "unit");

System.out.println("\nAFTER UPDATE: ");
 System.out.println("\n "+date+ " "+ cname + " " +
 cid);
 System.out.println("\n "+ iName1+" "+iId1+" "
 + iQ1 + " " + iU + "\n");

 // Copy the updated document to another file
 FileUtil.string2File("Order-updated.xml",
 rsx.getXmlText());

} catch (Exception e) {
 System.out.println("Exception:");
 e.printStackTrace();
 }
 }
 }

The FileUtil.string2File() method stores the updated ResultSet in the file Order-
updated.xml. The ResultSetMetaData of the updated document is unchanged.
The updated ResultSetData of the document is as follows with new values in
the second item.

<ResultSetData>
 <Row>
 <Column name="Date">1999-07-04 00:00:00.0</Column>
 <Column name="CustomerId">123</Column>
 <Column name="CustomerName">Acme Alpha</Column>
 <Column name="ItemId">987</Column>
 <Column name="ItemName">Widget</Column>
 <Column name="Quantity">5</Column>
 <Column name="unit">1</Column>
 </Row>
 <Row>
 <Column name="Date">1999-07-04 00:00:00.0</Column>
 <Column name="CustomerId">123</Column>

Using the document storage technique

176

 <Column name="CustomerName">Acme Alpha</Column>
 <Column name="ItemId">777</Column>
 <Column name="ItemName">Flange</Column>
 <Column name="Quantity">3</Column>
 <Column name="unit">13</Column>
 </Row>
 <Row>
 <Column name="Date">1999-07-04 00:00:00.0</Column>
 <Column name="CustomerId">123</Column>
 <Column name="CustomerName">Acme Alpha</Column>
 <Column name="ItemId">579</Column>
 <Column name="ItemName">Type 3 clasp</Column>
 <Column name="Quantity">1</Column>
 <Column name="unit">1</Column>
 </Row>
 </ResultSetData>
 </ResultSet>

A server-side script

Using the SQL script in “Storing an XML ResultSet document in a SQL
column” on page 173, you stored complete XML ResultSet documents in the
rs_doc column of the resultset_docs table. The following SQL commands,
executed in a server environment, reference and update the columns contained
in those documents.

You can select columns by name or by number:

• Select the columns of row 1, specifying columns by name:

select rs_doc>>getColumn(1, "Date"),
 rs_doc>>getColumn(1, "CustomerId"),
 rs_doc>>getColumn(1, "CustomerName"),
 rs_doc>>getColumn(1, "ItemId"),
 rs_doc>>getColumn(1, "ItemName"),
 rs_doc>>getColumn(1, "Quantity"),
 rs_doc>>getColumn(1, "unit")
 from resultset_docs

• Select the columns of row 1, specifying columns by number:

select rs_doc>>getColumn(1, 0),
 rs_doc>>getColumn(1, 1),
 rs_doc>>getColumn(1, 2),
 rs_doc>>getColumn(1, 3),
 rs_doc>>getColumn(1, 4),
 rs_doc>>getColumn(1, 5),

Chapter 9 XML for SQL Result Sets

177

 rs_doc>>getColumn(1, 6)
 from resultset_docs

Specify some nonexisting columns and rows. Those references return null
values.

Select rs_doc>>getcolumn(1, "itemid"),
 rs_doc>>getcolumn(1, "xxx"),
 rs_doc>>getcolumn(1, "Quantity"),
 rs_doc>>getcolumn(99, "unit"),
 rs_doc>>getColumn(1, 876)
 from resultset_docs

Update columns in the stored ResultSet document:

update resultset_docs
set rs_doc = rs_doc>>setColumn(1, "ItemName",
“Wrench”)
where id= “1”
update resultset_docs
 set rs_doc = rs_doc>>setColumn(1, "ItemId", "967")
 where id=”1”
update resultset_docs
 set rs_doc = rs_doc>>setColumn(1, "unit", "6")
 where id=”1”
select rs_doc>>getColumn(1, "ItemName"),
 rs_doc>>getColumn(1, "ItemId"),
 rs_doc>>getColumn(1, "unit")
 from resultset_docs
 where id=”1”

Quantified comparisons in stored ResultSet documents
ResultSetXml contains two methods, allString() and someString(), for
quantified searches on columns of a ResultSetXML document. To illustrate
these two methods, first create some example rows in the order_results table.

The order_results table has been initialized with one row, whose id = “1” and
whose rs_doc column contains the original Order used in all examples.

The following statements copy that row twice, assigning id values of “2” and
“3” to the new rows. The order_results table now has three rows, with id column
values of “1,” “2,” and “3” and the original Order.

insert into resultset_docs(id, rs_doc)
select "2", rs_doc
 from resultset_docs where id="1"

Using the document storage technique

178

insert into resultset_docs (id, rs_doc) select "3", rs_doc
 from resultset_docs where id="1"

The following statements modify the row with an id column value of “1” so that
all three items have ItemIds of “100”, “110”, and “120”:

update resultset_docs
 set rs_doc = rs_doc>>setColumn(0, "ItemId", "100")
 where id="1"
update resultset_docs
 set rs_doc = rs_doc>>setColumn(1, "ItemId", "110")
 where id="1"
update resultset_docs
 set rs_doc = rs_doc>>setColumn(2, "ItemId", "120")
 where id="1"

The following update statement modifies the row with id = “3” so that its
second item (from 0) has an ItemId of “999”:

update resultset_docs
 set rs_doc = rs_doc>>setColumn(2, "ItemId", "999")
 where id="3"

The following select statement displays the id column and the three ItemId
values for each row:

select id, rs_doc>>getColumn(0, "ItemId"),
 rs_doc>>getColumn(1, "ItemId"),
 rs_doc>>getColumn(2, "ItemId")
 from resultset_docs

The results of the select are:

 1 100 110 120
 2 987 654 579
 3 987 654 999

Note the following:

• The row with id of “2” is the original Order data.

• The row with id of “1” has been modified so that all ItemIds for that row
are less than “200.”

• The row with id of “3” has been modified so that some ItemId for that row
is greater than or equal to “9999”

The following expresses these quantifications with the allString() and
someString() methods:

select id, rs_doc>>allString(3, "<", "200") as “ALL test”

Chapter 9 XML for SQL Result Sets

179

 from resultset_docs
select id, rs_doc>>someString(3, ">=", "999") as “SOME test”
 from resultset_docs
select id as “id for ALL test” from resultset_docs
 where rs_doc>>allString(3, "<", "200")>>booleanValue() = 1
select id as “id for SOME test” from resultset_docs
 where rs_doc>>someString(3, ">=", "999")>>booleanValue() = 1

The first two statements show the quantifier in the select list and give these
results:

The last two statements show the quantifier in the where clause and give these
results:

• ID for “all” test = “3”

• ID for “some” test = “1”

In the examples with the quantifier method in the where clause, note that:

• The where clause examples compare the method results with an integer
value of 1. SQL does not support the Boolean datatypes as a function
value, but instead treats Boolean as equivalent to integer values 1 and 0,
for true and false.

• The where clause examples use the booleanValue() method. The allString(
) and someString() methods return type java.lang.Boolean, which is not
compatible with SQL integer. The Java booleanValue() method returns the
simple Boolean value from the Boolean object, which is compatible with
SQL integer. This behavior is a result of merging the SQL and Java type
systems.

The quantifier methods return java.lang.Boolean instead of simply Java boolean
so that they can return null when the column is out of range, which is consistent
with the SQL treatment of out-of-range conditions.

The following statements show quantifier references that specify column 33,
which does not exist in the data:

select id, rs_doc>>allString(33, "<", "200") as “ALL test”
 from resultset_docs
select id as “id for ALL test” from resultset_docs
 where rs_doc>>allString(33, "<", "200")>>booleanValue() = 1

ID “all” test “some” test

1 true false

2 false false

3 false true

Using the document storage technique

180

The ID for the “all” test = (empty).

ID “all” test

1 NULL

2 NULL

3 NULL

181

C H A P T E R 1 0 Debugging Java in the Database

This chapter describes the Sybase Java debugger and how you can use it
when developing Java in Adaptive Server.

Introduction to debugging Java
You can use the Sybase Java debugger to test Java classes and fix
problems with them.

How the debugger works
The Sybase Java debugger is a Java application that runs on a client
machine. It connects to the database using the Sybase jConnect JDBC
driver.

The debugger debugs classes running in the database. You can step
through the source code for the files as long as you have the Java source
code on the disk of your client machine. (Remember, the compiled classes
are installed in the database, but the source code is not).

Requirements for using the Java debugger
To use the Java debugger, you need:

• A Java runtime environment such as the Sun Microsystems Java
Runtime Environment, or the full Sun Microsystems JDK on your
machine.

Name Page
Introduction to debugging Java 181

Using the debugger 182

A debugging tutorial 189

Using the debugger

182

• The source code for your application on your client machine.

What you can do with the debugger
Using the Sybase Java debugger, you can:

• Trace execution – Step line by line through the code of a class running in
the database. You can also look up and down the stack of functions that
have been called.

• Set breakpoints – Run the code until you hit a breakpoint, and stop at that
point in the code.

• Set break conditions – Breakpoints include lines of code, but you can also
specify conditions when the code is to break. For example, you can stop at
a line the tenth time it is executed, or only if a variable has a particular
value. You can also stop whenever a particular exception is thrown in the
Java application.

• Browse classes – You can browse through the classes installed into the
database that the server is currently using.

• Inspect and set variables – You can inspect the values of variables alter
their value when the execution is stopped at a breakpoint.

• Inspect and break on expressions – You can inspect the value of a wide
variety of expressions.

Using the debugger
This section describes how to use the Java debugger. The next section provides
a simple tutorial.

Starting the debugger and connecting to the database
The debugger is the JAR file Debug.jar, installed in your Adaptive Server
installation directory in $SYBASE/$SYBASE_ASE/debugger. If it is not already
present, add this file as the first element to your CLASSPATH environment
variable.

Chapter 10 Debugging Java in the Database

183

Debug.jar contains many classes. To start the debugger you invoke the
sybase.vm.Debug class, which has a main() method.You can start the debugger
in three ways:

• Run the jdebug script located in $SYBASE/$SYBASE_ASE/debugger.

“A debugging tutorial” on page 189 provides a sample debugging session
using the jdebug script.

• From the command line, enter:

java sybase.vm.Debug

In the Connect window, enter a URL, user login name, and password to
connect to the database.

• From Sybase Central:

a Start Sybase Central and open the Utilities folder, under Adaptive
Server Enterprise.

b Double-click the Java debugger icon in the right panel.

c In the Connect window, enter a URL, user login name, and password
to connect to the database.

Compiling classes for debugging
Java compilers such as the Sun Microsystems javac compiler can compile Java
classes at different levels of optimization. You can opt to compile Java code so
that information used by debuggers is retained in the compiled class files.

If you compile your source code without using switches for debugging, you can
still step through code and use breakpoints. However, you cannot inspect the
values of local variables.

To compile classes for debugging using the javac compiler, use the -g option:

javac -g ClassName.java

Attaching to a Java VM
When you connect to a database from the debugger, the Connection window
shows all currently active Java VMs under the user login name. If there are
none, the debugger goes into wait mode. Wait mode works like this:

Using the debugger

184

• Each time a new Java VM is started, it shows up in the list.

• You may choose either to debug the new Java VM or to wait for another
one to appear.

• Once you have passed on a Java VM, you lose your chance to debug that
Java VM. If you then decide to attach to the passed Java VM, you must
disconnect from the database and reconnect. At this time, the Java VM
appears as active, and you can attach to it.

The Source window
The Source window:

• Displays Java source code, with line numbers and breakpoint indicators
(an asterisk in the left column).

• Displays execution status in the status box at the bottom of the window.

• Provides access to other debugger windows from the menu.

The debugger windows

The debugger has the these windows:

• Breakpoints window – Displays the list of current breakpoints.

• Calls window – Displays the current call stack.

• Classes window – Displays a list of classes currently loaded in the Java
VM. In addition, this window displays a list of methods for the currently
selected class and a list of static variables for the currently selected class.
In this window you can set breakpoints on entry to a method or when a
static variable is written.

• Connection window – The Connection window is shown when the
debugger is started. You can display it again if you wish to disconnect from
the database.

• Exceptions window – You can set a particular exception on which to
break, or choose to break on all exceptions.

• Inspection window – Displays current static variables, and allows you to
modify them. You can also inspect the value of a Java expression, such as
the following:

• Local variables

Chapter 10 Debugging Java in the Database

185

• Static variables

• Expressions using the dot operator

• Expressions using subscripts []

• Expressions using parentheses, arithmetic, or logical operators.

For example, the following expressions could be used:

x[i].field
q + 1
i == 7
(i + 1)*3

• Locals window – Displays current local variables, and allows you to
modify them.

• Status window – Displays messages describing the execution state of the
Java VM.

Options
The complete set of options for stepping through source code are displayed on
the Run menu. They include the following:

Function Shortcut key Description

Run F5 Continue running until
the next breakpoint, until
the Stop item is selected,
or until execution
finishes.

Step Over F7 or Space Step to the next line in the
current method. If the
line steps into a different
method, step over the
method, not into it. Also,
step over any breakpoints
within methods that are
stepped over.

Step Into F8 or i Step to the next line of
code. If the line steps into
a different method, step
into the method.

Using the debugger

186

Setting breakpoints
When you set a breakpoint in the debugger, the Java VM stops execution at that
breakpoint. Once execution is stopped, you can inspect and modify the values
of variables and other expressions to better understand the state of the program.
You can then trace through execution step by step to identify problems.

Setting breakpoints in the proper places is a key to efficiently pinpointing the
problem execution steps.

The Java debugger allows you to set breakpoints not only on a line of code, but
on many other conditions. This section describes how to set breakpoints using
different conditions.

Breaking on a line number

When you break on a particular line of code, execution stops whenever that line
of code is executed.

To set a breakpoint on a particular line:

• In the Source window, select the line and press F9.

Alternatively, you can double-click a line.

When a breakpoint is set on a line number, the breakpoint is shown in the
Source window by an asterisk in the left column. If the Breakpoints window is
open, the method and line number is displayed in the list of breakpoints.

You can toggle the breakpoint on and off by repeatedly double-clicking or
pressing F9.

Step Out F11 Complete the current
method, and break at the
next line of the calling
method.

Stop Break execution.

Run to Selected F6 Run until the currently
selected line is executed
and then break.

Home F4 Select the line where the
execution is broken.

Function Shortcut key Description

Chapter 10 Debugging Java in the Database

187

Breaking on a static method

When you break on a method, the break point is set on the first line of code in
the method that contains an executable statement.

To set a breakpoint on a static method:

1 From the Source window, choose Break→ New. The Break At window is
displayed.

2 Enter the name of a method in which you wish execution to stop. For
example:

JDBCExamples.selecter

stops execution whenever the JDBCExamples.selecter() method is entered.

When a breakpoint is set on a method, the breakpoint is shown in the Source
window by an asterisk in the left column of the line where the breakpoint
actually occurs. If the Breakpoints window is open, the method is displayed in
the list of breakpoints.

Using counts with breakpoints

If you set a breakpoint on a line that is in a loop, or in a method that is
frequently invoked, you may find that the line is executed many times before
the condition you are really interested in takes place. The debugger allows you
to associate a count with a breakpoint, so that execution stops only when the
line is executed a set number of times.

To associate a count with a breakpoint:

1 From the Source window, select Break→Display. The Breakpoints
window is displayed.

2 In the Breakpoints window, click a breakpoint to select it.

3 Select Break→Count. A window is displayed with a field for entering a
number of iterations. Enter an integer value. The execution will stop when
the line has been executed the specified number of times.

Using conditions with breakpoints

The debugger allows you to associate a condition with a breakpoint, so that
execution stops only when the line is executed and the condition is met.

To associate a condition with a breakpoint:

Using the debugger

188

1 From the Source window, select Break→Display. The Breakpoints
window is displayed.

2 In the Breakpoints window, click a breakpoint to select it.

3 Select Break→Condition. A window is displayed with a field for entering
an expression. The execution will stop when the condition is true.

The expressions used here are the same as those that can be used in the
Inspection window, and include the following:

• Local variables

• Static variables

• Expressions using the dot operator

• Expressions using subscripts []

• Expressions using parentheses, arithmetic, or logical operators.

Breaking when execution is not interrupted

With a single exception, breakpoints can only be set when program execution
is interrupted. If you clear all breakpoints, and run the program you are
debugging to completion, you can no longer set a breakpoint on a line or at the
start of a method. Also, if a program is running in a loop, execution is
continuing and is not interrupted.

To debug your program under either of these conditions, select Run→Stop
from the Source window. This stops execution at the next line of Java code that
is executed. You can then set breakpoints at other points in the code.

Disconnecting from the database
When the program has run to completion, or at anytime during debugging, you
can disconnect from the database from the Connect window. Then, exit the
Source window and reconnect to the database after the debug program
terminates.

Chapter 10 Debugging Java in the Database

189

A debugging tutorial
This section takes you through a simple debugging session.

Before you begin
The source code for the class used in this tutorial is located in
$SYBASE/$SYBASE_ASE/sample/JavaSql/manual-
examples/JDBCExamples.java.

Before you run the debugger, compile the source code using the javac
command with the -g option.

See “Creating Java classes and JARs” on page 16 for complete instructions for
compiling and installing Java classes in the database.

Start the Java debugger and connect to the database
You can start the debugger and connect to the database using a script, command
line options, or Sybase Central. In this tutorial, we use jdebug to start the
debugger. You can use any database.

Follow these steps:

1 Start Adaptive Server.

2 If Java queries have not yet been executed on your server, run any Java
query to initialize the Java subsystem and start a Java VM.

3 Run the $SYBASE/$SYBASE_ASE/debugger/jdebug script. jdebug
prompts you for these parameters:

a Machine name of the Adaptive Server

b Port number for the database

c Your login name

d Your password

e An alternate path to Debug.jar if its location is not in your
CLASSPATH

Once the connection is established, the debugger window displays a list of
available Java VMs or “Waiting for a VM.”

A debugging tutorial

190

Attach to a Java VM
To attach to a Java VM from your user session:

1 With the debugger running, connect to the sample database from isql as the
sa:

$SYBASE/bin/isql -Usa -P

Note You cannot start Java execution from the debugger. To start a Java
VM you must carry out a Java operation from another connection using the
same user name.

2 Execute Java code using the following statements:

select JDBCExamples.serverMain(‘createtable’)
select JDBCExamples.serverMain(‘insert’)
select JDBCExamples.serverMain(‘select’)

The Sybase Java VM starts in order to retrieve the Java objects from the
table. The debugger immediately stops execution of the Java code.

The debugger Connection window displays the Java VMs belonging to the
user in this format:

VM#: “login_name, spid:spid#”

3 In the debugger Connection window, click the Java VM you want and then
click Attach to VM. The debugger attaches to the Java VM and the Source
window appears. The Connection window disappears.

Next, enable the Source window to show the source code for the method.
The source code is available on disk.

Load source code into the debugger
The debugger looks for source code files. You need to make the
$SYBASE/$SYBASE_ASE/sample/JavaSql/manual-examples/ subdirectory
available to the debugger, so that the debugger can find source code for the
class currently executing in the database.

To add a source code location to the debugger:

1 From the Source window, select File→Source Path. The Source Path
window displays.

Chapter 10 Debugging Java in the Database

191

2 From the Source Path window, select Path→Add. Enter the following
location into the text box:

$SYBASE/$SYBASE_ASE/sample/JavaSql/
manual-examples/

The source code for the JDBCExamples class displays in the window, with
the first line of the Query method serverMain() highlighted. The Java
debugger has stopped execution of the code at this point.

You can now close the Source Path window.

Step through source code
You can step through source code in the Java debugger in several ways. In this
section we illustrate the different ways you can step through code using the
serverMain() method.

When execution pauses at a line until you provide further instructions, we say
that the execution breaks at the line. The line is a breakpoint. Stepping
through code is a matter of setting explicit or implicit breakpoints in the code,
and executing code to that breakpoint.

Following the previous section, the debugger should have stopped execution of
JDBCExamples.serverMain() at the first statement:

Examples

Here are some steps you can try:

1 Stepping into a function – press F7 to step to the next line in the current
method.

2 Press F8 to step into the function doAction() in line 99.

3 Run to a selected line. You are now in function doAction(). Click on line
155 and press F6 to run to that line and break:

String workString = “Action(“ + action + “)”;

4 Set a breakpoint and execute to it – select line 179 and press F9 to set a
breakpoint on that line when running isql select
JDBCExamples.serverMain(’select’):

workString + = selecter(con);

Press F5 to execute to that line.

A debugging tutorial

192

5 Experiment – try different methods of stepping through the code. End with
F5 to complete the execution.

When you have completed the execution, the Interactive SQL Data
window displays:

Action(select) – Row with id = 1: name(Joe Smith)

Inspecting and modifying variables
You can inspect the values of both local variables (declared in a method) and
class static variables in the debugger.

Inspecting local variables

You can inspect the values of local variables in a method as you step through
the code, to better understand what is happening.

To inspect and change the value of a variable:

1 Set a breakpoint at the first line of the selecter() method from the
Breakpoint window. This line is:

String sql = "select name, home from xmp where
id=?";

2 In Interactive SQL, enter the following statement again to execute the
method:

select JDBCExamples.serverMain(‘select’)

The query executes only as far as the breakpoint.

3 Press F7 to step to the next line. The sql variable has now been declared
and initialized.

4 From the Source window, select Window→Locals. The Local window
appears.

The Locals window shows that there are several local variables. The sql
variable has a value of zero. All others are listed as not in scope, which
means they are not yet initialized.

You must add the variables to the list in the Inspect window.

5 In the Source window, press F7 repeatedly to step through the code. As
you do so, the values of the variables appear in the Locals window.

Chapter 10 Debugging Java in the Database

193

If a local variable is not a simple integer or other quantity, then as soon as
it is set a + sign appears next to it. This means the local variable has fields
that have values. You can expand a local variable by double-clicking the +
sign or setting the cursor on the line and pressing Enter.

6 Complete the execution of the query to finish this exercise.

Modifying local variables

You can also modify values of variables from the Locals window.

To modify a local variable:

1 In the debugger Source window, set a breakpoint at the following line in
the selecter() method of the serverMain
 class:

String sql = "select name, home from xmp where
id=?";

2 Step past this line in the execution.

3 Open the Locals window. Select the id variable, and select
Local→Modify. Alternatively, you can set the cursor on the line and press
Enter.

4 Enter a value of 2 in the text box, and click OK to confirm the new value.
The id variable is set to 2 in the Locals window.

5 From the Source window, press F5 to complete execution of the query. In
the Interactive SQL Data window, an error message displays indicating
that no rows were found.

Inspecting static variables

You can also inspect the values of class-level variables (static variables).

To inspect a static variable:

1 From the debugger Source window, select Window→Classes. The Classes
window is displayed.

2 Select a class in the left box. The methods and static variables of the class
are displayed in the boxes on the right.

3 Select Static→Inspect. The Inspect window is displayed. It lists the
variables available for inspection.

A debugging tutorial

194

195

C H A P T E R 1 1 Network Access Using java.net

Adaptive Server 12.5 supports java.net, a package that allows you to
create networking applications and access different kinds of external
servers.

Adaptive Server java.net is compliant with the Java 1.2 API.

Overview
Support for java.net in the Adaptive Server allows you to create client-side
Java networking applications within the server. You can create a network
Java client application in the Adaptive Server that connects to any server,
which in effect enables Adaptive Server to function as a client to external
servers. See“Example usage” on page 197.

You can use java.net for many purposes:

• Download documents from any URL address on the Internet.

• Send e-mail messages from inside the server.

• Connect to an external server to save a document and perform file
functions: saving a document, editing a document, and so forth.

• Access documents using XML.

Topic Page
Overview 195

java.net classes 196

Setting up java.net 196

Example usage 197

User notes 202

Where to go for help 202

java.net classes

196

java.net classes
Table 1.1 shows the java.net classes Sybase supports.

Table 11-1: Supported java.net classes

You can use any of the supported classes in java.net to write Adaptive
Server client applications.

Setting up java.net
The following steps enable java.net.

❖ enabling jave.net

1 Enable Java Virtual Machine (VM).

sp_configure “enable java”, 1

2 Specify the number of sockets you want to open (the default is 0). The
number of sockets configuration parameter is dynamic; you need not
restart Adaptive Server if you change the configuration option. For
example, to open 10 sockets, enter

sp_configure “number of java sockets”, 10

Class Supported Special circumstances

InetAddress Yes None

Socket Yes Does not support deprecated
constructor “Socket (string host, int
port, boolean stream)” when stream
= false

URL Yes No file URL

HttpURLConnection Yes None

URLConnection Yes No file URL

URLDecoder Yes None

URLEncoder Yes None

DatagramPacket No

DatagramSocket No

MulticastSocket No

ServerSocket No

Chapter 11 Network Access Using java.net

197

3 Adjust the amount of memory available for the Java VM. Since you
may be streaming large text documents in and out, you may need to
increase the amount of memory available to the Java VM. The
parameters you may need to adjust are:

• size of global fixed heap

• size of process object heap

• size of shared class heap

For more information on these parameters, see Chapter 5, “Configuration
Parameters,” in the Sybase System Administration Guide.

Example usage
This section provides examples for using both socket classes and the URL
class. You can:

• Access an external document with XQL, using the URL class

• Save text out of Adaptive Server

• Use the MailTo class URL to mail a document

Using socket classes
Socket classes allow you to do more sophisticated network transfers than
you can achieve using URL classes. The Socket class allows you to
connect to specified port on any specified network host, and use the
InputStream and OutputStream classes to read and write the data.

Saving text out of Adaptive Server

This example describes how to set up a client application in Adaptive
Server. Adaptive Server version12.5 does not support direct access to a
file; this example is a workaround for this limitation.

You can write your own external server, which performs file operations,
and connect to this new server from the Adaptive Server, using a socket
created from a Socket class.

Example usage

198

In the basic roles of client and server, the client connects to the server and
streams the text, while the server receives the stream and streams it to a
file.

This example shows how you can install a Java application in Adaptive
Server, using java.net. This application acts as a client to an external
server.

❖ The client process:

1 Receives an InputStream.

2 Creates a socket using the Socket class to connect to the server.

3 Creates an OutputStream on the socket.

4 Reads the InputStream and writes it to the OutputStream:

public static void writeOut(InputStream fin)
throws Exception{

Socket socket = new Socket(“localhost”, 1718);
OutputStream fout = new
BufferedOutputStream(socket.getOutputStream());byte []

buffer = new byte [10];
int bytes_read;
while (bytes_read = fin.read(buffer)) ! = -1{

fout.write(buffer, 0, bytes_read);
}
fout.close();
}

Compile this program.

❖ The server process:

1 Creates a server socket, using the SocketServer class, to listen on a
port.

2 Uses the server socket to obtain a socket connection.

3 Receives an InputStream.

4 Reads the InputStream and writes it to a FileOutputStream.

Note In this example, the server does not use threads, and therefore it can
receive a connection from only one client at a time.

public class FileServer {
public static void main (string[] args) throws

Chapter 11 Network Access Using java.net

199

IOException{
 Socket client = accept (1718);
 try{
 InputStream in = client.getInputStream ();
 FileOutputStream fout = new
 FileOutputStream(“chastity.txt”);
 byte[] buffer = new byte [10];
 int bytes_read;
 while (bytes_read = in.read(buffer))!= -1){
 fout.write(buffer, 0, bytes_read);
 }
 fout.close();
 }finally {
 client.close ();
 }
}
static Socket accept (int port) throws

IOException{
System.out.prinln

(“Starting on port “ + port);
ServerSocket server = new

ServerSocket (port);
System.ou.println (“Waiting”);
Socket client = server.accept ();
System.out.println (“Accepted from “ +

client.getInetAddress ());
server.close ();
return client;
}

}

Compile this program.

To use this combination of client and server, you must install the client in
Adaptive Server and start the external server:

witness% java FileServer &
[2] 28980
witness% Starting on port 1718
Waiting

Invoke the client from within Adaptive Server.

create table t(c1 text)
go
insert values into t1 (“samplestring”)
go

select TestStream2File.writeOut(c1) from t

Example usage

200

go

Using the URL class
You can use the URL class to:

• Send an e-mail message.

• Download an HTTP document from a Web server. This document can
be a static file or can be dynamically constructed by the Web server.

• Access an external document with XQL

Using the MailTo class URL to mail a document

Mailing a document is a good example of using the URL class. Before you
start, you must have your client connected to a mailer, such as sendmail.

1 Create a URL object.

2 Set a URLConnection object.

3 Create an OutputStream object from the URL object.

4 Write the mail. For example:

public static void sendIt() throws Execption{
System.getProperty("mail.host",
"salsa.sybase.com");
URL url = new URL(mailto:"name@sybase.com");
 URLConnection conn = url.openConnection();
 PrintStream out = new
 PrintStream(conn.getOutputStream(), true);
out.print ("From: kennys@sybase.com"+"\r\n");
out.print ("Subject: Works Great!"+"\r\n");
out.print ("Thanks for the example - it works
great!"+"\r\n");
out.close();
System.out.printIn(“Messsage Sent”);
}

5 Install the MailTo class for sending e-mail from within the database:

select MailTo.sendIt()
Message Sent!

A connection to a server is required for these actions.

Chapter 11 Network Access Using java.net

201

Obtaining an HTTP document

Another way to use the URL class is to download a document from an
HTTP URL. Before you start, your client must connect to a Web server. In
the client code, you:

• Create a URL object.

• Create an InputStream object from the URL object.

• Use read on the InputStream object to read in the document.

To use the following code sample, you must:

• Read the entire document into Adaptive Server memory.

• Create a new InputStream on the document in Adaptive Server
memory.

For example:

public static InputStream url_test()
throws Exception

{
URL u = new URL(“http://www.xxxxxx.com/”);
Reader in = new InputStreamReader(u.openStream()));
int n=0, off;
char c[]=new char[50000];
for(off=0;(off<c.length-512)
&&((n=in.read(c,off,512))!=-1;off+=n)
for(off=0; off < c.length; off ++) {
b[off]=(byte)c[off];
in.close();
ByteArrayInputStream test =

new ByteArrayInputStream(b,0,off);
return (InputStream) test}

After you create the new InputStream class, you can install this class and
use it to read a text file into the database, inserting data into a table, as in
the following example.

create table t (cl text)
insert into t values (

URLprocess.readURL)
select datalength(cl) from

 34136

User notes

202

Accessing an external document with XQL

You can access an external document using the Adaptive Server XQL
query function, which both parses and queries XML documents.

Pass the XML document to the XQL parser as an InputStream. You can use
the class URLProcess to pass the XML document to either the XQL parse
method or the XQL query method.

The class URLProcess is available on

select xml.Xql.query(“//ItemID”,
URLProcess.readURL

(“http://www.myserver.com/xmltest.xml”))

• $SYBASE/ASE-12_5/sample/JavaSql for UNIX environments

• %SYBASE\ASE-12_5\sample\JavaSql for NT environments

User notes
Certain aspects of java.net require caution:

• Most objects associated with java.net are not serializable, which
means that you cannot insert them into tables.

• You might encounter the exception “Too many open files,” when you
have opened only a few. Check Number of Java Sockets configuration
parameter.

• Most of the I/O-related functions use buffered I/O, which means that
you might need to flush your data explicitly. The PrintWriter class is
an example of a class in which the data is not automatically flushed.

Where to go for help
Reference documents:

• Java Examples in a Nutshell: A Desktop Quick Reference. David
Flanagan, O’Reilly 1997

Chapter 11 Network Access Using java.net

203

• Java Network Programming: Complete guide to networking, streams,
and distributed computing. Hughes, Shoffner, Hamner, Bellur,
Manning 1997

These documents are printed; you can find many more Java documents on
the java.sun.com Web site.

Where to go for help

204

205

C H A P T E R 1 2 Reference Topics

This chapter presents information on several reference topics.

Assignments
This section defines the rules for assignment between SQL data items
whose datatypes are Java-SQL classes.

Each assignment transfers a source instance to a target data item:

• For an insert statement specifying a table that has a Java-SQL column,
refer to the Java-SQL column as the target data item and the insert
value as the source instance.

• For an update statement that updates a Java-SQL column, refer to the
Java-SQL column as the target data item and the update value as the
source instance.

Topic Page
Assignments 205

Allowed conversions 207

Transferring Java-SQL objects to clients 207

Supported Java API packages, classes, and methods 208

Invoking SQL from Java 211

Transact-SQL commands from Java methods 212

Datatype mapping between Java and SQL 217

Java-SQL identifiers 219

Java-SQL class and package names 220

Java-SQL column declarations 221

Java-SQL variable declarations 221

Java-SQL column references 222

Java-SQL member references 223

Java-SQL method calls 224

Assignments

206

• For a select or fetch statement that assigns to a variable or parameter, refer
to the variable or parameter as the target data item and the retrieved value
as the source instance.

Note If the source is a variable or parameter, then it is a reference to an object
in the Java VM. If the source is a column reference, which contains a
serialization, then the rules for column references (see Java-SQL column
references on page 222) yield a reference to an object in the Java VM. Thus,
the source is a reference to an object in the Java VM.

Assignment rules at compile-time
1 Define SC and TC as compile-time class names of the source and target.

Define SC_T and TC_T as classes named SC and DT in the database
associated with the target. Similarly, define SC_S and TC_S as classes
named SC and DT in the database associated with the source.

2 SC_T must be the same as TC_T or a subclass of TC_T.

Assignment rules at runtime
Assume that DT_SC is the same as DT_TC or its subclass.

• Define RSC as the runtime class name of the source value. Define RSC_S
as the class named RSC in the database associated with the source. Define
RSC_T as the name of a class RSC_T installed in the database associated
with the target. If there is no class RSC_T, then an exception is raised. If
RSC_T is neither the same as TC_T nor a subclass of TC_T, then an
exception is raised.

• If the databases associated with the source and target are not the same
database, then the source object is serialized by its current class, RSC_S,
and that serialization is deserialized by the class RSC_T that it will be
associated with in the database associated with the target.

• If the target is a SQL variable or parameter, then the source is copied by
reference to the target.

• If the target is a Java-SQL column, then the source is serialized, and that
serialization is deep copied to the target.

Chapter 12 Reference Topics

207

Allowed conversions
You can use convert to change the expression datatype in these ways:

• Convert Java types where the Java datatype is a Java object type to the
SQL datatype shown in “Datatype mapping between Java and SQL” on
page 217. The action of the convert function is the mapping implied by the
Java-SQL mapping.

• Convert SQL datatypes to Java types shown in “Datatype mapping
between Java and SQL” on page 217. The action of the convert function
is the mapping implied by the SQL-Java mapping.

• Convert any Java-SQL class installed in the SQL system to any other Java-
SQL class installed in the SQL system if the compile-time datatype of the
expression (source class) is a subclass or superclass of the target class.
Otherwise, an exception is raised.

The result of the conversion is associated with the current database.

See “Using the SQL convert function for Java subtypes,” for a discussion of
the use of the convert function for Java subtypes.

Transferring Java-SQL objects to clients
When a value whose datatype is a Java-SQL object type is transferred from
Adaptive Server to a client, the data conversion of the object depends on the
client type:

• If the client is an isql client, the toString() or similar method of the object
is invoked and the result is truncated to varchar, which is transferred to the
client.

Note The number of bytes transferred to the client is dependent on the
value of the @@stringsize global variable. The default value is 50 bytes.
See “Representing Java instances” on page 31 for more information.

• If the client is a Java client that uses jConnect 4.0 or later, the server
transmits the object serialization to the client. This serialization is
seamlessly deserialized by jConnect to yield a copy of the object.

• If the client is a bcp client:

Supported Java API packages, classes, and methods

208

• If the object is a column declared as in row, the serialized value
contained in the column is transferred to the client as a varbinary value
of length determined by the size of the column.

• Otherwise, the serialized value of the object (the result of the
writeObject method of the object) is transferred to the client as an
image value.

Supported Java API packages, classes, and methods
Adaptive Server supports many but not all classes and methods in the Java API.
In addition, Adaptive Server may impose security restrictions and
implementation limitations. For example, Adaptive Server does not support all
of the thread creation and manipulation facilities of java.lang.Thread.

The supported packages are installed with Adaptive Server and are always
available. They cannot be installed by the user.

This section lists:

• Supported Java packages and classes

• Unsupported Java packages

• Unsupported java.sql methods

Supported Java packages and classes
• java.io

• Externalizable

• DataInput

• DataOutput

• ObjectInputStream

• ObjectOutputStream

• Serializable

• java.lang – see “Unsupported java.sql methods and interfaces” on page
209 for a list of the unsupported classes in java.lang.

Chapter 12 Reference Topics

209

• java.math

• java.net – see Chapter 11, “Network Access Using java.net”

• java.sql – see “Unsupported java.sql methods and interfaces” on page 209
for a list of the unsupported methods and interfaces in java.sql.

• java.text

• java.util

• java.util.zip

Unsupported Java packages and classes
• java.applet

• java.awt

• java.awt.datatransfer

• java.awt.event

• java.awt.image

• java.awt.peer

• java.beans

• java.lang.Thread

• java.lang.ThreadGroup

• java.rmi

• java.rmi.dgc

• java.rmi.registry

• java.rmi.server

• java.security

• java.security.acl

• java.security.interfaces

Unsupported java.sql methods and interfaces
• Connection.commit()

Supported Java API packages, classes, and methods

210

• Connection.getMetaData()

• Connection.nativeSQL()

• Connection.rollback()

• Connection.setAutoCommit()

• Connection.setCatalog()

• Connection.setReadOnly()

• Connection.setTransactionIsolation()

• DatabaseMetaData.* – DatabaseMetaData is supported except for these
methods:

• deletesAreDetected()

• getUDTs()

• insertsAreDetected()

• updatesAreDetected()

• othersDeletesAreVisible()

• othersInsertsAreVisible()

• othersUpdatesAreVisible()

• ownDeletesAreVisible()

• ownInsertsAreVisible()

• ownUpdatesAreVisible()

• PreparedStatement.setAsciiStream()

• PreparedStatement.setUnicodeStream()

• PreparedStatement.setBinaryStream()

• ResultSetMetaData.getCatalogName()

• ResultSetMetaData.getSchemaName()

• ResultSetMetaData.getTableName()

• ResultSetMetaData.isCaseSensitive()

• ResultSetMetaData.isReadOnly()

• ResultSetMetaData.isSearchable()

• ResultSetMetaData.isWritable()

Chapter 12 Reference Topics

211

• Statement.getMaxFieldSize()

• Statement.setMaxFieldSize()

• Statement.setCursorName()

• Statement.setEscapeProcessing()

• Statement.getQueryTimeout()

• Statement.setQueryTimeoutt()

Invoking SQL from Java
Adaptive Server supplies a native JDBC driver, java.sql, that implements JDBC
1.1 specifications. It is described at http://www.javasoft.com. java.sql enables
Java methods executing in Adaptive Server to perform SQL operations.

Special considerations
java.sql.DriverManager.getConnection() accepts these URLs:

• null

• “” (the null string)

• jdbc:default:connection

When invoking SQL from Java some restrictions apply:

• A SQL query that is performing update actions (update, insert, or delete)
cannot use the facilities of java.sql to invoke other SQL operations that
also perform update actions.

• Triggers that are fired by SQL using the facilities of java.sql cannot
generate result sets.

• java.sql cannot be used to execute extended stored procedures or remote
stored procedures.

Transact-SQL commands from Java methods

212

Transact-SQL commands from Java methods
You can use certain Transact-SQL commands in Java methods called within
the SQL system. Table 12-1 lists Transact-SQL commands and whether or not
you can use them in Java methods. You can find further information on most
of these commands in the Sybase Adaptive Server Enterprise Reference
Manual.

Chapter 12 Reference Topics

213

Table 12-1: Support status of Transact-SQL commands

Command Status

alter database Not supported.

alter role Not supported.

alter table Supported.

begin ... end Supported.

begin transaction Not supported.

break Supported.

case Supported.

checkpoint Not supported.

commit Not supported.

compute Not supported.

connect - disconnect Not supported.

continue Supported.

create database Not supported.

create default Not supported.

create existing table Not supported.

create function Supported.

create index Not supported.

create procedure Not supported.

create role Not supported.

create rule Not supported.

create schema Not supported.

create table Supported.

create trigger Not supported.

create view Not supported.

cursors Not supported.
Only “server cursors” are
supported, that is, cursors
that are declared and used
within a stored procedure.

dbcc Not supported.

declare Supported.

disk init Not supported.

disk mirror Not supported.

disk refit Not supported.

disk reinit Not supported.

disk remirror Not supported.

Transact-SQL commands from Java methods

214

disk unmirror Not supported.

drop database Not supported.

drop default Not supported.

drop function Supported.

drop index Not supported.

drop procedure Not supported.

drop role Not supported.

drop rule Not supported.

drop table Supported.

drop trigger Not supported.

drop view Not supported.

dump database Not supported.

dump transaction Not supported.

execute Supported.

goto Supported.

grant Not supported.

group by and having clauses Supported.

if…else Supported.

insert table Supported.

kill Not supported.

load database Not supported.

load transaction Not supported.

online database Not supported.

order by Clause Supported.

prepare transaction Not supported.

print Not supported.

raiserror Supported.

readtext Not supported.

return Supported.

revoke Not supported.

rollback trigger Not supported.

rollback Not supported.

save transaction Not supported.

set See Table 12-2 for set
options.

setuser Not supported.

shutdown Not supported.

Command Status

Chapter 12 Reference Topics

215

Table 12-2 lists set command options and whether or not you can use them in
Java methods.

truncate table Supported.

union Operator Supported.

update statistics Not supported.

update Supported.

use Not supported.

waitfor Supported.

where Clause Supported.

while Supported.

writetext Not supported.

Command Status

Transact-SQL commands from Java methods

216

Table 12-2: Support status of set command options

set command option Status

ansinull Supported.

ansi_permissions Supported.

arithabort Supported.

arithignore Supported.

chained Not supported. See Note 1.

char_convert Not supported.

cis_rpc_handling Not supported

close on endtran Not supported

cursor rows Not supported

datefirst Supported

dateformat Supported

fipsflagger Not supported

flushmessage Not supported

forceplan Supported

identity_insert Supported

language Not supported

lock Supported

nocount Supported

noexec Not supported

offsets Not supported

or_strategy Supported

parallel_degree Supported. See Note 2.

parseonly Not supported

prefetch Supported

process_limit_action Supported. See Note 2.

procid Not supported

proxy Not supported

quoted_identifier Supported

replication Not supported

role Not supported

rowcount Supported

scan_parallel_degree Supported. See Note2.

self_recursion Supported

session_authorization Not supported

showplan Supported

sort_resources Not supported

Chapter 12 Reference Topics

217

Datatype mapping between Java and SQL
Adaptive Server maps SQL datatypes to Java types (SQL-Java datatype
mapping) and Java scalar types to SQL datatypes (Java-SQL datatype
mapping). Table 12-3 shows SQL-Java datatype mapping.

statistics io Not supported

statistics subquerycache Not supported

statistics time Not supported

string_rtruncation Supported

stringsize Supported

table count Supported

textsize Not supported

transaction iso level Not supported. See Note 1.

transactional_rpc Not supported

Note (1) set commands with options chained or
transaction isolation level are allowed only if the setting
that they specify is already in effect. That is, this kind of
set command is allowed if it has no affect. This is done to
support common coding practises in stored procedures.

Note (2) set commands pertaining to parallel degree are
allowed but have no affect. This supports the use of stored
procedures that set the parallel degree for other contexts.

set command option Status

Datatype mapping between Java and SQL

218

Table 12-3: Mapping SQL datatypes to Java types

Table 12-4 shows Java-SQL datatype mapping.

SQL type Java type

char String

varchar String

nchar String

nvarchar String

text String

numeric java.math.BigDecimal

decimal java.math.BigDecimal

money java.math.BigDecimal

smallmoney Java.math.BigDecimal

bit boolean

tinyint byte

smallint short

integer int

real float

float double

double precision double

binary byte[]

varbinary byte[]

image byte[]

datetime java.sql.Timestamp

smalldatetime java.sql.Timestamp

Chapter 12 Reference Topics

219

Table 12-4: Mapping Java scalar types to SQL datatypes

Java-SQL identifiers
Description Java-SQL identifiers are a subset of Java identifiers that can be referenced in

SQL.

Syntax java_sql_identifier ::= alphabetic character | underscore (_) symbol
[alphabetic character | arabic numeral | underscore(_) symbol |
dollar ($) symbol]

Usage • Java-SQL identifiers can be a maximum of 255 bytes in length if they are
surrounded by quotation marks. Otherwise, they must be 30 bytes or
fewer.

• The first character of the identifier must be either an alphabetic character
(uppercase or lowercase) or the underscore (_) symbol. Subsequent
characters can include alphabetic characters (uppercase or lowercase),
numbers, the dollar ($) symbol, or the underscore (_) symbol.

• Java-SQL identifiers are always case sensitive.

Delimited Identifiers

• Delimited identifiers are object names enclosed in double quotes. Using
delimited identifiers for Java-SQL identifiers allows you to avoid certain
restrictions on the names of Java-SQL identifiers.

Note You can use double quotes with Java-SQL identifiers whether the
set quoted_identifier option is on or off.

• Delimited identifiers allow you to use SQL reserved words for packages,
classes, methods, and so on. Each time you use the delimited identifier in
a statement, you must enclose it in double quotes. For example:

Java scalar type SQL type

boolean bit

byte tinyint

short smallint

int integer

long integer

float real

double double

Java-SQL class and package names

220

create table t1
(c1 char(12)
c2 p1.”select”.p2.”jar”)

• Double quotes surround only individual Java-SQL identifiers, not the fully
qualified name.

See also For additional information about identifiers, see Chapter 5, “Transact-SQL
Topics,” in the Reference Manual.

Java-SQL class and package names
Description To reference a Java-SQL class or package, use the following syntax:

Syntax java_sql_class_name ::= [java_sql_package_name.]java_sql_identifier

java_sql_package_name ::=
[java_sql_package_name.]java_sql_identifier

Parameters java_sql_class_name
The fully qualified name of a Java-SQL class in the current database.

java_sql_package_name
The fully qualified name of a Java-SQL package in the current database.

java_sql_identifier
See Java-SQL identifiers.

Usage For Java-SQL class names:

• A class name reference always refers to a class in the current database.

• If you specify a Java-SQL class name without referencing the package
name, only one Java-SQL class of that name must exist in the current
database, and its package must be the default (anonymous) package.

• If a SQL user-defined datatype and a Java-SQL class possess the same
sequence of identifiers, Adaptive Server uses the SQL user-defined
datatype name and ignores the Java-SQL class name

For Java-SQL package names:

• If you specify a Java-SQL subpackage name, you must reference the
subpackage name with its package name:

java_sql_package_name.java_sql_subpackage_name

Chapter 12 Reference Topics

221

• Use Java-SQL package names only as qualifiers for class names or
subpackage names and to delete packages from the database using the
remove java command.

Java-SQL column declarations
Description To declare a Java-SQL column when you create or alter a table, use the

following syntax:

Syntax java_sql_column ::= column_name java_sql_class_name

Parameters java_sql_column
Specifies the syntax of Java-SQL column declarations.

column_name
The name of the Java-SQL column.

java_sql_class_name
The name of a Java-SQL class in the current database. This is the “declared
class” of the column.

Usage • The declared class must implement either the Serializable or Externalizable
interface.

• A Java-SQL column is always associated with the current database.

• A Java-SQL column cannot be specified as:

• not null

• unique

• A primary key

See also You use a Java-SQL column declaration only when you create or alter a table.
See the create table and alter table information in the Reference Manual.

Java-SQL variable declarations
Description Use Java-SQL variable declarations to declare variables and stored procedure

parameters for datatypes that are Java-SQL classes.

Syntax java_sql_variable ::= @variable_name java_sql_class_name

Java-SQL column references

222

java_sql_parameter ::= @parameter_name java_sql_class_name

Parameters java_sql_variable
Specifies the syntax of a Java-SQL variable in a SQL stored procedure.

java_sql_parameter
Specifies the syntax of a Java-SQL parameter in a SQL stored procedure.

java_sql_class_name
The name of a Java-SQL class in the current database.

Usage A java_sql_variable or java_sql_parameter is always associated with the
database containing the stored procedure.

See also Refer to the Reference Manual for more information about variable
declarations.

Java-SQL column references
Description To reference a Java-SQL column, use the following syntax:

Syntax column_reference ::=
[[[database_name.]owner.]table_name.]column_name
| database_name..table_name.column_name

Parameters column_reference
A reference to a column whose datatype is a Java-SQL class.

Usage • If the value of the column is null, then the column reference is also null.

• If the value of the column is a Java serialization, S, and the name of its
class is CS, then:

• If the class CS does not exist in the current database or if CS is not the
name of a class in the database associated with the serialization, then
an exception is raised.

Note The database associated with the serialization is normally the
database that contains the column. Serializations contained in work
tables and in temporary tables created with “insert into #tempdb” are,
however, associated with the database in which the serialization was
stored originally.

• The value of the column reference is:

CSC.readObject(S)

Chapter 12 Reference Topics

223

where CSC is the column reference. If the expression raises an
uncaught Java exception, then an exception is raised.

The expression yields a reference to an object in the Java VM, which
is associated with the database associated with the serialization.

Java-SQL member references
Description References a field or method of a class or class instance.

Syntax member_reference ::= class_member_reference |
instance_member_reference

class_member_reference ::= java_sql_class_name.method_name

instance_member_reference ::= instance_expression>>member_name

instance_expression ::= column_reference | variable_name
| parameter_name | method_call | member_reference

member_name ::= field_name | method_name

Parameters member_reference
An expression that describes a field or method of a class or object.

class_member_reference
An expression that describes a static method of a Java-SQL class.

instance_member_reference
An expression that describes a static or dynamic method or field of a Java-
SQL class instance.

java_sql_class_name
A fully qualified name of a Java-SQL class in the current database.

instance_expression
An expression whose datatype is a Java-SQL class.

member_name
The name of a field or method of the class or class instance.

Usage • If a member references a field of a class instance, the instance has a null
value, and the Java-SQL member reference is the target of a fetch, select,
or update statement, then an exception is raised.

Otherwise, the Java-SQL member reference has the null value.

• The double angle (>>) and dot (.) qualification take precedence over any
operator, such as the addition (+) or equal to (=) operator, for example:

Java-SQL method calls

224

X>>A1>>B1 + X>>A1>>B2

In this expression, the addition operation is performed after the members
have been referenced.

• The field or method designated by a member reference is associated with
the same database as that of its Java-SQL class or instance of its Java-SQL
class.

If the Java type of a member reference is one of the Java scalar types (such
as boolean, byte, and so on), then the corresponding SQL datatype of the
reference is obtained by mapping the Java type to its equivalent SQL type.

If the Java type of a member reference is an object type, then the SQL
datatype is the same Java object type or class.

Java-SQL method calls
Description To invoke a Java-SQL method, which returns a single value, use the following

syntax:

Syntax method_call ::= member_reference ([parameters])
| new java_sql_class_name ([parameters])

parameters ::= parameter [(, parameter)...]

parameter ::= expression

Parameters method_call
An invocation of a static method, instance method, or class constructor. A
method call can be used in an expression where a non-constant value of the
method’s datatype is required.

member_reference
A member reference that denotes a method.

parameters
The list of parameters to be passed to the method. If there are no parameters,
include empty parentheses.

Usage Method overloading

• When there are methods with the same name in the same class or instance,
the issue is resolved according to Java method overloading rules.

Datatype of method calls

• The datatype of a method call is determined as follows:

Chapter 12 Reference Topics

225

• If a method call specifies new, its datatype is that of its Java-SQL
class.

• If a method call specifies a member reference that denotes a type-
valued method, then the datatype of the method call is that type.

• If a method call specifies a member reference that denotes a void
static method, then the datatype of the method call is SQL integer.

• If a method call specifies a member reference that denotes a void
instance method of a class, then the datatype of the method call is that
of the class.

• To include a parameter in a member reference when the parameter is a
Java-SQL instance associated with another database, you must ensure that
the class name associated with the Java-SQL instance is included in both
databases. Otherwise, an exception is raised.

Runtime results

• The runtime result of a method call is as follows:

• If a method call specifies a member reference whose runtime value is
null (that is, a reference to a member of a null instance), then the result
is null.

• If a method call specifies a member reference that denotes a type-
valued method, then the result is the value returned by the method.

• If a method call specifies a member reference that denotes a void
static method, then the result is the null value.

• If a method call specifies a member reference that denotes a void
instance method of an instance of a class, then the result is a reference
to that instance.

• The method call and result of the method call are associated with the
same database.

• Adaptive Server does not pass the null value as the value of a
parameter to a method whose Java type is scalar.

Java-SQL method calls

226

227

Glossary

This glossary describes Java and Java-SQL terms used in this book. For a
description of Adaptive Server and SQL terms, refer to the Adaptive
Server Glossary.

assignment A generic term for the data transfers specified by select, fetch, insert, and
update Transact-SQL commands. An assignment sets a source value into
a target data item.

associated JAR If a class/JAR is installed with installjava and the -jar option, then the JAR
is retained in the database and the class is linked in the database with the
associated JAR. See retained JAR.

bytecode The compiled form of Java source code that is executed by the Java VM.

class A class is the basic element of Java programs, containing a set of field
declarations and methods. A class is the master copy that determines the
behavior and attributes of each instance of that class. class definition is the
definition of an active data type, that specifies a legal set of values and
defines a set of methods that handle the values. See class instance.

class method See static method.

class file A file of type “class” (for example, myclass.class) that contains the
compiled bytecode for a Java class. See Java file and Java archive (JAR).

class instance Value of the class data type that contains a value for each field of the class
and that accepts all methods of the class.

datatype mapping Conversions between Java and SQL datatypes.

declared class The declared datatype of a Java-SQL data item. It is either the datatype of
the runtime value or a supertype of it.

document type
declaration (DTD)

In XML, every valid document has a DTD that describes the elements
available in that document type. A DTD can be embedded in the XML
document or referenced by it.

Glossary

228

eXtensible Markup
Language (XML)

A metalanguage designed for Web applications that lets you define your
own markup tags and attributes for different kinds of documents. XML is
a subset of SGML.

eXtensible Query
Language (XQL)

A markup language for querying XML documents stored in a relational
database. Adaptive Server provides an XQL query engine that can be
installed in Adaptive Server or run as a standalone program

eXtensible Style
Language (XSL)

A markup language designed to format XML documents into HTML or
other XML documents with different attributes and tags.

externalization An externalization of a Java instance is a byte stream that contains
sufficient information for the class to reconstruct the instance.
Externalization is defined by the externalizable interface. All Java-SQL
classes must be either externalizable or serializable. See serialization.

Hypertext Markup
Language (HTML)

A subset of SGML designed for the Web.

installed classes Java classes and methods that have been placed in the Adaptive Server
system by the installjava utility.

instance method A invoked method that references a specific instance of a class.

interface A named collection of method declarations. A class can implement an
interface if the class defines all methods declared in the interface.

Java archive (JAR) A platform-independent format for collecting classes in a single file.

Java Database
Connectivity (JDBC)

A Java-SQL API that is a standard part of the Java Class Libraries that
control Java application development. JDBC provides capabilities similar
to those of ODBC.

Java datatypes Java classes, either user-defined or from the JavaSoft API, or Java
primitive datatypes, such as boolean, byte, short, and int.

Java Development Kit
(JDK)

A toolset from Sun Microsystems that allows you to write and test Java
programs from the operating system.

Java file A file of type “java” (for example, myfile.java) that contains Java source
code. See class file and Java archive (JAR).

Java method signature The Java datatype of each parameter of a Java method.

Java object An instance of a Java class that is contained in the storage of the Java VM.
Java instances that are referenced in SQL are either values of Java
columns or Java objects.

Glossary

229

Java-SQL column A SQL column whose datatype is a Java-SQL class.

Java-SQL class A public Java class that has been installed in the Adaptive Server system.
It consists of a set of variable definitions and methods.

A class instance consists of an instance of each of the fields of the class.
Class instances are strongly typed by the class name.

A subclass is a class that is declared to extend (at most) to one other class.
That other class is called the direct superclass of the subclass. A subclass
has all of the variables and methods of its direct and indirect superclasses,
and may be used interchangeably with them.

Java-SQL datatype
mapping

Conversions between Java and SQL datatypes. See “Datatype mapping
between Java and SQL” on page 217.

Java-SQL variable A SQL variable whose datatype is a Java-SQL class.

Java Virtual Machine
(Java VM)

The Java interpreter that processes Java in the server. It is invoked by the
SQL implementation.

mappable A Java datatype is mappable if it is either:

• Listed in the first column of Table 12-3 on page 218, or

• A public Java-SQL class that is installed in the Adaptive Server
system.

A SQL datatype is mappable if it is either:

• Listed in the first column of Table 12-4 on page 219, or

• A public Java-SQL class that is built-in or installed in the Adaptive
Server system.

A Java method is mappable if all of its parameter and result datatypes are
mappable.

method A set of instructions, contained in a Java class, for performing a task. A
method can be declared static, in which case it is called a class method.
Otherwise, it is an instance method. Class methods can be referenced by
qualifying the method name with either the class name or the name of an
instance of the class. Instance methods are referenced by qualifying the
method name with the name of an instance of the class. The method body
of an instance method can reference the variables local to that instance.

narrowing conversion A Java operation for converting a reference to a class instance to a
reference to an instance of a subclass of that class. This operation is
written in SQL with the convert function. See also widening conversion.

Glossary

230

package A package is a set of related classes. A class either specifies a package or
is part of an anonymous default package. A class can use Java import
statements to specify other packages whose classes can then be referenced.

procedure An SQL stored procedure, or a Java method with a void result type.

public Public fields and methods, as defined in Java.

retained JAR See associated JAR.

serialization A serialization of a Java instance is a byte stream containing sufficient
information to identify its class and reconstruct the instance. All Java-SQL
classes must be either externalizable or serializable. See externalization.

SQL function signature The SQL datatype of each parameter of a SQLJ function.

SQL-Java datatype
mapping

Conversions between Java and SQL datatypes. See “Datatype mapping
between Java and SQL” on page 217.

SQL procedure signature The SQL datatype of each parameter of a SQLJ procedure.

static method A method invoked without referencing an object. Static methods affect the
whole class, not an instance of the class. Also called a class method.

subclass A class below another class in a hierarchy. It inherits attributes and
behavior from classes above it. A subclass may be used interchangeably
with its superclasses. The class above the subclass is its direct superclass.
See superclass, narrowing conversion, and widening conversion.

superclass A class above one or more classes in a hierarchy. It passes attributes and
behavior to the classes below it. It may not be used interchangeably with
its subclasses. See subclass, narrowing conversion, and widening
conversion.

synonymous classes Java-SQL classes that have the same fully qualified name but are installed
in different databases.

Unicode A 16-bit character set defined by ISO 10646 that supports many
languages.

valid document In XML, a valid document has a DTD and adheres to it. It is also a well-
formed document.

Glossary

231

variable In Java, a variable is local to a class, to instances of the class, or to a
method. A variable that is declared static is local to the class. Other
variables declared in the class are local to instances of the class. Those
variables are called fields of the class. A variable declared in a method is
local to the method.

visible A Java class that has been installed in a SQL system is visible in SQL if it
is declared public; a field or method of a Java instance is visible in SQL if
it is both public and mappable. Visible classes, fields, and methods can be
referenced in SQL. Other classes, fields, and methods cannot, including
classes that are private, protected, or friendly, and fields and methods that
are either private, protected, or friendly, or are not mappable.

well-formed document In XML, the necessary characteristics of a well-formed document include:
all elements with both start and end tags, attribute values in quotes, all
elements properly nested.

widening conversion A Java operation for converting a reference to a class instance to a
reference to an instance of a superclass of that class. This operation is
written in SQL with the convert function. See also narrowing conversion.

232

233

Symbols
, (comma)

in SQL statements xvii
() (parentheses)

in SQL statements xvii
[] (square brackets)

in SQL statements xvii
>> (double angle)

to qualify Java fields and methods 223
@ sign 82
{} (curly braces) in SQL statements xvii

A
access, server, to order elements 158
Adaptive Server

installing XQL 122
plug-in 27, 80

additional information
about Java 10
about XML 110

ADT mappable datatypes 98
allString, Java method 177
alter table

command 27, 123
syntax 27

ANSI standards 4
appendItem, Java method 159
aseutils methods, com.sybase.xml.xql.Xql

methods, specific to 139
assignment properties

Java-SQL data items 32
assignments 205
attaching to a Java VM 183
attributes, embedded in element tags 113

B
bookstore.xml

authors example 131
DTD conforming 132
filename 131
validate command 132
Web page 133
XML example 131

Boolean allString, Java method 164
Boolean expressions, within filter operators 127
Boolean someString, Java method 164
breaking

on a class method 187
on a line number 186
using conditions 187
using counts 187
when execution is not interrupted 188

breakpoints 186
building parse tree with XML parser 119
bypassing character-set conversions 118

C
called on null input parameter 82
case expressions 37, 86
character encoding. See character sets
character sets

Adaptive server plug-in 80
client server 118
conversions, bypassing 118
declared matching actual 113
declared, actual 118
default UTF8 113
specifying 112
specifying with SAX 119
translations, bypassed 113
unicode 27, 36, 80
XML 113, 118

Index

Index

234

XML data 118
character-set value, UTF8 default 118
character-string operations in SQL 119
charindex command 119
child operator 125
class names 220
class subtypes 36–38
classes. See Java classes
CLASSPATH

environment variable 122
environment variables for UNIX and NT 122
standalone program 122
xerces.jar, xml.zip, runtime.zip 122

clients
bcp 207
isql 207

client-side JDBC 7
code samples

HTML, Order example 114
XML, Info example 113
XML, Item example 114

column
declarations 221
referencing 222

column datatypes, requirements 25
column declarations 221
column references 222
com 140
com.sybase.xml.xql.store methods 140
com.sybase.xml.xql.store.SybMemXmlStream, XQL

interface 140
com.sybase.xml.xql.Xql

methods, specific to 136, 137, 138, 140, 141
com.sybase.xml.xql.XqlDriver

command 121
local files 130
querying XML documents 130
standalone program 130
syntax 130
using 130

comma (,) in SQL statements xvii
command main method 102
commands

alter table 123
charindex 119
com.sybase.xml.xql.XqlDriver 121

create table 26, 27
debug 130
drop function 86
FileInputStream() 133
help 130
infile 130
insert 118
insert values clause of 118
new 122
outfile 130
parse 133
parse() 123
patindex 119
qstring 130
query 133
query() 128
select 128, 129
SQLJ create function 81
SQLJ create procedure 87
substring 119
update 122
URL 133
valid 132
validate 130, 132
where clause 128
writetext 118

commands, create procedure SQLJ 90
compile-time datatypes 38
compiling Java code 16
composing order documents 151
configuration parameter, Number of Java Sockets 202
configuring memory requirements 124
constructor method 28
constructors 28, 43

Order Xml 154
OrderXML 152

conventions
Java-SQL syntax xv
Transact-SQL syntax xvi

conversions 207
narrowing 37
widening 36

convert function 36, 207
create procedure (SQLJ) command 87, 90
create table command, syntax 26, 27
creating

Index

235

and populating SQL tables 149
client applications 195
network applications, java.net 195
tables 26
user-defined classes 16
XSL style sheets 118

curly braces ({}) in SQL statements xvii
customizing elements 113

D
data

selecting with XQL 121
translating from XML 153

database objects
xmlcol 123, 125
xmlimage 125
XMLTEXT 123
XQL, general query language for XML 125

DatagramPacket, Java class 196
datatype conversions 207
datatype mapping 35, 77, 98, 217–219
datatypes

char 111
compile-time 38
conversions 207
image 111, 123, 124
Java classes 3
method calls 224
runtime 38
text 111, 123, 124
varchar 111

debug command 130
Debug.jar, Java file 182
debugger

attaching to a Java VM 183
compiling classes for 183
disconnecting 188
how it works 181
location 182
options 185
requirements for using 181
starting 182
wait mode 183

debugger capabilities

browse classes 182
inspect and break on expressions 182
inspect and set variables 182
set break conditions 182
set breakpoints 182
trace execution 182

debugger windows
breakpoints 184
calls 184
classes 184
connection 184
exceptions 184
inspection 184
locals 185
source 184

debugging
Java 181–193

debugging tutorial 189–193
attaching to a Java VM 190
examples 191
inspecting local variables 192
inspecting static variables 193
inspecting variables 191
loading source code 190
modifying local variables 193
source code 189
starting the debugger 189
stepping through source code 191

deleting 28, 97
Java objects 28
XML documents 124

delimited identifiers 219
descendant operator 125
deterministic parameter 82, 88
disabling Java 15
distinct keyword 46
Document Object Model (DOM) 119
document storage 148, 149, 154, 159, 173–180

entire document 149
from client and server 154
tables 151

Document Type Definition (DTD) 114
Document Type Definition. See DTD
document, ResultSet type 166
document, validating 132
DOM

Index

236

assembling parse tree 119
building document parse tree 119
generating parse tree 119
modifying document parse tree 119
object returned by SAX 119
portable across XML parsers 119
standard XML interface 119

DOM, Document Object Model 119
DOM. See Document Object Model
double angle

qualifying Java fields and methods 223
to qualify Java fields and methods 29

downloading
installed classes 21
installed JARs 21

drop function command 86
DTD 116

elements of 116
for valid XML document 117
internal 117
not required in all documents 117

DTD, #IMPLIED 116
DTD, #PCDATA DTD elements 116
DTD, asterisk (*) 116
DTD, ATTLIST 116
DTD, document type definition 114
DTD, ELEMENT 116
DTD, plus sign (+) 116
DTD, question mark (?) 116
dynamic result sets parameter 88

E
element storage 148, 149, 151, 154

 170–173
extract elements and store 149

element tags
customizing 113
embedded attributes 113
HTML, inconsistent 115
strict nesting 113
user-created 113

elements
extracting 153
referencing and updating 155

email
java.net 195
messages, sending 195

embedding DTD in XML 117
enabling Java 15
enabling java.net, procedure 196
equality operations 45
equals, operator 126
examples

for SQLJ routines 78
exceptions 31
explicit Java method signatures 99
eXtensible Markup Language (XML). See Extensible

Markup Language
Extensible Markup Language. See XML
Extensible Style Language. See XSL
external name parameter 88
external server, writing with java.net 197
externalization 221
extracting elements 153
extractjava utility 21

F
FileInputStream(), command 133
filename, bookstore.xml 131
filter operator 126
filter operator, using Boolean expressions 127
flushing data explicitly 202
formatting

instructions, provided in XSL 111
XML information with XSL 118

G
generating

document text from parse tree 119
Java parse tree 119

generating order on client 152
getString, JDBC method 168
group by clause 46

Index

237

H
help command 130
HoldString class 129
HTML

display of Order data 114
DTD elements 116, 118
element bracketing inconsistent 115
javadoc-generated pages 110
Order code sample 114
subset of SGML. See Standardized General Markup

Language
HTML, Hypertext Markup Language 109
HttpURLConnection, Java class 196
hybrid

storage tables 151
hybrid storage 148, 149, 159–160

store document in XQL column 149
technique, using 159

Hypertext Markup Language (HTML) 109

I
identifiers 219

delimited 219
image, datatype 123, 124
implicit Java method signatures 99
in parameter 90
inconsistent element tags, HTML 115
InetAddress, Java class 196
infile, command 130
info, XML code example 113
inout parameter 90
input sources, specifying with SAX 119
InputStream class 200
InputStream, Java class 201, 202
insert command, values clause of 118
inserting

data in a table 200
Java objects 28
XML document into database 118

installing
compressed JARS 17
Java classes 17, 20
uncompressed JARS 17
XQL in Adaptive Server 122

installjava utility 14, 17, 122
-f option 18
-j option 18
-new option 19
syntax 18
update option 19

instance methods 43
inter-class arguments 51
invoking

Java method, using SQLJ 79
Java methods 30, 78
Java methods, invoking directly 78
Java methods, using SQLJ 78
SQL from Java 211, 217

J
JAR files

creating 17
installing 16
retaining 18

JARs
compressed, installing 17
uncompressed, installing 17

Java API 8
accessing from SQL 8
supported packages 208–211
Sybase support for 8

Java arrays 91
Java class datatypes 84
Java classes 143

as datatypes 3, 25
creating 16
DatagramPacket 196
DatagramSocket 196
HoldString 129
HttpURLConnection
InetAddress
InputStream 197, 200, 202
installing 17–20
JXm 161
JXml 144
MailTo 200
MulticastSocket 196
Order 159

Index

238

OrderXML 143
OrderXml 143, 144, 161
OutputStream 197, 200
PrintWriter 202
referencing other classes 20
ResultSet 165
ResultSetXml 161
retained 21
runtime 14
saving in JAR 16
ServerSocket 196, 198
Socket
SQLJ examples 78
subtypes 36
supported 8
updating 19
URL 200, 201
URL class, using 198
URLConnection 196
URLDecoder 196
URLEncoder 196
user-defined 9, 14

Java code
compiling 16
writing 16

Java commands. See commands
Java compiler 183
Java constructor

OrderXml 144
Java constructor ResultSetXm 162
Java datatypes

ADT mappable 98
object mappable 98
output mappable 98
result-set mappable 99
simply mappable 98

Java Development Kit 6
Java in the database

advantages of 1
capabilities 2
key features 5
preparing for 13–22
questions and answers 5

Java instances, representing 32
Java method signature 83, 88
Java methods

 177
allString 177
Boolean allString 164
Boolean someString 164
call by reference 31, 46
command main 102
constructor ResultSetXml 162
exceptions 31
getString, JDBC 168
instance 43
invoking 30, 78
OrderXml 144
ResultXml example 162
static 45
static void createOrderTable 145
String getColumn 163
String getItemElement 145
String toSqlScript 162
toSqlScript() 172
type 42, 43
void 43
void appendItem 147
void deleteItem(int itemNumber) 147
void order2Sql(String ordersTableName, String

server) 144
void setColumn 163, 164
void setItemElement 146
void setOrderElement 145
XQL 136

java methods
See also XQL methods

Java methods, specific to com.sybase.xml.xql.Xql 136
Java objects 28
Java operations, invoked from SQL 7
Java primitive datatypes 84
Java runtime environment 13
Java Services

increasing default memory parameters 121
memory requirements table 124
table, memory parameters 125

Java VM 7, 13
Java VM parameters

size of global fixed heap 197
size of process object heap 197
size of shared class heap 197

Java, SQL, using together 7

Index

239

java.net 196, 197, 198, 202
accessing documents using XML, JDBC 195
accessing external documents 197
cautions 202
classes
client application, setting up 197
client process 198
client process procedure 198
connecting through JDBC with jconnect 195
creating networking applications 195
downloading documents 195
enabling 196
examples 197
help 202
mailing documents 197
objects not serializable 202
procedure for enabling 196
reference documents 202
references, online 202
references, written 202
saving documents 195
saving text from Adaptive Server 197
sending email messages 195
server process 198
server process procedure 198
writing external server 197

java.net classes
HttpURLConnection 196
InetAddress 196
See Java classes
Socket 196
URL 196
URLConnection 196
URLDecoder 196
URLEncoder 196

java.net, for network access 195
java.sql 211
java.sql methods, unsupported 209
javadoc, generating HTML 110
Java-SQL

class names 220
column declarations 221
column references 222
columns 33, 47
creating tables 26
function results 33

identifiers 219
member references 223
method calls 224
names 24
package names 220
parameters 33, 47
static variables 48
transferring objects 207
transferring objects to clients 207
unsupported methods 209
variable declarations 221
variables 33, 47

Java-SQL classes
in multiple databases 48
installing 17–20

Java-SQL columns
storage options 26

jConnect
JDBC 7
OrderXml in client 152

jconnect 195
jConnect, used by OrderXml in client 152
JDBC 57–74

accessing data 60
client-side 7, 58
concepts 58
connection defaults 59
connections 62
interface 9
JDBCExamples class 60
obtaining a connection 62
permissions 59
ResultSet class 165
ResultSetMetaData class 168
server-side 7, 58
terminology 58
version support 14

JDBC drivers 14, 211
client-side 7, 58
jConnect 7
server-side 7, 58
used by OrderXml in server 152

JDBC standard datatype mapping 98
JDBCExamples class 69–74

methods 61–66
overview 60

Index

240

L
language java parameter 88
local files, com.sybase.xml.xql.XqlDriver 130

M
mailing a document 197
MailTo, Java class 200
main() method, executed on client 156
mapping datatypes 217–219
mapping Java and SQL datatypes 98
mapping, illustrating with orders table 170
member references 223
memory parameters, Java Services, table 125
memory requirements

configurng 124
for query engine 124
Java Services 124

memory requirements, Java Services parameters 121
method calls 224

datatype of 224
method overloading 101, 224
methods

appendItem 159
exceptions 31
main() executed on client 156
order2Sql 153
runtime results 225
See also XQL methods
SQLJExamples.bestTwoEmps() 78
SQLJExamples.correctStates() 78, 89
SQLJExamples.job() 78
SQLJExamples.region() 78
to reference and update elements 155

methods. See Java methods
modifies sql data parameter 82, 88
MulticastSocket, Java class 196
multiple databases 49

N
names in Java-SQL 24

case 25
length 24

narrowing conversions 37
navigating XQL 125
network access, java.net 195
new, command 122
null values

case statements 86
in SQLJ functions 84

nulls in Java-SQL 38–42
arguments to methods 40
using convert functions 41

Number of Java Sockets, configuration parameter 202

O
object mappable datatypes 98
obtaining connections 62
Open Client CT-Library 118
Open Client DB-Library 118
operators

child 125
descendant 125
equal 126
filter 126
subscript 127

options
external name 83
language java 83
parameter style java 83
saxparser 131

options, storage, advantages and disadvantages 148
order

generating on client 152
generating on server 152

order by clauses 46
Order DTD, sample code 116
order elements, server access to 158
Order sample

HTML 114
XML code 111

Order, Java class 159
order2Sql, method 153
ordering operations 45
orders table 165
orders table, using 170
OrderXML

Index

241

Java class 143
OrderXml 143

class 143
constructor invoked from server 154
Java class 143, 161
sample application 143
sample class 143
source code 143
subclass of JXml class 144

OrderXml, Java method 144
out parameter 90
outfile, command 130
output HTML, from XSL 118
output mappable datatypes 98

P
package names 220
parameter style java parameter 88
parameters

 130
(Java VM) size of global fixed heap 197
(Java VM) size of process object heap 197
(Java VM) size of shared class heap 197
deterministic 88
external name 88
help 130
inout 90
input 90
language java 88
modifies sql data 88
not deterministic 88
output 90
parameter style java 88
qstring 130
validate 130

parentheses ()
in SQL statements xvii

parse command 133
parse methods 136
parse tree

assembling with DOM 119
build or modify 119
generating document’s text from 119
generating Java representation 119

parse tree, building and modifying with DOM 119
parse()

command 123
returns sybase.aseutils.SybXmlStream 123

parse(), Java method, command 123
parse(InputStream xmlll_document), XML method

137
parse(String xmlDoc), XQL method 136
parser, XML 121
parsers for XML 119
parsers, XML 119
patindex command 119
permissions

Java 7, 24
JDBC 59
SQLJ routines 77

persistent data items 33
plus sign (+) in XML document type definition 116
presentation applications, use of XSL for 118
PrintWriter, Java class 202
procedure

creating SQLJ routine 76
enabling java.net 196

procedures
client process, java.net 198
server process, java.net 198

processing
effect of where clause 128

processing with SAX, incremental 119
processing XML, specialized 143

Q
qstring command 130
query

command 133
query engine

as standalone program 121
inside or outside server 121
memory requirements 124

query methods, com.sybase.xml.xql.Xql 138
methods, specific to 138, 139

query structures 128
query() command 128

Index

242

query(String query, InputStream xmlDoc), XQL method
138

query(String query, String xmlDoc), XML method 138
query(String query,JXml jxml), XQL method 139
query(String query,SybXmlStream xmlDoc), XQL method

139
querying XML with com.sybase.xml.xql.XqlDriver 130
questions and answers 5

R
reading XML from database 118
rearranging installed classes 21
referencing

fields 29
XML DTD externally 117

remove java command 21, 221
removing classes 21
removing JARs 21
restrictions on Java in the database 10
result sets 101

not stored in where clause 129
unexpected result 129

ResultSet
accessing columns of stored documents 174
class 161
composing document from SQL 170
document type 166
DTD 169
generating in Adaptive Server 171
generating in client 171
Java class 165
JDBC class 166
mappable datatypes 98
quantified comparisons in stored documents 177
quantifier in select list 179
quantifier in where clause 179
search methods 177
selecting and updating columns 176–177
server-side script 176
storing document in SQL column 173
translating in client 172

ResultSetData 165
ResultSetMetaData 165
ResultSetMetaData for example result 166

ResultSetMetaData, JDBC class 168
ResultSetXml 161

accessing XML 161
directories, XML 161
processing SQL result sets 161
similar to OrderXml class 161
source code 161
source code, XML 161
subclass of JXml class 161
subset of JXml class 161
writing Java code to access XML 161

ResultSetXml(String), Java method 162
ResultXml example, Java method 162
returns null on null input parameter, Java clause 82
runtime

datatypes 38
Runtime environment 13
Runtime Java classes

location of 14
runtime Java classes 14

S
sample classes 52–55

address 52
address2Line 53
JDBCExamples 60–74
location of 11
misc 55
OrderXml 143
ResultSet 165

sample code
DTD, Order example 116
HTML, Order sample 114
XML, Info example 113
XML, Order example DTD 116

saving text out of Adaptive server 197
SAX

generating events 119
portable across XML parsers 119
returning DOM object 119
standard XML interface 119

SAX (Simple API for XML) 119
saxparser, com.sybase.xml.xql.XqlDriver option 131
search order

Index

243

function types 84
searching, XML documents stored on Web 110
security

SQLJ routines 77
select command 128, 129
selecting data with XQL 121
selecting Java objects 28
serialization 221, 222
server access to order elements 158
server process 198
server-side JDBC 7
ServerSocket, Java class 196, 198
set commands

allowed in Java methods 216
updating 44

setParser, XQL method 140
setting up 196
SGML, Standardized General Markup Language 109
shared class heap 196
simple API for XML (SAX) 119
simply mappable datatypes 98
Socket classes, using 197
Socket, Java class 196
someString, Java method 177
sp_configure system procedure 15
sp_depends system procedure 97
sp_help system procedure 97
sp_helpjava

syntax 20
utilitysp_helpjava 20

sp_helpjava system procedure 98
sp_helprotect system procedure 98
specialized XML processing 143
specifying character set 112
SQL

character-string operations 119
expressions, include Java objects 7
function signature 82
procedure signature 88
tables, creating and populating 149
wrappers 75, 79

SQLJ create procedure command 87
SQLJ functions 81–86

dropping 86
viewing information about 97

SQLJ implementation

features not supported 103
features partially supported 103
SQLJ and Sybase differences 102
Sybase defined 104

SQLJ standards 76
SQLJ stored procedures 87–89, 97

capabilities of 87
deleting 97
modifying SQL data 89
using input and output parameters 90
viewing information about 97

SQLJExamples class 105
SQLJExamples.bestTwoEmps() method 78
SQLJExamples.correctStates() method 78, 89
SQLJExamples.job() method 78
SQLJExamples.region() method 78, 83
square brackets []

in SQL statements xvii
standalone applications

example 133
using XQL 133

standalone program,com.sybase.xml.xql.XqlDriver
130

Standardized General Markup Language (SGML) 109
standards specifications 4
static methods 45, 77, 79, 87
static variables 48
static void createOrderTable, Java method 145
storage

document 149
element 149
hybrid 149

storage options
advantages and disadvantages 148
in row 26

storage tables, document and hybrid 151
storage technique, hybrid, using 159
storage, document 154
storage, element 149
storage, hybrid 149
storing XML documents 147
parameters

infile 130
outfile 130

String data
zero length 42

Index

244

string data 42
String getColumn, Java method 163
String getItemElement, Java method 145
String toSqlScript, Java method 162
structures, query 128
style java keyword 88
style sheets, creating 118
style sheets, XSL 118
subscript operator 127
substring command 119
subtypes 36
supertypes 36
Sybase Central

creating a SQLJ function or procedure from 80
managing SQLJ procedures and functions from 80
viewing SQLJ routine properties from 81

sybase.asciutils 139
sybase.aseutils.SybXmlStream, returned by parse()

command 123
SybFileXmlStream, XQL method 140
SybXmlStream 136

variable 136
syntax conventions

Java-SQL xv
Transact-SQL xvi

system procedures
helpjava 20
sp_depends 97
sp_help 97
sp_helpjava 98
sp_helprotect 98

T
table definition 78
table, orders 165
tags

customizing in XML 111
HTML, inconsistent bracketing 115
HTML, paragraph 115
user-created 113
XML strictly nested 112

temporary databases 51
text data, XML 113
text, datatype 123, 124

toSqlScript(), Java method 172
transact-SQL

commands, in Java methods 212
transient data items 33
translating data 151, 153

U
unicode 42
union operator 46
update, command 122
updating Java objects 28
updating XML documents 124
URL

Java class 198
URL class

accessing external server with XQL 200
downloading HTTP document 200
inserting data in a table 200
Java class 196, 200, 201
obtaining an HTTP document 200
sending email 200
using 200

URL, command 133
URLConnection, Java class 196
URLDecoder, Java class 196
URLEncoder, Java class 196
user-created element tags 113
user-defined classes, creating 16
using

com.sybase.xml.xql.XqlDriver 130
hybrid storage technique 159
Java and SQL together 7
Java classes 23, 52
orders table 170
Socket classes 197
URL class 198

UTF8, default character set 113, 118

V
valid XML document 117
valid, command 132
validate, command 130, 132

Index

245

validating document 132
variable declarations 221
variables 221

datatypes of 25
static 48
SybXmlStream 136
values assigned to 28

variables, HTML
... 115
<table>...</table>, layout 115
bcolor, color 115
CustomerID 114, 115
CustomerName 115
Data 115
ItemID 114
ItemName 114
order 114
Quantities 115
Quantity 114
units 114

variables, XML
OrderXML 110
tag 112
XMLResultSet 110

viewing information
about installed classes 20
about installed JARs 20

void appendItem, Java method 147
void deleteItem(int itemNumber), Java method 147
void methods 89
void order2Sql(String ordersTableName, String

server), Java method 144
void setColumn, Java method 163, 164
void setItemElement, java method 146
void setOrderElement, Java method 145

W
Web addresses

W3C, Document Object Model (DOM) 110
W3C, Extensible Markup Language (XML) 110
W3C, Extensible Stylesheet Language (XSL)

110
World Wide Web Consortium (W3C) 110

Web information on XML 110

Web, storage for XML documents 133
well-formed XML document 113
where clause 36, 44, 47

affects processing 128
command 128
not for result set storage 129

work databases 51
writetext, command 118

X
xerces.jar

directory 123
XML 109

accessing documents with java.net 195
additional information 110
application-specific document types 111
character sets, client and server 118
compared to SGML and HTML 111
comparison with HTML 109
custom tags 111
customizable example 165
declaring character sets 118
DTD (document type definition) 114
DTD elements, restrictions 116, 118
DTD not required in all documents 117
DTD sample code, embedding 117
DTD sample code, referencing externally 117
DTD, instruction 116, 118
Extensible Markup Language
input from XSL 118
overview 110, 111
parser, outside or inside server 121
parsers 119
read by HTML browsers and processors 111
sample document 111
source code for sample classes 110
specialized processing 143
storage options, pros and cons 148
strict phrase structure 111
subset of SGML 109
suitable for data interchange 109
tools written in Java 110
using XSL to transform 118
Web documents for detailed information 110

Index

246

XML data
document storage document storage, XML data 148
element storage 148
inserting from client file 155

XML data operations
server-side 149

XML declaration, to specify character set 112
XML document

accessing elements 155
accessing in XQL 147
as character data 112
character-set value 118
client or server 147
deleting 124
DTD sample code 116
example, info 113
executing on server 155
formatting for 118
generating from Adaptive Server 110
generating from SQL data 109
inserting into database 118
mapping and storage 147
nested markup tags 112
no formatting instructions 113
parts of 112
querying 130
reading from database 118
sample code, Order 111
search with XQL 110
searching on Web 110
stored as OS file 133
stored on Web 133
storing 147
storing in Adaptive Server 110
updating 124
valid with DTD 117
well-formed 113

XML document types
Order 165
ResultSet 165

XML example, bookstore.xml 131
XML methods

parse(InputStream xml_document) 137
query(String query, String xmlDoc) 138

XML operations
client-side 149

XML parser 119
applications using SAX and DOM portable 119
free license 119
public domain 119
standard interface 119
standard interfaces 119

XML parsing with SAX 119
XML Query Language (XQL) 110
xml.zip, directory 123
xmlcol, database object 123, 125
xmlimage, database object 125
XMLTEXT, database object 123
XQL

developing standalone applications 133
displaying as XML 121
EJBs 133
installing in Adaptive Server 122
interface,

com.sybase.xml.xql.store.SybMemXmlStream
140

JavaBeans 133
JDBC clients 133
navigation 125
numbering system 131
operators 125
parse method 202
parses and queries 202
path-based query language 110, 125
query method 202
to search XML documents 110
zero based 131

XQL methods 136
parse(String xmlDoc) 136
query(String query, InputStream xmlDoc) 138
query(String query, JXml jxml) 139
query(String query, SybXmlStream xmlDoc) 139
setParser 140
SybFileXmlStream 140
SybXmlStream 139

XQL, XML Query Language 110
XSL 118

Extensible Style Language 111
formatting XML information 118
specifications 118
transforms XML 118
using with presentation applications 118

Index

247

Z
zero-length strings 42

Index

248

	Java in Adaptive Server Enterprise
	About This Book
	CHAPTER 1 An Introduction to Java in the Database
	Advantages of Java in the database
	Capabilities of Java in the database
	Invoking Java methods in the database
	Invoking Java methods directly in SQL
	Invoking Java methods as SQLJ stored procedures and functions

	Storing Java classes as datatypes
	Storing and querying XML in the database

	Standards
	Java in the database: questions and answers
	What are the key features?
	How can I store Java instructions in the database?
	How is Java executed in the database?
	Client- and server-side JDBC

	How can I use Java and SQL together?
	What is the Java API?
	How can I access the Java API from SQL?
	Which Java classes are supported in the Java API?
	Can I install my own Java classes?
	Can I access data using Java?
	Can I use the same classes on client and server?
	How do I use Java classes in SQL?
	Where can I find information about Java in the database?
	What you cannot do with Java in the database

	Sample Java classes

	CHAPTER 2 Preparing for and Maintaining Java in the Database
	The Java runtime environment
	Java classes in the database
	Sybase runtime Java classes
	User-defined Java classes

	JDBC drivers
	The Java VM

	Configuring memory for Java in the database
	Enabling the server for Java
	Disabling the server for Java

	Creating Java classes and JARs
	Writing the Java code
	Compiling Java code
	Saving classes in a JAR file
	Installing uncompressed JARs
	Installing compressed JARs

	Installing Java classes in the database
	Using installjava
	Retaining the JAR file
	Updating installed classes

	Referencing other Java-SQL classes

	Viewing information about installed classes and JARs
	Downloading installed classes and JARs
	Removing classes and JARs
	Retaining classes

	CHAPTER 3 Using Java Classes in SQL
	General concepts
	Java considerations
	Java-SQL names

	Using Java classes as datatypes
	Creating and altering tables with Java-SQL columns
	Altering partitioned tables

	Selecting, inserting, updating, and deleting Java objects

	Invoking Java methods in SQL
	Sample methods
	Exceptions in Java-SQL methods

	Representing Java instances
	Assignment properties of Java-SQL data items
	Datatype mapping between Java and SQL fields
	Character sets for data and identifiers
	Subtypes in Java-SQL data
	Widening conversions
	Narrowing conversions
	Runtime versus compile-time datatypes

	The treatment of nulls in Java-SQL data
	References to fields and methods of null instances
	Null values as arguments to Java-SQL methods
	Null values when using the SQL convert function

	Java-SQL string data
	Zero-length strings

	Type and void methods
	Java void instance methods
	Java void static methods

	Equality and ordering operations
	Evaluation order and Java method calls
	Columns
	Variables and parameters

	Static variables in Java-SQL classes
	Java classes in multiple databases
	Scope
	Cross-database references
	Inter-class transfers
	Passing inter-class arguments
	Temporary and work databases

	Java classes

	CHAPTER 4 Data Access Using JDBC
	Overview
	JDBC concepts and terminology
	Differences between client- and server-side JDBC
	Permissions
	Using JDBC to access data
	Overview of the JDBCExamples class
	The main() and serverMain() methods
	Using main()
	Using serverMain()

	Obtaining a JDBC connection: the Connecter() method
	Routing the action to other methods: the doAction() method
	Executing imperative SQL operations: the doSQL() method
	Executing an update statement: the UpdateAction() method
	Executing a select statement: the selectAction() method
	Calling a SQL stored procedure: the callAction() method

	Error handling in the native JDBC driver
	The JDBCExamples class
	The main() method
	The internalMain() method
	The connecter() method
	The doAction() method
	The doSQL() method
	The updateAction() method
	The selectAction() method
	The callAction() method

	CHAPTER 5 SQLJ Functions and Stored Procedures
	Overview
	Compliance with SQLJ Part 1 specifications
	General issues
	Security and permissions
	SQLJExamples

	Invoking Java methods in Adaptive Server
	Using Sybase Central to manage SQLJ functions and procedures
	SQLJ user-defined functions
	Handling null argument values
	Handling nulls when creating the function
	Handling nulls in the function call

	Deleting a SQLJ function name

	SQLJ stored procedures
	Modifying SQL data
	Using input and output parameters
	Returning result sets
	Deleting a SQLJ stored procedure name

	Viewing information about SQLJ functions and procedures
	Advanced topics
	Mapping Java and SQL datatypes
	Using the command main method

	SQLJ and Sybase implementation: a comparison
	SQLJExamples class

	CHAPTER 6 Introduction to XML in the Database
	Introduction
	Source code and javadoc
	References

	An overview of XML
	A sample XML document
	HTML display of Order data

	XML document types
	XSL: formatting XML information
	Character sets and XML data
	XML parsers

	CHAPTER 7 Selecting Data with XQL
	Accessing the XML parser
	Setting the CLASSPATH environment variable
	Installing XQL in Adaptive Server
	Converting a raw XML document to a parsed version
	Inserting XML documents
	Updating XML documents
	Deleting XML documents
	Memory requirements for running the query engine inside Adaptive Server
	Using XQL
	Query structures that affect performance
	Examples

	Other usages of the XQL package
	com.sybase.xml.xql.XqlDriver syntax
	Sample queries

	Validating your document
	Using XQL to develop standalone applications
	Example standalone application
	Example JDBC client
	Example EJB example

	XQL methods
	Methods in com.sybase.xml.xql.Xql
	parse(String xmlDoc)
	parse(InputStream xml_document, boolean validate)
	query(String query, String xmlDoc)
	query(String query, InputStream xmlDoc)
	query(String query, SybXmlStream xmlDoc)
	query(String query, JXml jxml)
	sybase.aseutils.SybXmlStream
	com.sybase.xml.xql.store.SybMemXmlStream
	com.sybase.xml.xql.store.SybFileXmlStream
	setParser(String parserName)
	reSetParser

	CHAPTER 8 Specialized XML Processing
	The OrderXml class for order documents
	OrderXml(String) constructor
	OrderXml(date, customerid, server)
	void order2Sql(String ordersTableName, String server)
	static void createOrderTable (String ordersTableName, String server)
	void setOrderElement (String elementName, String newValue)
	String getItemElement (int itemNumber, String elementName)
	void setItemElement (int itemNumber, String elementName, String newValue
	String getItemAttribute (int itemNumber, elementName, attributeName)
	void setItemAttribute (int itemNumber, elementName, attributeName, newValue)
	void appendItem (newItemid, newItemName, newQuantity, newUnit)
	void deleteItem(int itemNumber)

	Storing XML documents
	Mapping and storage
	Advantages and disadvantages of storage options
	Client or server considerations

	Creating and populating SQL tables for order data
	Tables for element storage
	Tables for document and hybrid storage

	Using the element storage technique
	Composing order documents from SQL data
	Generating an order on the client
	Generating an order on the server

	Translating data from an XML order into SQL
	Translating the XML document on the client
	Translating the XML document on the server

	Using the document storage technique
	Storing XML order documents in SQL columns
	Inserting an order document from a client file
	Inserting a generated order document on the server

	Accessing the elements of stored XML order documents
	Client access to order elements

	Server access to order elements
	Appending and deleting items in the XML document

	Using the hybrid storage technique

	CHAPTER 9 XML for SQL Result Sets
	The ResultSetXML class
	ResultSetXml(String)
	Constructor: ResultSetXml (query, cdataColumns, colNames, server)
	ResultXml example
	String toSqlScript (resultTableName, columnPrefix, goOption)
	String getColumn(int rowNumber, int columnNumber)
	String getColumn(int rowNumber, String columnName)
	void setColumn (int rowNumber, int columnNumber, newValue)
	void setColumn (int rowNumber, String columnName, newValue)
	Boolean allString (int ColumnNumber, String compOp, String comparand)
	Boolean someString (int columnNumber, String compOp, String comparand)

	A customizable example for different result sets
	The ResultSet document type
	The XML DTD for the ResultSetXml document type

	Using the element storage technique
	Composing a ResultSet XML document from the SQL data

	Generating a ResultSet in the client
	Generating a result set in Adaptive Server
	Translating the XML ResultSet document in the client
	Translating the XML ResultSet Document in Adaptive Server
	Using the document storage technique
	Storing an XML ResultSet document in a SQL column
	Accessing the columns of stored ResultSet documents
	A client-side call
	A server-side script

	Quantified comparisons in stored ResultSet documents

	CHAPTER 10 Debugging Java in the Database
	Introduction to debugging Java
	How the debugger works
	Requirements for using the Java debugger
	What you can do with the debugger

	Using the debugger
	Starting the debugger and connecting to the database
	Compiling classes for debugging
	Attaching to a Java VM
	The Source window
	The debugger windows

	Options
	Setting breakpoints
	Breaking on a line number
	Breaking on a static method
	Using counts with breakpoints
	Using conditions with breakpoints
	Breaking when execution is not interrupted

	Disconnecting from the database

	A debugging tutorial
	Before you begin
	Start the Java debugger and connect to the database
	Attach to a Java VM
	Load source code into the debugger
	Step through source code
	Examples

	Inspecting and modifying variables
	Inspecting local variables
	Modifying local variables
	Inspecting static variables

	CHAPTER 11 Network Access Using java.net
	Overview
	java.net classes
	Setting up java.net
	Example usage
	Using socket classes
	Saving text out of Adaptive Server

	Using the URL class
	Using the MailTo class URL to mail a document
	Obtaining an HTTP document
	Accessing an external document with XQL

	User notes
	Where to go for help

	CHAPTER 12 Reference Topics
	Assignments
	Assignment rules at compile-time
	Assignment rules at runtime

	Allowed conversions
	Transferring Java-SQL objects to clients
	Supported Java API packages, classes, and methods
	Supported Java packages and classes
	Unsupported Java packages and classes
	Unsupported java.sql methods and interfaces

	Invoking SQL from Java
	Special considerations

	Transact-SQL commands from Java methods
	Datatype mapping between Java and SQL
	Java-SQL identifiers
	Java-SQL class and package names
	Java-SQL column declarations
	Java-SQL variable declarations
	Java-SQL column references
	Java-SQL member references
	Java-SQL method calls

	Glossary
	Index

