S SYBASE

Programmer’s Reference for Remote Stored
Procedures

Open ServerConnect™
Version 4.0

Document 1D: 35605-01-0400-01
Last revised: February 2000

Copyright © 1989-2000 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase database management software and to any subsequent release until otherwise indicated in new
editions or technical notes. Information in this document is subject to change without notice. The software descritefiihestiad
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax @15) 229-9

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax numlbrer. All othe
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only atofegnlildety s
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by alectres@os,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server,
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server EnterpriserReplicatio
Adaptive Server Everywhere, Adaptive Server |Q, Adaptive Warehouse, AnswerBase, Anywhere Studio, Application Manager,
AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-FORMS, APT-Translator, APT-Library, Backup Server,
ClearConnect, Client-Library, Client Services, Data Pipeline, Data Workbench, DataArchitect, Database Analyzer, DataExpress,
DataServer, DataWindow, DB-Library, dbQueue, Developers Workbench, Direct Connect Anywhere, DirectConnect, Distribution
Director, E-Anywhere, E-Whatever, Embedded SQL, EMS, Enterprise Application Server, Enterprise Application Studio, Enterprise
Client/Server, Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work
Architecture, Enterprise Work Designer, Enterprise Work Modeler, EWA, Gateway Manager, ImpactNow, InfoMaker, Information
Anywhere, Information Everywhere, InformationConnect, InternetBuilder, iScript, Jaguar CTS, jConnect for IDBC, KnowledgeBase,
MainframeConnect, Maintenance Express, MAP, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, MySupport,
Net-Gateway, Net-Library, Netimpact, ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL Toolkit,
Open Client, Open ClientConnect, Open Client/Server, Open Client/Server Interfaces, Open Gateway, Open Server, Open
ServerConnect, Open Solutions, Optima++, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library, Power++, power.stop, PowerAMC,
PowerBuilder, PowerBuilder Foundation Class Library, PowerDesigner, PowerDimensions, PowerDynamo, PowerJ, PowerScript,
PowerSite, PowerSocket, Powersoft, PowerStage, PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare
Desktop, PowerWare Enterprise, ProcessAnalyst, Report Workbench, Report-Execute, Replication Agent, Replication Driver,
Replication Server, Replication Server Manager, Replication Toolkit, Resource Manager, RW-DisplayLib, RW-Library, S Designor, S
Designor, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts, smart.script, SQL
Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere, SQL
Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART, SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL
Server SNMP SubAgent, SQL Station, SQLJ, STEP, SupportNow, Sybase Central, Sybase Client/Server Interfaces, Sybase Financial
Server, Sybase Gateways, Sybase MPP, Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase User Workbench,
SybaseWare, Syber Financial, SyberAssist, SyBooks, System 10, System 11, System Xl (logo), SystemTools, Tabular Data Stream,
Transact-SQL, Translation Toolkit, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viewer, Visual
Components, VisualSpeller, VisualWriter, VQL, WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse
WORKS, Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup
SQL Server, XA-Library, XA-Server and XP Server are trademarks of Sybase, Inc. 1/00

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.
All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) 2OF2ARS
7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., 6475 Christie Avenue, Emeryville, CA 94608.

Contents

F N o Lo YU A I T 2 X Yo)Tt vii
CHAPTER 1 OVEIrVIEW Of RSPS ...oiiiiiiiiiiie ittt 1
RSP OVEIVIEBW......cci ittt e ettt e e e e e e s ar e e e e e e e esaaaeaaaeeaaannes 1
What is @n RSP? ...t 1
What does an RSP dO?.......coociiiiiiiiiiiiie e 2
How does an RSP access and return DB2 data? 2
HOW RSPS PrOCESS ... eeeeeeee 5
How RSPs are processed through TRS........ccccccvviiiiieiienniinns 5
How RSPs are processed through an Access Service Library . 7
Exchanging information between RSPs and the Client.................. 11
SYStEM rEQUIFEMENTSoeiiiiie et e e e e ieeee e 12
HOSE PlatfOrmeeiieee e 12
DirectConnect platform (optional)...........ccoceiiiiiieiiiiieeieees 12
Migration cONSIAErationscoouiriiiiie i 13
Coding ChangEesoooiiiiiii e 13
Recompiling and relinking existing RSPS.........ccccoccoveiviieeens 13
New data fOrmMatcoovueieiiiiiie e 13
Summary of RSP programming tasks..........c.ccocevviiiiniiieeiiiiees 14
CHAPTER 2 DeSigning an RSPc.uiiiiiiiiiiiee e 15
UsiNg RSP COMMANGScooiiiiiiiiiiee e 15
Reviewing sample RSPS.......cccviiiiii e 16
Making design deCiSIONSuvviieiieiiiiiiiiiie et 17
Choosing RSP fUNCLIONScvvviiieiiiiiiiiicec e 17
Choosing client application functionscccoccvvveeeeeiniiinnnen. 18
ACCESSING databasescueeeeiiiiieiiiiie e 18
Using temporary storage/transient data queues 19
Understanding data transmission formats............ccccccccecuvvneen.. 19
USING data PIPES. .. veeeiieeeeiiiieee et rtie et e et ee e eeee e e sneeee e 19
Linking to Other Programscccoocueieeiiieeeeiiiee e eiieee s 22

[F= Yoo][aTo I = g o SRR 23
Considering environmental ISSUEScocvviierieeiniiiiiiiee e 23

Contents

CHAPTER 3

CHAPTER 4

CHAPTER 5

CHAPTER 6

How data is transferred to SQL server.........ccccoeeeveeieeeieceecenn, 23

How configuration property settings affect RSP processing ... 23
Understanding how to invoke an RSP ..o 26
Invoking with keyword variables and variable text 26
Invoking with data Pipescooueieiiiiee e 28
Specifying error handlingcccoooeiiriiiiie e 31
WIIEING AN RSP ..ot 33
OVEIVIBW ...ttt ettt ettt e e e e et e e e ent e e e amen e e e enneeeeenees 33
Choosing @ sample RSPcooiiiiiiiieecee e 33
Renaming the sample ... 35

Testing the SamPle ... 35

WIHEING the RSPeiiiiiiic e 35
Compiling @n RSP ... 37
OVEIVIBW ...ttt ettt e e 37
Compiling an RSP Without DB2ooociiiiiiieniiiiiieeece e 37
Compiling an RSP With DB2cuviiiiiiiiiiiiie i 39
Using DB2 plans (TRS ONlY)......covviiiieiiiiiiiiiiiiee e 41

Using DB2 packages (TRS or MainframeConnect) or Gatewayless
41

Understanding the INKagecccceiiiiiiiii e, 42
LINKING RSPS ...ttt 42

Linking load modules...........coociiiiiiiiieiiee e 42

Linking 0bJECt COOE......oiiiiiieiiiiiie e 43
Testing and invoking an RSP ..., 45
OVEIVIBW vttt sttt e et e e e e e e e et e e e e e e eeeaaaaan 45
Before you test or invoke an RSP ..., 45
Testing an RSP using an ASPT Transactionccceccvvvvveeeeennnns 46
Creating a temporary storage qUEUE............occvrveereeeeriiirieeenn 46
Running the RSP test Programc.ccccecvvvieeeeiiiiiiinieeeee s 47
INVOKING 8N RSP ...t 48
Invoking RSPs through Access Service Library 50
Invoking RSPs through TRS ..o 53
Migrating from TSQLO, TSQL1, and TSQL2 modes 53
Sending datato the RSPcoooiiiiiiiiiee e 54
TroubleShOOtiNgG ..uvviiiiiiii e 57
OVEIVIBW ...ttt ettt e e et e e e nte e e e nee e e e enneeeeenees 57
MainframeConnect errors related to RSPSccccoviiiiiviiieenne. 57
TroublesShOOotiNg EITOrSuvviiiiiiiiiiiiee e 58

Contents

(D A T o] = R 58

CICS ASRA abend eITOrS.......cociiiiiieiiiiee e 58

APPENDIX A RSP COMMANASuiiiiiiiiiieei et e 61
Command eXaMPIESeeiiiiiiieeiie e 61

COMMEABNAS ...ttt 62

CLOSPIPE ...ttt 62

COMMIT ..ttt ettt srne e 62

GETPIPE. ...ttt ettt 63

MESSAGE ..ot 64

OPENPIPEottt 64

PUTPIPE ... 66

ROLLBACK ...ttt eeeseennnnnees 67

RPDONEot neeeennnrnees 67

RPSETUP ..ottt eeeeennnnnnes 68

STATUS e 68

APPENDIX B MODELRSP DB2 output pipe sample RSPcccccoviiiiiiniinnnn. 69
Understanding MODELRSP.........cccoiiiiiiiiiie e 69

The SPAREA in MODELRSPccccooiiiiiiiiiiic e 70

How MODELRSP uses SPAREA fieldsccccccevviiinieennn, 70

Using RSP commands with the SPAREAccccccevviiiiinnenn. 71

SPAREA EXaMPIE ..coiiiiiiiiiiiiiiee et 72

The SQLDA in MODELRSPooiiiiiiiieiieriee e 72

Invoking MODELRSP from the client application................cccuvve.e.. 73

PASSTHROUGH TSQL SEttiNg.........ccoveereeeerereieeeeeeeesresenenennns 74

SYBASE TSQL SENG -..eeieiiiieieeiiiee e 74

MODELRSP DB2 output pipe sample COde.........cccoeveeeenieeeennnenn. 74

APPENDIX C RSP3C STD input and output pipe sample RSPcccuuel 91
Using the SPAREA With RSP3Cccoiiiiiiiiiiee e 91

SPMAXLEN and SPRECLENccccceiiiiiiiieeee e 91

SPINTO and SPFROM........cccviiiie e 93

Specifying error handlingcc.oooviiiieiiiee e 94

Client application ProCeSSINGccuvvveeiieiiiiiiiiiiee e 94

Invoking from the client application (ISQL).......ccccccovvvvvviereennnn. 95

Returning results to the client application...............cccccvveeneenn. 95

RSP3C STD input and output pipe sample codeccccoeevvivrnnnn. 96

APPENDIX D RSP4C keyword variable sample RSPcccccoiiivveeeins 105
Client application ProCeSSINGc.vvvverieeiiiiiiiiiee e 105

Sample iNPut and reSUIS..........uuviiiee i 106

Contents

APPENDIX E

APPENDIX F

APPENDIX G

Glossaryccceeeeene

Vi

RSPAC.SQL sample iNPUL.........cuvveieeiiiiiiiiiiee e 106
RSPAC.LOG sample resultS..........eevveeeiiiiiiiieeeiiiiiiiiiiee s 106

RSPAC error handlingccvvvvieeiiiiiiiiiiiee i 107
Keyword sample code fragment...........ccccoooiiieiiiiie e 109
RSPAC keyword variable sample code...........ccoococvieiiieiieeene. 110
RSP8C variable text sample RSP ... 123
Client application ProCeSSINGcccuereirueerariieieeaiieeeeaieeeeeneeeess 123
RSP8C variable text sample Codecooiviiiiiiiieieee e 125
The SPAREA ... 135
SPAREA field desSCriptionS...........occvieiiiieeeiiie e 135
Copying SPAREA definitions to the RSPcoccoieiiiiiiie. 137
SPAREA defiNitioNScccuvviiiiiieiiie e 138
SPAREAA assembler definitioncccovveiiiiiiiiiiicec e, 139
SPAREAC COBOL Il definitionc.coovieiiieiieeiieciec e 139
SPAREAP PL/1 definitionc.ccocveeiieiniieiiiesiie e 140
SPAREAX C definitioncoiuiiiiiiiiiiiieeeee e 141
THE SQLDA ... 145
SQLDA variables and fieldsccccccc 145
SQLDA dAtAtYPES ... eveeieeiiieieiiieeeetiee e e eiie e seeee et e e eee e e e aeeeee e 146
WIitiNg @ SOLDA ...ttt e e 147
Sample COBOL Il SQLDAooiiiiieie e 148
Sample C SQLDAot e 148
.. 151

About This Book

Remote Stored Procedures (RSPs) arewritten by customersto accessDB2
inthe MVS CICS environment. The Open ServerConnect Programmer’s
Reference for Remote Stored Procedgréde, hereafter referred to as
OSCProgrammer’s Reference for RSscribes how to design, code,

and test remote stored procedures (RSPs).

This chapter contains the following topics:

* Who should read this book

* How to use this book

» Conventions used in this book

* How to get help using Sybase products

» If you have questions about this book

Who should read this book

This guide is for anyone responsible for the following tasks:

» Designing, coding, and testing RSPs in one of the supported
programming languages (COBOL I, Assembler, PL/I, and C)

* Preparing client applications
* Implementing RSPs

* Administering Open ClientConnect™, Open ServerConnect™, or
DirectConnect™ environments

« Administering database management systems

e Supporting data transfer and staging

Vii

How to use this book About This Book

How to use this book

Viii

The majority of Sybase customersusing COBOL |1 write RSPsto access DB2
inthe MV S CICS environment .This guide therefore provides COBOL |1
examples. However, the Open ServerConnectAPI tape provides examplesin
all the supported programming languages.

If you are not familiar with CICS and the CICS control tables, ask your CICS
programmer or system programmer to make the required CICS entries.

This guide provides a set of tasks and reference information, with each chapter
representing a task and each appendix representing reference information to
help you accomplish atask. This reference guide provides the following
information:

About This Book

Table 1: Contents of each chapter

Chapter Contents
Chapter 1, “Overview of RSPs” Provides an overview of RSPs and how
they work.

Chapter 2, “Designing an RSP”

Discusses information to consider before
you design an RSP.

Chapter 3, “Writing An RSP”

Explains how to write an RSP.

Chapter 4, “Compiling an RSP”

Explains how to compile an RSP.

Chapter 5, “Testing and invoking an
RSP”

Explains how to test and invoke an RSP.

Chapter 6, “Troubleshooting”

Explains how to troubleshoot problems.

Appendix A, “RSP commands”

Lists and explains the RSP commands.

Appendix B, “MODELRSP DB2 output Provides and explains a sample RSP with

pipe sample RSP”

DB2-formatted output pipes or multiple-
column rows.

Appendix C, “RSP3C STD input and
output pipe sample RSP”

Provides and explains a sample RSP that
sends single-column rows of character
strings.

Appendix D, “RSP4C keyword variable Provides and explains a sample RSP that

sample RSP” passes keyword values.
Appendix E, “RSP8C variable text Provides and explains a sample RSP that
sample RSP” reads variable text and uses output pipes

to echo data that a client application
sends to it.

Appendix F, “The SPAREA”

Explains how the SPAREA is used by
RSPs. It includes SPAREA fields and
SPAREA definitions.

Appendix G, “The SQLDA”

Explains how the SQLDA is used by
RSPs.

Glossary

The glossary provides definitions of
technical terms used in this book.

Conventions used in this book

The following sections describe syntax and style conventions used in this

guide.

Conventions used in this book About This Book

Syntax conventions
Syntax statements that display options for acommand look like this;

COMMAND [object_name, [{TRUE | FALSE}]]

The following table explains the syntax conventions used in this guide.

Table 2: Syntax conventions

Symbol Convention

) Include parentheses as part of the command.

{} Braces indicate that you must choose at least one of the enclosed
options. Do not type the braces when you type the option.

[] Bracketsindicate that you can choose one or more of the enclosed
options, or none. Do not type the brackets when you type the
options.

The vertical bar indicates that you can select only one of the
options shown. Do not type the bar in your command.

, The comma indicates that you can choose one or more of the
options shown. Separate each choice by using acomma as part of
the command.

Style conventions

The following style conventions are used in this guide:

The names of files and directories are shown as:
econnect\ServerName\CFG

The names of programs, utilities, procedures, and commands are shown
as:

snrfck

The names of properties are shown as:

Allocate

The names of options are shown as:

connect

Code examples and text on screen are shown as:
this font

In a sample command line display, commands you should enter are shown
as:

About This Book

this font

e In a sample command line display, variables (words you should replace
with the appropriate value for your system) are shown as:

this font

How to get help using Sybase products

Each Sybase® installation that has purchased a support contract has one or
more designated people who are authorized to contact Sybase Technical
Support. If you have any questions about this installation or need assistance
during the installation process, please have the designated person contact
Sybase Technical Support or the Sybase subsidiary in your area.

If you need help using a Sybase product, the following resources are available:
* Sybase Technical Support

» Sybase Professional Services

Sybase Technical Support

Sybase Technical Support provides various forms of customer assistance,
including the following services:

e ldentifying problems.
« Offering a fix, if available.

« Documenting software problems and enhancement suggestions in our
customer support database.

e Communicating status information on open problems.
e Sharing information on new products or releases of existing products.

In addition, Sybase system engineers are available for technical assistance in
various geographical territories.

The following subsections explain how to contact Sybase Technical Support
and how to send log and trace files, if necessary.

Xi

How to get help using Sybase products About This Book

Contacting Sybase Technical Support

You can contact Sybase Technical Support by calling (800) 8SYBASE. Before
you contact Sybase Technical Support, complete these steps:

1

2

Thoroughly review the documentation, especially all troubleshooting
sections.

Be prepared to generate atrace, if requested to do so by Technical Support.

Sending log and trace files to Sybase Technical Support

You can send log and trace files or other documents to Sybase Technical
Support using the Sybase file transfer protocol.

Using File Transfer 1
Protocol (ftp)
2

Xii

Save your trace output as an ASCI| file.

In the directory in which the file resides, type the following at the
command line:

ftp
When prompted, provide the following information:
e Sybase server ffp.sybase.com
e ID = anonymous
e Password our e-mail address
Type the following:
cd /pub/inconm ng/ wess
To change to binary mode, type the following:
bi n
Place one or more files into the directory as follows.
e To place one file in the directory, type the following:
put filenane
e To place multiple files in the directory, type the following:
mput filename filenane fil enane
When prompted, entéf to transfer each file.

Notify Sybase Technical Support of thact name of the file(s) you sent
to the server. (Remember that the UNIX system is case-sensitive.

About This Book

Sybase Professional Services

Sybase Professional Services offers onsite consulting and training programsto
help you maximize the benefits of our products. For more information, call
(303) 486-7700.

Other sources of information

Use the Sybase Technical Library CD and the Technical Library Web site to
learn more about your product:

e The Technical Library CD contains product manuals and technical
documents and is included with your software. The DynaText browser
(included on the Technical Library CD) allows you to access technical
information about your product in an easy-to-use format.

Refer to theTechnical Library Installation Guide in your documentation
package for instructions on installing and starting the Technical Library.

e The Technical Library Web site includes the Product Manuals site, which
is an HTML version of the Technical Library CD that you can access using
a standard Web browser. In addition, you'll find links to the Technical
Documents Web site (formerly known as Tech Info Library), the Solved
Cases page, and Sybase/Powersoft newsgroups.

To access the Technical Library Web site, go to support.sybase.com, click
the Electronic Support Services tab, and select a link under the Technical
Library heading.

Sybase Certifications on the Web

Technical documentation at the Sybase Web site is updated frequently.

For the latest information on product certifications and/or the EBF Rollups:

1 Point your Web browser to Technical Documents at the following Web
site:

techinfo.sybase.com

2 Inthe Browse section, click on the What's Hot entry.

Xiii

Other sources of information About This Book

3 Exploreyour areaof interest: Hot Docs covering various topics, or Hot
Linksto Technical News, Certification Reports, Partner Certifications,
and so on.

If you are aregistered SupportPlus user:

1 Point your Web browser to Technical Documents at the following Web
Siter

techinfo.sybase.com
2 In the Browse section, click on the What’s Hot entry.
3 Click on the EBF Rollups entry.

You can research EBFs using Technical Documents, and you can
download EBFs using Electronic Software Distribution (ESD).

4 Follow the instructions associated with the SupporﬁMGmline Services
entries.

If you are not aregistered SupportPlus user, and you want to become one:
You can register by following the instructions on the Web.

To use SupportPlus, you need:

A Web browser that supports the Secure Sockets Layer (SSL), such as
Netscape Navigator 1.2 or later

e An active support license
e A named technical support contact

e Your user ID and password

Whether or not you are a registered SupportPlus user:

You may access Sybase Technical Documents or Certification Reports at this
site:

1 Point your Web browser to Technical Documents at the following Web
site:

techinfo.sybase.com
2 Inthe Browse section, click on the What's Hot entry.

3 Click on the topic that interests you.

Xiv

About This Book

If you have questions about this book

To order additional copies of DirectConnect documentation, see “Document
Orders” on the disclaimer page following the title page.

If you have questions, comments, or suggestions about DirectConnect
documentation, contact the Sybase documentation group directly by electronic
mail at:

i cd_doc@ybase. com
Feel free to forward any information, comments, or questions about:
* Missing, incorrect, or unclear information
« Information you found particularly useful
* Organization or style

We will respond as promptly as possible by electronic mail. Your feedback
helps us provide more accurate, detailed, and easy-to-use documentation.

Note Please send comments about product features, functionality, or problems
to your system engineer or Sybase Technical Support.

XV

If you have questions about this book About This Book

XVi

CHAPTER 1

RSP overview

What is an RSP?

Overview of RSPs

This chapter contains the following topics:

* RSP overview

* How RSPs process

» Exchanging information between RSPs and the Client
e System requirements

* Migration considerations

e Summary of RSP programming tasks

This overview answers the following questions:
* Whatis an RSP?
* What does an RSP do?

« How does an RSP access and return DB2 data?

A Remote Stored Procedure (RSP) is a CICS command-level program that
contains the Sybase RSP calls to the RSP API. The RSP API converts RSP
commands to Open ServerConnect commands.

You can write RSPs in any of the four programming languages supported
by CICS:

e COBOLII

* Assembler

e PL/

« C (SASIC or IBM C/370)

RSP overview

What does an RSP do?

An RSP alows aclient application to access data and services on the
mainframe. Workstation users or client applications on the LAN use RSPsto
send requests through DirectConnect for DB2/MV S (hereafter called
DirectConnect), optionally,using MainframeConnect for DB2/MVS-CICS
(hereafter called MainframeConnect), and directly using TCP/IP.

An RSP uses standard CICS command-level servicesto performitsprocessing.
It can receive arguments or data sent from the client and generate results to
return to the client. You can write an RSP to do one or more of the following:

Access DB2 data or other relational databases (sueDABAS),
statically or dynamically

For example, an RSP can update all relevant host tables with a changed
part number. In this case, the RSP contains multiplPATE statements
targeted to each table.

Access non-relational data (suchw@\M, IDMS, or IMS)

For example, an RSP could retrieve data fttd and deliver it to the
workstation, where the client application converts it into an appropriate
format.

Invoke other CICS programs
Schedule other CICS tasks for execution
Issue RSP commands

Access temporary storage or transient data queues

How does an RSP access and return DB2 data?

This section explains how RSPs access data within the Enterprise Connect
structure. The following figure shows how RSPs access and return DB2 data.

CHAPTER 1 Overview of RSPs

Figure 1-1: How RSPs Access and Return DB2 Data

Workstation LAN Mainframe
Environment Environment Environment

Mainframe
CONNECT for
DB2/MVS-CICS

Q
@
Q

Q

{

Q
% ‘DirectCONNECT
Server

Q
@
RN
Q

DB2/MVS
Access Service
Library

Open
ServerCONNECT

(RSPs)
TRS
Library

©
Q
o

IIEEEEI

AsFigure 1-1 shows, RSPsreside with OpenServerConnect. When one of your
client applications invokes an RSP (using Open Client), the request passesto a
DirectConnect server. At this point, depending on your configuration, either
Transaction Router Service Library (TRS) or the DB2/MV S Access Service
Library (hereafter called Access Service Library) invokes the RSP

TRS accesses DB2 data by directly invoking an RSP through Open
ServerConnect. Access Service Library accesses DB2 databy invoking an RSP
through MainframeConnect. The software installed on your network
determines your application request options and capabilities.

Using TCP/IP for communications allows your client to accessthe Mainframe
environment directly without going through DirectConnect (Gatewayless) as
indicated in Figure 1-2.

RSP overview

Figure 1-2: Mainframe access without using DirectConnect
(Gatewayless)

LAN Mainframe
Environment Environment

Workstation

Environment
Mainframe
Connect for

DB2/MVS-CICS

p
ServerConnect
(RSPs)

Note You must have Open ServerConnect installed to implement RSPs.

Table 1-1 summarizes the functions avail able with the possible software
configurations.

CHAPTER 1 Overview of RSPs

Table 1-1: Software configuration options

If installed: You can access:

This software does not
support:

DirectConnect and .
Open ServerConnect o

TRS

RSPs and RPCs
through TRS only

Dynamic SQL access to
DB2

SPTEST utility

The mainframe as a
client, either through
Open Client or CSAs

DirectConnect, Open <
ServerConnect, and
MainframeConnect .

TRS and Access
Service Library
RSPs and RPCs
through TRS

RSPs through Access
Service Library

Dynamic SQL access
to DB2

SPTEST utility to test
RSPs

The mainframe as a
client, either through
Open Client or CSAs

How RSPs process

This section explains how RSPs process through TRS and an Access Service

Library.

How RSPs are processed through TRS

TRS isacomponent of DirectConnect. It routes requests from remote clients
to Open ServerConnect and returns results to the clients. For moreinformation
on TRS, see DirectConnect Transaction Router Service Guide.

The following figureillustrates RSP processing through TRS.

How RSPs process

Figure 1-3: RSP processing through TRS

Open ServerCONNECT
CICS Region

MAINFRAME

VTAMINCP or TCP/IP for MVS

—> DirectCONNECT for DB2/MVS

TRS
[2)

]
LAN Server

Client Application

Client Workstation

The following explains each step in Figure 1-3:

1 Theclient application requests aremote procedure call (RPC) with the
following command:

CHAPTER 1 Overview of RSPs

EXEC rpcname @/ARNAVEL='value’

Note InTRS, you invoke an RSP using the remote procedure call (RPC)
name.

2 TRSsearchesthe RPC namefor the TP name (transaction program name)
and passes the request to DirectConnect. The TP name (which is
associated with the RSP program) isinvoked in the CICS region.

(The RSP and the Open ServerConnect API use the Stored Procedure
Communication Area (SPAREA). For more information on the SPAREA,
see “SPAREA” on page 11.

DirectConnect invokes the RSP.

4 The RSP performs the desired processing (for example, accB&ing
data).

5 Open ServerConnect packages the data and messages produced by the
RSP.

6 The RSP returns results to TRS.

TRS returns the results to the client application.

Note The RSP must caRPSETUP andRPDONE.

How RSPs are processed through an Access Service Library

The Access Service Library is the program component of DirectConnect that
works with MainframeConnect to provide access to DB2 data. For more
information on the Access Service Library, seehrectConnect Access

Service Guide for your database system.

Earlier releases of RSPs used a processing technique similar to the current
processing through Access Service Library. The following figure illustrates
RSP processing through Access Service Library.

How RSPs process

Figure 1-4: RSP processing through Access Service Library

SPAREA

» RSP

e@\@

Mainframe CONNECT
for DB2/MVS-CICS

TCP/IP for MVS

MAINFRAME

DirectCONNECT for DB2/MVS

LAN Server

Client Application

Client Workstation

CHAPTER 1 Overview of RSPs

The following explains each step in Figure 1-4;

1 Theclient application requestsaremote procedure call (RPC) using one of
the following commands:

USE PROCEDURE rspname &VARNAMEl=valuel
EXECUTE rspname @/ARNAMVEl=valuel

Note In Access Service Library, you invoke an RSP using the remote
stored procedure (RSP) name.

2 Access Service Library passes the request to DirectConnect.

3 DirectConnect passes the command, containing the RSP name and any
necessary arguments, to MainframeConnect. The request can contain a
number of other statements, any of which can also invoke RSPs.

4 MainframeConnect invokes the RSP through the CICS LINK command.
Arguments and other parameters are passed to the RSP using the Stored
Procedure Communication Area (SPAREA). For more information on the
SPAREA, see “SPAREA” on page 11.

5 The RSP performs the desired processing (for example, accessing DB2
data).

6 Open ServerConnect packages the data and messages produced by the
RSP, and sends them to DirectConnect.

7 DirectConnect returns results to the client application.

8 The RSP returns program control to MainframeConnect with a CICS
RETURN command

How RSPs process

Figure 1-5: Direct RSP processing using TCP/IP

© 1

SPAREA

(3

MainframeConnect
for DB2/MVS-CICS

TCP/IP for MVS

Client Workstation

10

CHAPTER 1 Overview of RSPs

The following explains each step in Figure 1-5;

1 Theclient application invokes an RSP using the following command:
USE PROCEDURE rspname &VARNAMEl=valuel

2 MainframeConnect invokes the RSP through the CICS LINK command.

3 Arguments and other parameters are passed to the RSP using the Stored
Procedure Communication Area (SPAREA). For more information on the
SPAREA, see “SPAREA” on page 11.

4 The RSP performs the desired processing (for example, accessing DB2
data).

5 Open ServerConnect packages the data and messages produced by the
RSP.

6 Open Server sends the data and messages to the Client Workstation.

7 The RSP returns program control to MainframeConnect with a CICS
RETURN command.

Exchanging information between RSPs and the Client

SPAREA

There are three methods for exchanging information between the RSP and the
client application: the SPAREA (keywords or variable text) and the data pipe.

The SPAREA contains all the pointers, codes, and command details that the
RSP needs to exchange with the RSP API. Every RSP receives or sends
information using the SPAREA.

When an RSP processes through TRS, it creates its own SPAREA through the
RPSETUP call. When an RSP processes through Access Service Library, it
uses an existing SPAREA on the mainframe to send parameters or data to or
from MainframeConnect.

RSP commandOPENPIPE, PUTPIPE, STATUS, and so on) are small
assembler programs that call Open ServerConnect. The RSP commands use the
values of fields in the SPAREA as parameters.

Before you issue an RSP command, you first move values to the relevant fields
in the SPAREA, then issue a standard systairi statement. The syntax used

for these operations varies with the programming language used. For more
information, see Appendix A, “RSP commands” and Appendix F, “The
SPAREA”

11

System requirements

Data Pipes When processing, the RSP uses a data pipe to pass rows of datato or from the
client application. The RSP can open a data pipe either to receive or send data.
The RSP can only receive data from an input pipe through Access Service
Library. Examples of datapipesare providedin “Using data pipes” on page 19.

System requirements

This section lists the system requirements for the:
¢ Host platform

¢ DirectConnect platform (optional)

Host platform
The following are system requirements for the host platform:

e Open ServerConnect for CICS must be installed and operational. Detailed
system requirements for Open ServerConnect are provided @péne
Server Connect Installation and Administration Guide (platform-specific).

* MainframeConnect software is optional for RSP use. If your site chooses
to use MainframeConnect in RSP processing, the MainframeConnect
software must be installed and operational. Detailed system requirements
for MainframeConnect are provided in thiainframeConnect for
DB2/MVS-CICS Installation and Administration Guide.

» Ifthe RSP accesses DB2, DB2 packages and plans must be set up for the
RSP transaction. If you plan to invoke RSPs with MainframeConnect or
through TRS, use plans or packages. '@aiaframeConnect for
DB2/MVS-CICS Installation and Administration Guide for details on
setting up DB2 packages and plans.

DirectConnect platform (optional)

DirectConnect must be installed and operational except when using TCP/IP for
communications (Gatewayless).

Detailed system requirements for DirectConnect are provided in the
DirectConnect for MVS Installation Guide.

12

CHAPTER 1 Overview of RSPs

Migration considerations

This section discusses the following migration considerations:
* Necessary coding changes
* Recompiling and relinking existing RSPs

* New data format for RSPs

Coding changes

If you are invoking RSPs through MainframeConnect (using the Access
Service Library), there are no changes. If you are invoking RSPs directly
through the RSP API (using TRS), you need to make the following coding
changes:

* The first API call must b&PSETUP.
* The last API call must bRPDONE.

Recompiling and relinking existing RSPs

If you are migrating from an earlier release of any Sybase product, you must
recompile and relink your existing RSPs with the Open ServerConnect RSP
stub routines before using those RSPs.

New data format

All data that moves between the RSP, DirectConnect, and MainframeConnect
is in tabular data stream (TDS) format, which replaces Integrated Exchange
Format (IXF). TDS is a Sybase proprietary format, which manages data
formatting for you. DirectConnect translates the records it receives into a
standard CT-Library format that the client application can handle.
DirectConnect no longer converts IXF format input pipes to DB2 format.

Warning! Preformatted IXF data is not converted to DB2-format input pipes
any more. Convert your source data to ASCII for DB2-formatted input pipes.

13

Summary of RSP programming tasks

Summary of RSP programming tasks

These are the general steps to build an RSP within a TSO development
environment.

1 Review the design considerations.
See Chapter 2, “Designing an RSP”

2 Prepareasample RSP to use as a shell amdite the RSP program.
See Chapter 3, “Writing An RSP”

3 Compileand link-edit the RSP in the standard manner for CICS command-
level programs.

See Chapter 4, “Compiling an RSP”

4 Test and invoke the RSP in the standard manner for CICS command-level
programs.

See Chapter 5, “Testing and invoking an RSP”
If you encounter problems while processing your completed RSP,

See Chapter 6, “Troubleshooting”

14

CHAPTER 2 Designing an RSP

This chapter contains the information you must consider when designing
an RSP and contains the following topics:

e Using RSP commands

* Reviewing sample RSPs

* Making design decisions

* Considering environmental issues

e Understanding how to invoke an RSP

« Specifying error handling

Using RSP commands

This section is a brief introduction to RSP commands. In addition to
reading this introductory material, you should review each command in
detail before continuing with the next section, Reviewing sample RSPs.
See Appendix A, “RSP commands” for detailed information about each
command.

Use the RSP commands to:

* Communicate message and status information to Open
ServerConnect and the client application

* ManageCOMMITs andROLLBACKS
* Manage data pipes and exchange data with Open ServerConnect
The following table summarizes the RSP commands and their functions.

Table 2-1: RSP commands and functions

This

command: Performs this function: See

CLOSPIPE Closes the data pipe CLOSPIPE on page 62
COMMIT Commits a unit of work COMMIT on page 62

15

Reviewing sample RSPs

This

command: Performs this function: See

GETPIPE Reads arecord from the data pipe GETPIPE on page 63

MESSAGE Sends a message to the client MESSAGE on page 64
application

OPENPIPE Opens the data pipe OPENPIPE on page 64

PUTPIPE Writes arecord to the data pipe PUTPIPE on page 66

ROLLBACK Rolls back a unit of work ROLLBACK on page 67

RPDONE Ends processing for an RSP initiated RPDONE on page 67
using TRS

RPSETUP Initializes an RSP RPSETUP on page 68

STATUS Indicates the success or failure of STATUS on page 68

processing

Reviewing sample RSPs

Now that you reviewed RSP commands you are ready to review asample RSP,

Sybase provides sample RSPs for you to use as shells for the RSPs you write.
This guide contains four of the sample programs. These samples include
explanatory material detailing what the RSP does. Review the sample or
samples that fit your RSP needs before continuing with the next section,
Making design decisions.

¢ MODELRSP shows you how to use a DB2 format output pipe and a
SQLDA definition. See Appendix B, “MODELRSP DB2 output pipe
sample RSP” for a reproduction of the sample.

* RSP3C shows you how to use STD format input and output pipes to
transmit (send or receive) data. See Appendix C, “RSP3C STD input and
output pipe sample RSP” for a reproduction of the sample.

* RSP4C shows an example of how to transmit keyword variables. See
Appendix D, “RSP4C keyword variable sample RSP” for a reproduction
of the sample.

* RSP8C shows an example of how to transmit variable text. See Appendix
E, “RSP8C variable text sample RSP” for a reproduction of the sample.

Note See Table 3-1 on page 34 for a complete list of the samples provided on
the Open ServerConnect API tape.

16

CHAPTER 2 Designing an RSP

Making design decisions

Now that you reviewed the RSP commands and a sample RSP, you are ready
to make decisions regarding the design of your RSP. Before writing an RSP,
you need to make the following design decisions:

What functions will the RSP perform?

What functions will the client application perform? Will the client
application expect data structure information with results from the RSP?

Which databases (if any) will the RSP access?

Will the RSP access temporary storage or transient data queues?
What type of data (character or binary) will be transmitted?
Which data pipe format should the RSP use?

Will the RSP link to other programs or functions?

What kind of error handling does the RSP require?

Will the RSP be using input pipes, output pipes, keyword variables, or
variable text?

Each of these decisions is discussed in the following subsections.

Note RSPs operate in your environment like any other CICS command-level
program. An RSP can access any CICS program or function that you can
access with other programs in that environment.

Choosing RSP functions

According to your users' requirements, decide what functions the RSP will
perform. For example, your RSP might:

Access DB2 data, statically or dynamically

Note With RSPs that contain static SQL, the client application does not
need authorization on the DB2 objects accessed by the RSP; authorization
to execute the application plan or package of the RSP is all that is required.

Transfer DB2 data to SQL Server, or any other supported data source,
through DirectConnect

17

Making design decisions

e Access other relational data sources (for example, ADABAS), statically or
dynamically

e Access non-relational data (for example, VSAM, IDMS, and IMS)
e Invoke other CICS programs

e Schedule other CICS tasks for execution

Choosing client application functions

You need to understand what functions the client application that calls the RSP
is going to perform. Coordinate with the client application programmer to
determine the data (that is, keyword variables, variable text, or data) being sent
to the RSP and the kind of formatting the client application is capable of
performing on the results.

For example, if your RSP provides data structure information with the data it
is sending, the client application does less decoding of results. If the RSP sends
unformatted data, the client must include more logic to decode the results.

Accessing databases

18

Your RSP can access any database you have in your CICS environment; for
example:

« DB2

« BDAM

« IMS

« V&AM

* ADABAS
« |IDMS

For more information on the setup necessary to access DB2 through an RSP,
see Chapter 4, “Compiling an RSP”

CHAPTER 2 Designing an RSP

Using temporary storage/transient data queues

You accesstemporary storage or transient dataqueues with RSPsthe sameway
you access them with any other program in CICS. Refer to your CICS
documentation for information on accessing temporary storage or transient
data queues.

Understanding data transmission formats

Using data pipes

You need to determine what type of data to transmit to and from the RSP. The
type of datayour RSP handles determines, in part, the format of the data pipes
you defineto send and receive data. For example, if the RSP sendsand receives
only binary, you define data pipesin the BIN format. For more information on
data pipe formats, see Appendix B, “MODELRSP DB2 output pipe sample
RSP”

When you send multiple rows of columns, no matter which data pipe you
specify, all data transmitted between the RSP and DirectConnectis sentin TDS
record format. TRS and DirectConnect translate the TDS records they receive
into a standard CT-Library format that the client application can handle. The
TDS format is proprietary.

RSPs use data pipes to receive data from or send results to the client
application. There are two types of data pipes: input and output. Use the RSP
commands described in Appendix B, “MODELRSP DB2 output pipe sample
RSP” to define the type of pipe (input or output) and the format of the data
being transmitted. The data pipe management commandsanPIPE,

GETPIPE, PUTPIPE, andCLOSPIPE.

This section explains input and output data pipes.

Note An input pipe and an output pipe can both be open simultaneously.

19

Making design decisions

Input Pipes

STD

20

You can only use input pipes when an RSP isinvoked through the Access
Service Library or Gatewayless; you cannot use input pipes when an RSP is
invoked through TRS. The RSP usesinput pipesto read rows of datafrom the
client application.

Note Input pipes must be defined as standard (STD) or binary (BIN) format.

The following code example shows how an RSP uses the SPAREA fields to
define an input pipe, then opens, reads from, and closes the input pipe:

MOVE ’ I NPUT' TO — defines an input pipe

SPMODE — defines input pipe as STD format
MOVE * STD TO — set maximum size of data record
SPFORVAT — sets input pointer to record
MOVE nnnn TO
SPMAXLEN

— opens the pipe

— reads from the pipe where

your code processes data

— closes the pipe

— writes messages

— sets the return code and returns

SET ADDRESS SPI NTO
TO dat aar ea

CALL ' OPENPI PE’
USI NG SPAREA

CALL ' GETPI PE' USI NG

SPAREA
PROCESS INPUT DATA Messages & data
CALL ' CLOSPI PE' USI NG

SPAREA

CALL‘MESSAGE' USING

SPAREA

CALL 'STATUS' USING

SPAREA

A STD or BIN format pipe requires that the SPMAXLEN field provides the
maximum size (in bytes) of the data record written to or read from the data

pipe.

When defining an input pipe, you need to specify the format of the datato be
transmitted through the pipe. Aninput pipe uses only STD and BIN formats,
which do not require data structure information.

(Standard) The simplest type of data pipe to use isthe STD format. With a
standard data pipe, records are transmitted as a single character string between
the client and the RSP. The datais transmitted as variable-length character
(VARCHAR) records. Use STD only with input pipes.

CHAPTER 2 Designing an RSP

BIN

Output Pipes

(Binary) With the BIN format, datais transmitted as a binary string. If you
transmit records of binary data and you do not want ASCII-EBCDIC or
EBCDIC-ASCII conversion done, specify a data pipe in the BIN format. Use
BIN only with input pipes.

Note You can transmit any data, including DB2 data, using a STD or BIN data
pipe.

For more information about input pipes, see “Using input pipes” on page 29
and “Using concurrent input and output pipes” on page 29.

The RSP uses output pipes to return multiple rows of data to the client
application. The following code example shows how an RSP uses the SPAREA
fields to define an output pipe, then opens, writes to, and closes the output pipe:

MOVE * QUTPUT' TO — defines the output pipe
SPMODE — defines output pipe as DB2 format
MOVE ' DB2' TO — sets a pointer to the SQLDA
SPFORMAT — opens the pipe
SET ADDRESS OF where your code processes data
SPSQLDA TO SQLDA — writes the record
CALL * OPENPI PE' — closes the pipe
USI NG SPAREA

— writes messages

iﬁogfé% EET%QANZA — sends the return code and returns
SPAREA messages and data

CALL ' CLOSPI PE
USI NG SPAREA
CALL‘MESSAGE'USING
SPAREA

CALL 'STATUS' USING
SPAREA

For a DB2 format pipe, the SQLDA describes the location and length of the
data columns. HoweverSaD orBIN format pipe requires that tisSPRECLEN
field contains the length of the data record. It cannot exceexPMaXLEN

that was specified when the pipe was opened.

An output pipe uses the DB2, STD or Binary format. The DB2 format requires
data structure information.

21

Making design decisions

DB2

With the DB2 format, include a SQLDA definition in your RSP when you
return data to the client application. You can use these formats to transmit any
type of data, not just datafrom DB2.

The SQLDA is a standard data structure used to define a multi-column result

passed to Open ServerConnect. It describes the content of the transmitted data
records and, as such, it handles much of the data definition logic that the client
application would otherwise have to provide. All files are exchanged between
the RSP and MainframeConnect using the SQLDA.

Asthe RSP programmer, you must define the SQLDA for the datayou send to
the client and provide a pointer to the SQL DA when you open a data pipe for
output. The data structure information passes to Open ServerConnect when the
pipe opens. DirectConnect sendsthisinformation, in CT-Library format, to the
client application.

Note A SQLDA definition isrequired for all data pipesin DB2 format.

For DB2 output pipes, the RSP must create a SQLDA definition and passits
address to Open ServerConnect through the SPSQLDA field in the SPAREA.

For sample COBOL -language and C-language SQLDA declarations for DB2
datatypes and more information about the SQLDA, see Appendix G, “The
SQLDA" For an extensive discussion of the SQLDA, see the IBM reference
manual for DB2 SQL.

For information about STD and BIN output pipes, see “Using output pipes” on
page 29 and “Using concurrent input and output pipes” on page 29.

Linking to Other Programs

22

When you link to, or call, another program from an RSP, you must use a
command format that allows the program to return to the RSP if you want the
called program to share the same pipes. If the program does not return control
to the RSP (for example, with an XCTL), CICS makes a copy of the SPAREA
for the called program instead of pointing to the original SPAREA, the results
of which are unpredictable.

To avoid this, use one of the following commands to link to another program:
CICS LINK
programname

CALL programname

CHAPTER 2 Designing an RSP

Handling Errors

You must write your RSP to handle the errors it receives from Open
ServerConnect, MainframeConnect, and, optionally, from DB2 or any other
database it accesses.

Errors are recorded in the SPRC field of the SPAREA. Your RSP code must
check the SPRC field for errors after issuing any RSP command.

See Open Server Connect and Open ClientConnect Messages and Codes for
information on Open ServerConnect error messages and actions. See
MainframeConnect for DB2/MVS-CICS Installation and Administration

Guidefor information on MainframeConnect error messages and actions. Also
seeChapter 6, “Troubleshooting” for more information on MainframeConnect
errors.

Considering environmental issues

This section discusses the environmental issues you should consider when you
design an RSP. Specifically, it discusses how data is transferred to SQL server
and how DirectConnect configuration property settings affect RSP processing.

How data is transferred to SQL server

You can write an RSP to transfer data, as parff&fANSFER function, from

a data source other than DB2 (for example, VSAM) to SQL Server (or another
database). However, the RSP must define a SQLDA for the data so that it is
formatted like DB2, and it must use a data pipe in DB2 format to send the data
to SQL Server.

How configuration property settings affect RSP processing

This section describes the DirectConnect and MainframeConnect
configuration property settings that affect how an RSP processes.

23

Considering environmental issues

Access service library

Datatype conversion

If client applications invoke an RSP through the Access Service Library, you
need to be aware of how some of the DirectConnect configuration properties
affect both client application and RSP processing. This section explains the
following information:

« Datatype conversion
e Preventing inconsistencies in SQL transformation

¢ ManagingCOMMIT/ROLLBACK

SQL Server applications are designed to manipulate data in SQL Server
datatypes. When these applications execute an RSP to retrieve host data,
DirectConnect converts the result rows into the corresponding SQL Server
datatypes.

Preventing inconsistencies in SQL transformation

24

SQL Server uses the TRANSACT-SQL query language, while DB2 uses
IBM’s version of SQL. Consequently, SQL statements written for SQL Server
generally do not perform as expected when executed against DB2. To prevent
SQL inconsistencies, each DirectConnect Access Service is configured either
for native SQL or for TRANSACT-SQL transformation.

Note DirectConnect Access Service is a specific set of configuration
properties working with the Access Service Library. The Access Service
Library is the program component that works with MainframeConnect to
provide access to DB2 data.

The corresponding DirectConnect Access Service transformation modes are
PASSTHROUGH for native DB2 SQL an8YBASE for TRANSACT-SQL.

Note TSQL transformation modes (TSQLO, TSQL! and TSQL2) are
supported to provide backward compatibility.

CHAPTER 2 Designing an RSP

If you write a client application to invoke an RSP, you must be aware of how
the SQL transformation level is configured for the Access Service because it
determines the format of the RSP invocation command you use. See Figure 5-
3 on page 48 for more information.

Note TRS aways uses PASSTHROUGH.

Managing COMMIT /ROLLBACK

When you write an RSP, be aware of how DirectConnect configuration
property settings affect COMMIT/ROLLBACK management under normal and
error conditions. Thefollowing table showstheinteraction of the configuration
property settings under normal processing conditions.

Table 2-2: Configuration properties and COMMIT/ROLLBACK

TransactionMode
DirectConnect Configuration

Property Setting Outcome

SHORT MainframeConnect issues
COMMIT/ROLLBACK after each batch

LONG Client application or RSP issues

COMMIT/ROLLBACK

Therefore, if TRS invokes an RSP, the transaction is committed (unless the
transaction failed) because TRS aways runsin SHORT.

The client application uses standard SQL statements to issue COMMITs and
ROLLBACKS; the RSP uses the special RSP COMMIT and ROLLBACK
commands.

If the RSP invokes through Access Service Library, COMMIT and ROLLBACK
processing under error conditionsis also affected by the DirectConnect Stop
Condition configuration property.

This property can be set asfollows:

e None—If an error occurs, the RSP continues processing despite error

status messages.

e Error—If an error occurs, the RSP receives a STATUS message from
MainframeConnect and RSP processing stops.

25

Understanding how to invoke an RSP

MainframeConnect

e Err/Warn—If either an error or a DB2 warning message occurs, RSP
processing stops (for Database Gateway release 2.03 only).

Note The client application can override the DirectConrgagpCondition
configuration property with the followinget statementset StopCondition
{error[none|warning}.

If your site uses exits, review the MainframeConmegiuest Exit andParse
Exit user configuration properties in th&inframeConnect for DB2/MVS
CICSInstallation and Administration Guide. If either of the exits transform
requests, you need to be aware of that transformation.

Understanding how to invoke an RSP

The client can invoke an RSP with two kinds of variables: keyword variables
or variable text. The client can also send data to the RSP uSirm iaput

pipe. How the RSP is invoked affects how you design it. Refer to “Output
Pipes” on page 21.

Invoking with keyword variables and variable text

26

If your RSP passes keyword variables or variable text, your code accesses the
following fields in the SPAREA:

Table 2-3: SPAREA variable fields
SPAREA Field Use

SPVARTXT Specifies the address of the variable text that the client
application sent to the RSP

SPVARLEN Specifies the length of the variable text the client
application sent to the RSP

SPVARTAB Specifies the address of the variable substitution table
keyword variables that the client application sent to the
RSP

See Appendix F, “The SPAREA” for more information.

CHAPTER 2 Designing an RSP

Processing with keyword variables

If the client application is sending keyword variables, MainframeConnect
(with the Access Service Library) or Open ServerConnect (with TRS):

« Parses the arguments

« Builds a table of keywords and associated values (the keyword variable
substitution table)

* Places the address of this tabl&SHVARTAB

If the arguments are not in keyword format, MainframeConnect or Open
ServerConnect sets tS®@VARTAB to '0'.

The keyword variable substitution table contains a full word count of the
number of keywords that were specified, followed by one keyword entry for
each keyword specified. The following figure illustrates the variable
substitution table.

Figure 2-1: Keyword variable substitution table

4 bytes 12 bytes 12 bytes 12 bytes

Keyword Entry

Keyword Count Keyword Entry Keyword Entry

(TLIYCIT]

The following figure illustrates the keyword entry format.

Figure 2-2: Keyword entry format

4 bytes 4 bytes 2 bytes 2 bytes
Address of Address of Length of Length of
Variable Name Variable Value Variable Name Variable Value

The fields in the keyword entry are in integer format; addresses are 4 bytes
long and lengths are 2 bytes long. For example, if the client application passed
the following single variable:

&DATE=1991- 12- 04

the variable substitution table built by MainframeConnect or Open
ServerConnect might appear as follows:

10000253D000254F5 10

« wherelis the keyword count indicating the number of keyword entries; in
this case, the &DATE is the only keyword

* where0000253D is the address of the variable name in the SPAREA

27

Understanding how to invoke an RSP

* where0000254F is the address of the variable value in the SPAREA
« where5 is the length of the variable name; in this c&RATE
e wherel0O is the length of the variable value; in this cd€91-12-04

See Appendix D, “RSP4C keyword variable sample RSP” and Appendix E,
“RSP8C variable text sample RSP” for sample RSPs that handle variables.

Processing with variable text

If the client application sends variable text, Open ServerConnect (if TRS is
used) or MainframeConnect (if Access Service Library is used) places:

e The address of the variable textSRVARTXT
e The length of the variable text 8PVARLEN

If the client application does not pass any arguments, Open ServerConnect sets
SPVARTXT andSPVARLEN to 0.

See Chapter 5, “Testing and invoking an RSP” for details on sending variables
and data from the client application.

Invoking with data pipes

The data pipe is the mechanism by which an RSP sends results to or receives
data records from the client application. Both an input pipe and an output pipe
can be open at the same time.

You can use a combination of different data pipe formats for input and output.
For example, you can define input pipes as STD format and output pipes as
DB2 format.

This section describes what you need to consider when using input and output
pipes with fixed- and variable-length records and binary data.

Transmitting fixed- or variable-length records

28

STD and BIN format pipes can transmit either fixed- or variable-length
records. They are the only data pipe formats that use the SPAREAXLEN
andSPRECLEN propertiesSPMAXLEN sets the maximum length for data
records to be passed through a data [Sp&ECLEN specifies the actual
length of a particular data record.

CHAPTER 2 Designing an RSP

Using input pipes

When you define an input pipe to handle fixed-length records, you set
SPMAXLEN. The RSP needsto read SPMAXLEN only once. SPRECLEN isnot
regquired and is set by MainframeConnect.

For every record sent through an input pipe, MainframeConnect places the
record length in SPRECLEN, overwriting the existing SPRECLEN value. You
must check this value (record length) for each record after every GETPIPE.

The following table explains how to set input pipes for fixed- or variable-
length records

Table 2-4: Setting input pipes

Fixed-length data Set SPMAXLEN on the OPENPIPE command to the
length of asingle data record.
Variable-length data Set SPMAXLEN; then after each GETPIPE, check

SPRECLEN and process the incoming record
accordingly. Check SPRECLEN only if it is possible
that the client application passes variable-length
records.

Using output pipes
For every record sent through an output pipe—that is, before every
PUTPIPE—the RSP must place the record lengtSRRECLEN. The
following table explains how to set output pipes for fixed- or variable-length
records

Table 2-5: Setting output pipes
Fixed-length data Set SPMAXLEN with the OPENPIPE command.

Variable-length data Set SPMAXLEN with the OPENPIPE command, then set
SPRECLEN with every PUTPIPE.

Using concurrent input and output pipes

If both an input pipe and an output pipe are open simultaneously, the RSP needs
to know whether the value BPMAXLEN reflects the input or output pipe. In
addition, depending on whether the data is fixed- or variable-length, the RSP
may need to reset or restore and rerea@BRECLEN value for every output

data record. The following table summarizes how you set fixed- and variable-
length data for concurrent input and output pipes

29

Understanding how to invoke an RSP

Table 2-6: Setting concurrent input and output pipes

Input and output pipesboth If both data records are the same length:
fixed-length data 1 Set SPMAXLEN with each OPENPIPE command.
2 Check SPRECLEN only if itis possible that the
client application passes variable-length records. If
this occurs, reset the SPRECLEN value for
subsequent PUTPIPE commands.
If the data records are different lengths:
1 Set SPMAXLEN with each OPENPIPE command.
Then set SPRECLEN with each PUTPIPE
command.
2 Check SPRECLEN only if itis possible that the
client application passes variable-length records. If
this occurs, check the SPRECLEN value for that

GETPIPE command, then restore it for subsequent
PUTPIPE or GETPIPE commands.

Input and output pipesboth 1 Set SPMAXLEN with each OPENPIPE command.

variable-length data 2 Check SPRECLEN before each GETPIPE and
place the value in the GETPIPE command.

3 Reset SPRECLEN with each PUTPIPE.

Input pipe fixed-length; Handle asiif they were both fixed-length, and of the
Output pipevariable-length length set in the output pipe SPMAXLEN.

Input pipe variable- length; Handle asif they were both variable-length.
Output pipe fixed-length

Transmitting binary data

30

When an RSP uses a DB2 format data pipe, EBCDIC-ASCII or ASCII-
EBCDIC conversion does not occur for the columns defined as binary. When
you use DB2 format data, each binary column isindicated by setting the
corresponding SQLDATA field to X’0000FFFF’ at OPENPIPE. You can define
only CHAR, VARCHAR, and LVARCHAR columns as binary.

The RSP must set the SQLDATA field appropriately. To indicate whether a
column contains binary or normal data, you place the appropriate value in the
corresponding SQLDATA field before issuing the OPENPIPE command:

X xxxxxxxx (for normal data)
X 0000FFFF (for binary data)

where;

CHAPTER 2 Designing an RSP

* XO0XXXX is a pointer to the actual data.
e 0000FFFF is the DRDA/DB2 V2R3 “for bit data” indicator.

If any columns were defined as binary, the corresporsiipidpATA fields
must be reset to point to the actual column data aftedPIENPIPE is issued.

See Appendix G, “The SQLDA” for more information on the SQLDA.

Specifying error handling
When Open ServerConnect executes a command, it uses the SIZRREA
field to send a return code that indicates the success or failure of the command.
» If the command succeeds, theRC field is set to '000'".
» Ifan error occurs:

a TheSPRC field is set to a 3-character Open ServerConnect error
code.Open ClientConnect and Open Server Connect Messages and
Codes contains the Open ServerConnect error codes related to RSPs.

b Open ServerConnect issueSTATUS command.

¢ TheRSPis notallowed to issue any more commands. The RSP should
perform any termination processing and then return control to Open
ServerConnect.

The following COBOL Il statements show an example of return code checking
after issuing a@PENPIPE command:

CALL ' OPENPI PE' USI NG SPAREA
I F SPRC NOT EQUAL ' 000" THEN GOTO PERFORM TERM NATE.

In addition to '000', theéPRC field can contain other codes. For example:
'EOF’, ‘ACE’, and ‘CAN'. See the following table for an explanation of those
codes and the SPAREA fields used to communicate status and messages
between Open ServerConnect and the RSP.

31

Specifying error handling

Table 2-7: SPAREA error handling fields

SPAREA Field

Use

SPRC

RSP AP indicates the success or failure of an RSP command
inthisfield. Possible values are:

» '000' indicates successful completion.
» XXX indicates a Open ServerConnect error message.
« 'EOF'indicates an End of File on input data.

« 'ACE' indicates an APPC communication error (when the
MainframeConnect configuration propefigmporary
Storage Type is set taNone).

* 'CAN'indicates the client issued>®8CANCEL command.

SPSTATUS

RSP APl communicates the status of processing in the remote
database to the RSP. The RSP also use&PHeATUS field to
communicate status on its own processing to the client
application. Possible values are:

* 'OK'indicates success.
» 'E'indicates an error.
* 'W'indicates a warning.

SPMSG

RSP communicates messages back to the client using this field.

SPCODE

An error code that is sent in a message to the client application
appears in this field.

For acomplete list of MainframeConnect error messages, see the Open
ClientConnect and Open Server Connect Messages and Codes guide.

32

CHAPTER 3 Writing An RSP

This chapter providesinformation to help you write an RSP, it coversthe
following topics:

e Overview

e Choosing a sample RSP
* Renaming the sample

* Testing the sample

e Writing the RSP

Overview

We provide sample RSPs for you to use as shells for the RSPs you write.
When you write an RSP, select a sample, rename and test the sample, and
then alter it to fit your needs.

Choosing a sample RSP

We recommend that you select a sample RSP in the programming
language you are using as a shell for your application. The sample RSPs
are provided on the Open ServerConnect API tape.

The following table lists the sample programs and definitions available to
you:

33

Overview

34

Table 3-1: Samples on the Open ServerConnect API tape

Sample Description

MODELRSP Shows how to use a DB2 format output pipe and a SQLDA
definition. MODELRSP is reproduced in Appendix B,
“MODELRSP DB2 output pipe sample RSP”

RSP3C Shows how to use STD format input and output pipes to
transmit dataRSP3C is reproduced in Appendix C, “RSP3C
STD input and output pipe sample RSP”

RSP4C Shows an example of transmitting keyword variatRsR4C
is reproduced in Appendix D, “RSP4C keyword variable
sample RSP”

RSP8C Shows an example of transmitting variable tR€P8C is
reproduced in Appendix E, “RSP8C variable text sample RSP”

SAMPO1A Assembler sample program RSP 1. Shows how to use a text
property to select data in DB2 and write the results to a CICS
temporary storage queue.

SAMPO1C COBOL Il sample program RSP 1. (S&&MP01A for
description of what it does.

SAMPO02A Assembler sample program RSP 2. Shows how to select the
contents of an entire DB2 table and write the results to STD-
format output pipes.

SAMPO02C COBOL Il sample program RSP 2. (S2®MP02A for
description of what it does.

SAMPO3A Assembler sample program RSP 3. Shows how to use a
keyword property to select data from DB2 and write the results
to DB2-format output pipes.

SAMPO03C COBOL Il sample program RSP 3. (S2®MP03A for
description of what it does.

SAMPO4A Assembler sample program RSP 4, which demonstrates VSAM
access. Shows how to use a text property as a partial key to
perform a partial-key “browse” on a VSAKISDS dataset and
write the results to DB2-format output pipes.

SAMP04C COBOL Il sample program RSP 4. (Se®MP04A for
description of what it does.

EMPDATA Test data for sample program SAMP04.

EMPFILE VSAM define for sample program SAMPO04.

EMPREPRO JCL to populate sample VSAM file.

EMPTAB Create table for sample SAMPO04.

SPAREAP PL/I RSP communication area.

SPAREAX C RSP communication area.

SQLDAX C sample SQLDA.

CHAPTER 3 Writing An RSP

PARTSTAB Create SQL statement table for sample RSPs.

Renaming the sample

After selecting a sample RSP to use as a shell, rename the sample using the
naming conventions of standard mainframe programs at your site for the RSP
name.

Testing the sample

Before you begin to write your RSP, test the sample you are using as a shell.
Thesamplesuseatable called PCSQL.SAMPLE_PARTS The CREATE TABLE
statement for this table is member PARTSTAB in the
SYBASE.ORSP310B.CICS.SOURCE library.

If you want to compile these examples and test them, Sample 1 (SAMPO1A or
SAMPO1C) requiresyou to provide a 5-byte character value for PARTNO. This
variableis not in keyword format, so the statement that executes this stored
procedure would appear as:

USE PROCEDURE SAMPO1Xx ' XXXXX’

Sample 3 (SAMPO3A or SAMPO3C) requires you to provide an | SO-format
(yyyy-mm-dd) date value in keyword format for & DATE, as follows:

USE PROCEDURE SAMPO3x &DATE=' yyyy- mm dd’

If you need detailed instructions on testing the sample, go to Chapter 5,
“Testing and invoking an RSP”

Writing the RSP

By now you should have:

* reviewed the RSP commands

« reviewed one of the four sample RSPs provided in the appendixes
« reviewed Chapter 2, “Designing an RSP”

« gathered requirements for and designed your RSP, determining:

« the processing to be done by both the client application and the RSP

35

Writing the RSP

36

» the type of data (character or binary) to transmit
» the types of data pipes (input or output) to use
« the format of data to transmit through those data pipes (STD or DB2)

e Whether you need to use a SQLDA definition (if you are using DB2
format)

You may find it helpful to use existing data definitions or data access code from
other programs. Some of the programming tasks involved in writing RSPs are
as follows:

« Defining input and output data pipes.

¢ Using the provided RSP commands, SUCRIBESSAGE andSTATUS,
whenever appropriate (see Appendix A, “RSP commands” for details).

e Accessing the SPAREA, which the RSP shares with MainframeConnect.
» Specifying keyword and variable handling.
e Specifying error handling.

CHAPTER 4 Compiling an RSP

This chapter discusses the following topics:

Overview

Overview

Compiling an RSP without DB2
Compiling an RSP with DB2
Understanding the linkage

This chapter explains how to compile an RSP with and without DB2 and
includes an explanation of linking.

Compiling an RSP without DB2

Compile and link-edit the RSP in the standard manner for CICS

command-level programs. Use the following figure as a guide when

performing steps to compile an RSP without DB2.

37

Compiling an RSP without DB2

Figure 4-1: Compiling an RSP without DB2

RSP Source Program

l

CICS Precompiler

Compiler

Stub Routines -_— LNKEDT

RSP Load
Module

As Figure 4-1 shows, you perform the following tasks to compile an RSP
without DB2:

1 Runthe RSP source program through the CICS precompiler.

2 Compilethe RSP source program.

3 Link-edit the RSP source program with the stub routines.
The RSP load module is created.

For more information on linking, see “Understanding the linkage” on
page 42.

38

CHAPTER 4 Compiling an RSP

Compiling an RSP with DB2

Compile and link-edit the RSP in the standard manner for CICS command-
level programs. If the RSP accesses DB2, be sure the RSP is processed by the
DB2 precompiler program before running it through the CICS precompiler. In
addition, you need to bind the resulting application plan. Be sure that your
systems administrator grants users EXECUTE authority on the RSP plan and
package. See MainframeConnect for DB2/MVS-CICS Installation and
Administration Guide for details.

Use the following figure as a guide when performing steps to compile an RSP
with DB2.

39

Compiling an RSP with DB2

Figure 4-2: Compiling an RSP with DB2

RSP Source
Program

l

DB2
Precompiler

CICS Precompiler

Bind

Compiler

Stub Routines —_— LNKEDT

RSP Load
Module

DB2 Application
Plan or Package

AsFigure 4-2 shows, you perform the following tasks to compile an RSP with
DB2:

1 Runthe RSP source program through the DB2 precompiler.

2 Runthe RSP source program through the CICS precompiler.

3 Compile and link-edit the RSP source program with the stub routines.
The RSP load module is created.

4 Bindthedatabase request module (DBRM) created inthe DB2 precompile
process to DB2 as a plan or package.

40

CHAPTER 4 Compiling an RSP

For more information on linking, see“Understanding the linkage” on page 42.

Using DB2 plans (TRS Only)

You can have a separate plan for each RSP. If you do, you need an entry in the
CICS RCT table for each RSP transaction that points to each RSP plan name.

Using DB2 packages (TRS or MainframeConnect) or Gatewayless

DB2 packages allow you to use one plan for all of the RSPs that access DB2,
provided that MainframeConnect, if installed, and all the RSP DBRMs are
bound in packages included in that plan. After creating the DB2 collection and
plan, you can bind RSP packages in the collection instead of rebinding the plan.
This eliminates the need for dynamic plan allocation when MainframeConnect
is installed. All the RSP entries in the CICS RCT table can point to the same
plan name.

If you are using DB2 packages, ask your DB2 systems administrator for the
reference guide for DB2 commands and utilities for information on preparing
to use DB2 packages.

Creating a DB2 package
To create a DB2 package, follow these steps:
1 Create the collection using the following command:
GRANT CREATE ON COLLECTION SYAMD2 TO PUBLIC

2 Bind the plan to include the collection and grant access to the packages
using the following command:

BIND PLAN(AMD2PLAN) ACTION(REPLACE) PKLIST(*.SYAMD2.*) +
ISOLATION(CS) VALIDATE(BIND)

GRANT RUN ON PLAN

AMD2PLAN TO PUBLIC

3 Bind the packages in the collection using the following command:

41

Understanding the linkage

BIND PACKAGE(SYAMD2) ACT(REPLACE) +
LIBRARY('SYBASE.AMD2105.CICSDB2.DBRM’) MEMBER(RSPA) +
ISOLATION(CS) VALIDATE(BIND)

GRANT EXECUTE ON PACKAGE SYAMD2.RSPA TO PUBLIC

BIND PACKAGE(SYAMD2) ACT(REPLACE) +
LIBRARY('SYBASE.AMD2105.CICSDB2.DBRM’) MEMBER(RSPB) +
ISOLATION(CS) VALIDATE(BIND)

GRANT EXECUTE ON PACKAGE SYAMD2.RSPB TO PUBLIC

Understanding the linkage

Linking RSPs

During the link-edit step, stub routines are included in the resulting load
module for the RSP. The stub routines provide the linkage between the RSP
and Open ServerConnect.

Note Each time you link-edit, you must also perform a CICS NEWCOPY.

MV S requires that RSPs be linked above the 16MB linein 31-bit addressing
mode. To dothis, add alineto the RSP source program similar to the following
JCL:

/ | LNKEDTEXEC PGMEI EWL., PARVE’ par ms AMODE(31)
RVODE(ANY) ’

The concatenation sequencefor SYSLIB inthelink edit step must includeaDD
statement for the stub library, either in load format or object format.

Linking load modules

42

When you link load modules, add aline similar to thefollowing to the SYSLIB
DD concatenation in the JCL:

/ | SYSL| BDDDSN=SYBASE. ORSP310B. Cl CS. LOADLI B,
DI SP=SHR

CHAPTER 4 Compiling an RSP

Linking object code

When you link object code, add a line similar to the following to the SYSLIB
DD concatenation in the JCL:

/] SYSL| BDDDSN=SYBASE. ORSP310B. CI CS. OBJLI B,
DI SP=SHR

The SYBASE.ORSP310B.CI CSxxxxx val ue varies with the Open
ServerConnectversion you are using. Seethe Open Server Connect Installation
and Administration Guide (platform-specific) for more information.

Note If you areusing COBOL I, CICS requiresthat the you link-edit stub
routine DFHECI at the top of the RSP,

43

Understanding the linkage

44

CHAPTER 5 Testing and invoking an RSP

This chapter discusses the following topics:

Overview

Overview

Before you test or invoke an RSP

Testing an RSP using an ASPT Transaction
Running the RSP test program

For installations that include MainframeConnect, Tresaction ASPT

(RSP Test Screen) utility allows you to view the first 15 rows of results
from the RSP. In addition, you can test the RSP fully by invoking it. This
chapter explains how to do both.

Before you test or invoke an RSP
Each RSP must have a CICS PPT entry. (Generally, the systems

administrator or system programmer makes CICS entries.)

In addition, if the RSP runs through TRS and accesses DB2, a transaction
definition in CICS is required for each RSP and an RCT entry is required
for that transaction.

45

Testing an RSP using an ASPT Transaction

Testing an RSP using an ASPT Transaction

ASPT Transaction allows you to test RSPs using STD input pipe data
(keyword, variabletext). Although you can write RSPsto use BIN input pipes,
for testing with ASPT, you must use STD format.

Note Test the RSPin the standard manner for CICS command-level programs.

Testing an RSP involves creating atemporary storage queue and running
ASPT.

Creating a temporary storage queue

To provideinput pipe datato RSP Testor, create atemporary storage queue and
populate it with data of the same type and format that will be sent to the RSP
in normal use. You must name the temporary storage queue with the same
name as the RSP being tested.

Note Becausethe RSP Testor screen is case-sensitive, you must enter the RSP
name in capital letters so the temporary storage queue that holds your input
records can be located. If you receive an

EOF ALREADY ENCOUNTERED nessage, be sure you entered the
RSP name correctly.

Use program function keys to work with the results. The following table
describes the program function key operations.

Table 5-1: Function key operations

This key: Performs this function:

F3 Terminates the RSP test

F5 Displays the arguments that were specified for the RSP test.
You can specify new arguments if you want.

F6 Displays the messages or data produced by the RSP

The CICS CECI transaction isaconvenient tool for creating and populating the
temporary storage queue with STD-format data. The following example uses
the CECI command to create and load a temporary storage queue for input
records:

CECl WRI TEQ TS QUEUE(’ RSPNAME') FROM' THI'S |'S A DATA RECORD) A

46

CHAPTER 5 Testing and invoking an RSP

Running the RSP test program
To test an RSP using the RSP test program, perform the following steps:
1 Signonto CICSand enter the command for RSP Test program:
ASPT

The Stored Procedures Test window appears as shown in the following
figure:
Figure 5-1: Stored Procedure Test window

- ™
STORETPD PROCEDURE TEST

Stored Procedure Name ===>

Specify Variables Below:

2 Atthe,
St ored Procedure Nane

prompt, specify the name of the RSP you are testing. If the RSP expects
variables, specify the values in the format the RSP expects.

The completed information in the Stored Procedure Test window isshown
in the following figure.

47

Invoking an RSP

Figure 5-2: Completed Stored Procedure Test window

e ™
STORED PROCEDURE TESGST
Stored Procedure Name ===>> SAMP02C
Specify Variables Below:
&PARTNO=100 &COLOR='BLUE'
G /
3 Press Enter to perform the test.
When the RSP compl etes processing, the results from the test appear on
the screen. If the RSP produced any output (messages or data), thefirst 15
lines of the output also appear.
The following figure shows the test results for the sample program
SAMPO02C RSP. The output consists of four data records and messages.
Figure 5-3: Stored Procedure Test results window
e ™
STORED PROCEDURE TEST
TEST COMPLETE STATUS: OK ERRCODE: ROW COUNT: 4
Stored Procedure Name ===>> SAMP02C
Data Records Shown Below:
0003800300PART NUMBER 300 715
0003800300PART NUMBER 300 715
0003800200PART NUMBER 200 Al5
0003800100PART NUMBER 100 Al4
G /

Invoking an RSP

48

Both the client application programmer and the RSP programmer need to be
aware of how client applications interact with RSPs. This section describes
how to invoke RSPs, how to migrate from previous modes, and how to send
datato the RSP,

CHAPTER 5 Testing and invoking an RSP

How the RSP will beinvoked (through Access Service Library, TRS, or both)
or Gatewayless determines the command you use to invoke it. When a client
application invokes an RSP, arguments are passed to the RSP on the USE
PROCEDURE, EXECUTE, or EXEC statement. The RSP accesses these values
through the SPAREA. When you write a client application to invoke an RSP,
the format of the invocation command you use depends on:

e The SQL transformationr6QL) configuration property setting on the
DirectConnect Access Service

If you write a client application to invoke an RSP, ask your LAN
administrator how the DirectConnect Access Serv&®L configuration
property is set at your site.

e A setting ofPASSTHROUGH mode allows you to issue statements in
the target’s SQL dialect.

« A setting of SYBASE mode transforms most syntax of the received
SQL text into the SQL syntax that is supported by the target DBMS.

* The type of data (if any) you send with the RSP invocation request

The data you transmit can be in binary format or ASCII text.

Note DirectConnect and Open ServerConnect support MDI Database
GatewayTSQL modes offSQLO, TSQL1, andTSQL2 for backward

compatibility only. TSQLO corresponds tBASSTHROUGH mode, and'SQL2
corresponds t8YBASE mode. For these modes, your SQL should not require
any modificationTSQL1 andTSQL2 continue to work as they do in MDI
Database Gateway for DB2, Version 2.05, but Sybase is planning to phase them
out. These modes will not be defined or documented beyond what was
provided for that version. See “Migrating from TSQLO, TSQL1, and TSQL2
modes” on page 53 for more information.

When invoking an RSP, the client application can specify keyword variables,
variable text, or input pipes to pass to the RSP. In turn, the RSPpoirgess

in the SPAREA to access the values. Keyword variables have the typical MVS
format of & VARNAME=value. The client application passes values according
to the DirectConnectSQL setting for SQL transformation.

49

Invoking an RSP

Invoking RSPs through Access Service Library

This section explains how to use the PASSTHROUGH and SYBASE
transformation mode commands to invoke RSPs through Access Service
Library. It also explains how to pass keyword variables and variable text, and
how to handle quotesin variables.

Using the PASSTHROUGH mode commands

If the DirectConnect TSQL configuration property is set to PASSTHROUGH,
use this command syntax to invoke RSPs:

USE PROCEDURE procedur enane

If you pass variables to the RSP, you must also supply the appropriate
arguments in the invoking statement, and the form of the arguments must
match the SQL transformation level. See your TRANSACT-SQL manual for
more information on variables and arguments.

Passing keyword variables
Use this command syntax to pass keyword variable values to the RSP:

USE PROCEDURE procedurename &VARNAMEl=valuel
&VARNAMVE2=value2 ... &VARNAMEn=valuen

Passing variable text

The client application passes variable text to the RSP as asingle text string; the
RSP is responsible for interpreting the string.

If the DirectConnect TSQL configuration property is set to PASSTHROUGH,
use this command syntax to pass variable text to the RSP:

USE PROCEDURE procedurename valuestring

Note Thereisa32K limit for variabletext string size for DB2 Access Service.
Thislimit is not valid for TRS Access Service.

Using the SYBASE mode command

If the DirectConnect TSQL configuration property is set to SYBASE, use this
command syntax to invoke RSPs:

EXECUTE procedurename

50

CHAPTER 5 Testing and invoking an RSP

If you pass variables to the RSP, you must also supply the appropriate
arguments in the invoking statement, and the form of the arguments must
match the SQL transformation level. See your TRANSACT-SQL manual for
more information on variables and arguments.

Passing keyword variables
Use this command syntax to pass keyword variable values to the RSP:

EXECUTE procedur ename @/ARNAMEl=val uel,
@/ARNANVE2=val ue2 ... , @ARNAMVEn=val uen

With TSQL set to SYBASE, you must comply with TRANSACT-SQL syntax
for variables. In particular, be sure to prefix your variable names with the at
sign (@) instead of the ampersand (&) and to separate the variables with
commeas.

Passing variable text
Theclient application passes variable text to the RSP asa singletext string; the

RSP isresponsible for interpreting the string. When using variabl e text, you
can include an unlimited number of variablesin the string.

Note Thereisa32K limit for variable text string size.

e If TSQL is set tcPASSTHROUGH, use this command syntax to pass
variable text to the RSP:

USE PROCEDURE procedur ename val uestring

« If TSQL is set toaSYBASE, use this command syntax to pass variable text
to the RSP:

EXECUTE procedur ename val uestring

Handling quotes in variables

In some cases, the values the client application sends to the RSP contain
guotation mark characters, either single or double. Because these characters are
frequently used as string delimiters, DirectConnect can misinterpret strings
containing quotes. Therefore, it may transform the values in ways that the RSP
does not expect, for example by replacing the carriage return-linefeed sequence
(CR/LF) with spaces.

51

Invoking an RSP

52

To provide maximum control over quote handling in USE statements, Sybase
implemented the following rules:

Note Theserulesapply only if your setting is TSQL1 or PASSTHROUGH.

» The first non-white-space character following the procedure or request
name is tested by MainframeConnect for the possibility that it is a special
delimiter. Special delimiters can be used to enclose the entire set of
argument strings sent to the request or RSP. If the argument string is
enclosed by such delimiters, then the characters between the delimiters
(including the delimiters themselves) are not modified in any way. In other
words, quote processing, uppercasing and so on, is not performed by
MainframeConnect.

« DirectConnect recognizes a character as a delimiter if it is a member of the
following set of characters:

P % () */ @ <<>2\ " [}]| -~

Note The same delimiter character must be used at both ends of the string: for
example (300000xx(or {>000000q (N0t (XOOOXXXX)).

If the first non-white-space character is not a delimiter, then
MainframeConnect handles quotes according to the following stangetd
rules:

* It passes doubled occurrences of either quote character—that is, " or "'—
without modification.

* It assumes the first single occurrence of either quote character is a
delimiter beginning a quoted string, and it assumes the next single
occurrence of the same character ends the quoted string.

e It compares the delimiter to the setting in the DirectConnect configuration
(.cfg) file, and converts the delimiter if required; that is, double quotes may
be converted to single quotes.

¢ It passes occurrences of the other quote characters (that is, double quotes
occurring in a string delimited by single quotes or single quotes occurring
in a string delimited by double quotes) without modification.

CHAPTER 5 Testing and invoking an RSP

Invoking RSPs through TRS

If you invoke the RSP through TRS, use this command syntax:
EXEC rpcnane

Passing keyword variables
Use this command syntax to pass keyword variable values to the RSP:

EXEC r pcname @QVARNAME1=Valuel’ ,@VARNAME2="value2’
, @/ARNANVEN=' val uen’

Passing variable text

Theclient application passes variable text to the RSP asa singletext string; the
RSP isresponsible for interpreting the string. When using variabl e text, the
number of variables you can include in the string is unlimited.

Note Thereisa32K limit for variable text string size.

If TSQL isset to SYBASE, use thiscommand syntax to pass variabletext to the
RSP:

EXEC rpcnane ' value’

Migrating from TSQLO, TSQL1, and TSQL2 modes

TSQLO corresponds to PASSTHROUGH mode, and TSQL2 corresponds to
SYBASE mode. For these modes, your SQL should not require any
modification.

If you used TSQL1 mode for earlier releases, review your SQL.

If you migrate to a setting of PASSTHROUGH mode, your code will probably
fail because the TSQL1 partial conversion does not occur. If you migrateto a
new setting of SYBASE mode, your code should work because DirectConnect
passes any SQL statement that the parser cannot identify on to the server
without changes.

53

Invoking an RSP

Sending data to the RSP

You can use STD input pipesto send datato an RSP only if your DirectConnect
TSQL setting is PASSTHROUGH (or TSQLO or TSQL1 for backward
compatibility only). You can send ASCII data through parameters and pipes;
however, binary data can only be sent through pipes.

Note If your DirectConnect setting is SYBASE (or TSQL2, for backward
compatibility only), you must pass data as parameters.

When invoking an RSP, the client application can send ASCII formatted data
or binary data. If it sends binary data, see “Sending binary data” on page 55.

Sending ASCII-formatted data
To send ASCII data to an RSP, you use this command syntax:
USE PROCEDURE W TH DATA rspname [keywords or variable text],

ASCl | data records
The following list describes the previous syntax:
 TheWITH DATA clause appends input records.
e A carriage return or line feed separates data records.

e A semicolon and carriage return/linefeed must separateSie
PROCEDURE clause from the data.

When another statement follows the data records, the data records must
end with a semicolon on a line by itself.

This is an example of ASCII-formatted data:

521-44-3201 JOHN SM TH 1991-04-16 00004 012. 25
521-56-4368 JERRY GREEN 1987-11-02 00001 018.75
522-63-7188 SALLY JONES 1988-09-21 00002 015. 00
521-44-3201 BILL SMTH 1981-12-16 00004 012.25
521-56-4368 GEORGE BROVWN 1986- 05-24 00001 018.75
522-63-7188 KATHY JOHNSON 1987-09-19 00002 015.00

54

CHAPTER 5 Testing and invoking an RSP

Sending binary data

The client application can send RSPs binary input data using a BIN-format
input pipe. The client application specifies the USE PROCEDURE statement
using the WITH BINARY DATA option in this command syntax:

To send binary data to an RSP, use this command syntax:
USE PROCEDURE W TH BI NARY DATA rspname [keywords or variable text];

....binary data....
The following describes the syntax:
* TheWITH BINARY DATA clause appends the input file as binary data.
e rspname represents the name of the RSP.

* A semicolon and carriage return/linefeed must separate3ae
PROCEDURE clause from the data.

The RSP assumes all data between the semicolon and the end of the buffer
is binary. Because there is no internal formatting in the binary file, the RSP
must be able to interpret the data appropriately.

* With a BIN-format data pipe, ASCII-EBCDIC conversion does not occur.

Understanding input data requirements

All data, except binary, the client sends as input to the RSP must meet the
following requirements:

e All characters must be printable ASCII characters (20-7F hexadecimal).
« Records must be delimited by either linefeed or carriage return/linefeed.

In PASSTHROUGH mode, input pipe data passes unchanged to the RSP, except
that control characters are deleted and ASCIl is converted to EBCDIC. All line
feeds in the input data serve to separate data records, and their positions control
what the RSP receives as a single record.

55

Invoking an RSP

56

CHAPTER 6

Overview

Troubleshooting

This chapter describes the following topics:
* Overview
* MainframeConnect errors related to RSPs

e Troubleshooting errors

This chapter describes how to use the output records of an RSP to
troubleshoot problems in the RSP.

MainframeConnect errors related to RSPs

Your RSP receives error messages, if there are any, 8PRe field of
the SPAREA.

MainframeConnect invokes the RSP through the QIB& command,
which causes the CICS program table to be searched for the RSP name.

If CICS does not find the RSP name, one of three messages returns:

« |f DB2 does not exist in this CICS region, then MainframeConnect
returns a RSP or REQUEST not found message or a Shersl
AEYO9.

- |f DB2 does exist in this CICS region but the host request table does
not exist, then MainframeConnect returns a RSP or REQUEST not
found message.

< If DB2 and the host request table both exist but the RSP name is not
in the table, then MainframeConnect returns an RSP or REQUEST
not found message.

57

Troubleshooting errors

See MainframeConnect for DB2/MVS-CICS Installation and Administration
Guidefor thevalid message numbers, the message text, the reason the message
was issued, and the required action.

Note snaping and cicsping are troubleshooting programs available with
MainframeConnect. See MainframeConnect for DB2/MVS-CICS Installation
and Administration Guide for more information.

Troubleshooting errors

This section covers DB2 errors, and what to do if ASRA abends at PUTPIPE
and at OPENPIPE.

DB2 errors

If you receive a DB2 -805 error when you execute RSPs that access DB2,
ensure that:

¢ Pooled threads are specified

e The package was bound with the current database request module
(DBRM)

If you receive other DB2 error messages, refer to your DB2 documentation.

CICS ASRA abend errors

ASRA is an abend error indicating that CICS found a problem in a program that
was running. It is the most common CICS abend.

If a CICS ASRA abend (OC4) occurs at PUTPIPE

There are two common causes of ASRA abends &uheIPE command: a
SQLLEN packed decimal error anhRCHAR or LVARCHAR definition error.

58

CHAPTER 6 Troubleshooting

A SQLLEN packed decimal error

Defining packed decimalsin the SQLDA isacommon source of errors. When
you define the length of a packed decimal in the SQLLEN field, the lengthisa
decimal translation of hexadecimal 'PPSS, where:

« PP (precision) is the number of total digits in the decimal.
* SS(scale) is the number of those digits to the right of the decimal.

An incorrect length causes an ASRA abend aPtheRIPE command. The
following table shows how the problem can occur.

Table 6-1: Coding decimal and hexadecimal values

Decimal
Code Picture Hex Value Value
PIC S9(03)VV99 nnn.nn X'0502 '1282'
PAC S9(11)V99 nnnnnNNNNNNN.NN X'0D02' '3330°

You can calculate the hex value using the following formula:
pp x 256 + ss = length

wherepp is precision andsis scale.

For example:

05 SQLLEN PI C S9(4) COWP VALUE +3330.
13 x 256 + 02 = 3330

You can avoid decimal translation by redefining 8@ LEN field as a PIC(2)
with a hexadecimal value:

05 SQLLEN-X PIC X(2)VALUE X'0D02'.
05 SQLLEN REDEFINES SQLLEN-X PIC S9(4)COMP.

VARCHAR or LVARCHAR definition error

When VARCHAR and LVARCHAR are defined in the LINKAGE SECTION,
they each require a preceding 2-byte field for their length. Not including this
length field causes an ASRA abend at the PUTPIPE command.

The code must include acomputed fiel d, which passes the amount of space that
isrequired for the text:

01 VARCHAR- HOLD.
05 VARCHAR- LENGTH PI C S9(4) COWP.
05 VARCHAR- TEXT PI C X(200).

59

Troubleshooting errors

If the code omits the computed field, the first two charactersin the text field
are used for the length of the text field:
01 VARCHAR- HOLD.
05 VARCHAR- TEXT Pl C X(200).

The hexadecimal value for alphas can be very large. The result isan ASRA
abend, or even a CICS crash.

If a CICS ASRA abend occurs at OPENPIPE

Errorsin the model SQLDA definition cause an ASRA abend at the
OPENPIPE command. MainframeConnect does not check errors for the

SQL DA structure, so any typing error causes an abend. Recheck the RSP code,
or copy the SQLDA definition from ancther file.

60

APPENDIX A RSP commands

This appendix discusses the following topics:
e Command examples

¢ Commands

Command examples

The following examples show commands in Assembler, COBOL I, PL/I,
and C languages:

Assembler language M/C SPMODE, =C' | NPUT’

example M/C SPFORMAT, =C STD
M/C SPMAXLEN, =F 400’
CALL OPENPI PE, SPAREA

COBOL I | language MOVE ' | NPUT" TO SPMODE.
example MOVE ' STD TO SPFORMAT.

MOVE 400 TO SPMAXLEN.

CALL ' OPENPI PE' US| NG SPAREA.

PL/I language example SPMODE=" | NPUT" ;
SPFORVAT=" STD ;
SPVAXLEN=400;
CALL OPENPI PE(SPAREA) ;

C language example memcpy(spPointer->spmode, “INPUT ",
sizeof(spPointer->spmode));
memcpy(spPointer->spformat, “STD”,
sizeof(spPointer->spformat));
spPointer->spmaxlen = 400;
openpipe(spPointer);

Note All the other examplesin the command explanationsin this
appendix arein COBOL 1.

61

Commands

Commands

CLOSPIPE

Description
Syntax

Examples

Usage

COMMIT

Description

62

The following RSP commands are explained in this appendix:
¢ CLOSPIPE on page 62
¢ COMMIT on page 62

¢ GETPIPE on page 63

¢ MESSAGE on page 64
« OPENPIPE on page 64
» PUTPIPE on page 66

* ROLLBACK on page 67
* RPDONE on page 67

* RPSETUP on page 68
* STATUS on page 68

Closes a data pipe.
Syntax varies with the programming language.
COBAL Il 1Closing an input pipe:

MOVE ’ | NPUT' TO SPMODE.
CALL ' CLOSPI PE' USI NG SPAREA.

2 Closing an output pipe:

MOVE * QUTPUT" TO SPMODE.
CALL ' CLGOSPI PE' USI NG SPAREA.

Properties TheCLOSPIPE command uses the value from the SPAREA field
SPMODE (see “SPMODE" on page 136), which specifies whether the data
pipe is opened for input or output.

Commits database processing of the most recent unit of work.

APPENDIX A RSP commands

Syntax

Examples

Usage

GETPIPE

Description

Syntax

Parameters

Examples

Usage

Syntax varies with the programming language.

COBAL Il Theequivalent to SYNCPOINT is:

CALL 'COW T' USI NG SPAREA.

The RSP COMMIT command is provided because the standard SQL COMMIT
statement cannot be executed in CICS environments. MainframeConnect
converts the command to the equivalent CICS SYNCPOINT command.

Reads data records from an input pipe.

Syntax varies with the programming language.

Note STD and BIN pipes are the only valid formats for the GETPIPE
command.

The GETPIPE command uses values from these SPAREA fields: :

SPINTO (see “SPINTO” on page 136) specifies the address of the RSP
storage area to receive the input data. MainframeConnect places the
data record into this area.

SPRECLEN (see “SPRECLEN” on page 137) specifies the length of
the data record. Open ServerConnect setSRRECLEN for a
GETPIPE.

Note GETPIPE is used with Access Service Library only; it is not used with

TRS.

COBOL Il This example reads data from a STD format input pipe into the
DATAREC storage aredATAREC is a data area defined in the RSP program):

SET ADDRESS OF DATAREAC TO SPI NTQO.
CALL ' GETPI PE' USI NG SPAREA.

« If you write fixed-length records of the same siz&BBIAXLEN, the
SPRECLEN value is not required.

« However, when you have both an input pipe and an output pipe open, both
pipes use this field and each must set the field value before writing or
reading the record. See “Transmitting fixed- or variable-length records”

for more information.

63

MESSAGE

MESSAGE

Description
Syntax

Examples

Usage

OPENPIPE

Description

Syntax

64

Communicates error and informational messages to the client application.
Syntax varies with the programming language.
COBOL Il 1Provide the message text:

MOVE ' E TO SPSTATUS.
MOVE ' DATA REQUESTED CANNOT BE FOUND TO SPMSG
CALL ' MESSACE' USI NG SPAREA.

2 Repeat the message previously stored in SPMSG:

MOVE ' E TO SPSTATUS.
CALL ' MESSACE' USI NG SPAREA.

The MESSAGE command uses values from these SPAREA fields:

* SPMSG (see “SPMSG” on page 137) specifies the message text. Message
text can be up to 100 bytes long.

e SPSTATUS (see “SPSTATUS” on page 135) specifies processing status.
Use one of these codes:

 'OK'indicates success.
« 'E'indicates an error.
 'W'indicates a warning.

Your RSP can issue as maniESSAGE commands as you need. The RSP API
sends the messages to the client application immediately.

To send messages and status to the client, the RSP places message text in an
SPAREA field 6PMSG) and issues the RSRESSAGE command, which
signals to the RSP API that a message is ready to be sent.

Note A call to MESSAGE cannot be made between@RENPIPE and a
PUTPIPE

Opens a data pipe either to send output to or receive input from the client
application.

Syntax varies with the programming language.

APPENDIX A RSP commands

Examples COBOL Il 10pen a STD output pipe:

MOVE * QUTPUT' TO SPMODE.
MOVE * STD TO SPFORVAT.
MOVE 450 TO SPMAXLEN.
CALL ' OPENPI PE' USI NG SPAREA.

2 OpenaBIN input pipe:

MOVE * I NPUT" TO SPMCDE.
MOVE ' BIN TO SPFORVAT.
MOVE 625 TO SPMAXLEN.
CALL ' OPENPI PE' USI NG SPAREA.

Usage The OPENPIPE command uses values from these SPAREA fields;

SPMODE (see “SPMODE” on page 136) specifies whether the data pipe
is opened for input or output.

* |INPUT indicates the RSP reads data records sent from the client
application.

« OUTPUT indicates the RSP writes data records to be sent to the client
application.

SPFORMAT (see “SPFORMAT” on page 136) specifies the data pipe
format.

e STD indicates standard format, in which each data record is
transmitted to or from the client application as a single-text column
record.

e BINindicates a single-binary column format, like STD, except that the
data is binary. No ASCII-EBCDIC or EBCDIC-ASCII conversion
occurs on binary data.

Note UseSTD andBIN only for input pipes.

« DB2 indicates data is transmitted from the RSP as a multiple-column
record, where the column definitions are contained in an associated
SQLDA. The SQLDA is a collection of variables and pointers that
provide column information about data being transmitted to the client
application. See Appendix G, “The SQLDA” for more information.

Note Use DB2 only for output pipes.

SPMAXLEN (see “SPMAXLEN" on page 137) specifies the maximum
size, in bytes, of the data records written to or read from the data pipe.

65

PUTPIPE

PUTPIPE

Description

Syntax

Examples

Usage

66

e SPSQLDA (see “SPSQLDA" on page 136) specifies the address of a
SQLDA that describes the content of the data rectrsisonly for output
pipes.

e STD and BIN format pipes must uUSEMAXLEN to identify the maximum
record length.

e For DB2 format pipes, the RSP must supplySRSQLDA address. DB2
format pipes must usePSQLDA.

e Both an input pipe and an output pipe can be open at the same time.

e As part of opening a pipe, you must specify the format of the data the pipe
handles. RSPs can handie2, BIN, andSTD format data. See Chapter 2,
“Designing an RSP” for more information on these formats.

 When a data pipe of any format opens for output witrOtRENPIPE
command, itissues Open Serdescribe andbind commands. You cannot
subsequently change the maximum column length of any columns or types
in the SQLDA definition when you issueP&TPIPE command.

Writes data records to an output pipe. Open ServerConnect then reads the
records and sends them to the client application.

Syntax varies with the programming language.

COBOL Il This example writes a 130-byte data record built in a storage area
calledAREAL to a STD format input pipe:

MOVE 130 TO SPRECLEN.
SET ADDRESS OF AREA1 TO SPFROM
CALL ' PUTPI PE' USI NG SPAREA.

ThePUTPIPE command uses values from these SPAREA fields:

e SPFROM (see “SPFROM"” on page 136) specifies the address of the data
record.

* SPRECLEN (see “SPRECLEN" on page 137) specifies the length of the
data record.

e SPSQLDA (see “SPSQLDA” on page 136) provides the SQLDA address.

e Only STD and BIN format pipes use tBBFROM field. For a DB2 format
pipe, the SQLDA describes the location and length of the data columns.

APPENDIX A RSP commands

« Ifyou have a single output pipe open, you can seSB#ROM value once
for all records. However, when you have both an input pipe and an output
pipe open, both pipes use this field and each must set the field value before
writing or reading the record.

e ForSTD andBIN pipes, theSPRECLEN value must not exceed the value
that was specified f@PMAXLEN (see “SPMAXLEN" on page 137)
when the pipe was opened.

« If you write fixed-length records of the same siz&RBIAXLEN, the
SPRECLEN value is not required.

Description Rolls back database processing to the last syncpoint (COMMIT).

Syntax Syntax varies with the programming language.

Examples COBOL Il The equivalent t&§YNCPOINT WITH ROLLBACK is:

CALL ' ROLLBACK USI NG SPAREA.

Usage The RSPROLLBACK command is provided because the standard SQL
ROLLBACK statement cannot be executed in CICS environments.
MainframeConnect converts the command to the equivalent CICS
SYNCPOINT WITH ROLLBACK command.

Description Ends processing for an RSP invoked through TRS.

Syntax Syntax varies with the programming language.

Examples COBOL Il CALL ' RPDONE’ USI NG SPAREA.

Usage e This must be the last API call in an RSP invoked through TRS.

e It cleans up RSP memory (the SPAREA) because MainframeConnect is
not involved.

67

RPSETUP

RPSETUP

Description Initiates an RSP invoked through TRS.

Syntax Syntax varies with the programming language.

Examples COBOL Il CALL ' RPSETUP" USI NG SPAREA.

Usage This must be thefirst API call in an RSP invoked through TRS. It isused
because MainframeConnect isnot involved. It allocates and initializes memory
for the SPAREA.

STATUS

Description Communicates to MainframeConnect the success or failure of the processing
it performed.

Syntax Syntax varies with the programming language.

Examples COBOL Il Thisexample sets the status to indicate an error condition:

MOVE ' E TO SPSTATUS.
CALL ' STATUS USI NG SPAREA.

Usage The STATUS command uses the SPSTATUS field (see “SPSTATUS” on page
135) to specify processing status. Use one of these codes:

* 'OK'indicates success.

* 'E'indicates an error.

* 'W'indicates a warning.

* STATUS releases results and messages to the client application.

* An RSP must issue at least @BATUS command. If an RSP terminates
without issuing &TATUS command, MainframeConnect automatically
issues 8STATUS message indicating an error occurred.

» For each result set returned to the client application, the RSP must issue a
STATUS command after the output pipe closes. IssuiBgATUS
command while a data pipe is open automatically closes the pipe.

* An RSP can issue tl&TATUS command as many times as necessary.

68

APPENDIX B

MODELRSP DB2 output pipe
sample RSP

If you want to write an RSP with DB2-formatted output pipes or multiple
column rows, review MODELRSP.

This appendix discusses the following topics:

e Understanding MODELRSP

e The SPAREA in MODELRSP

e The SQLDA in MODELRSP

e Invoking MODELRSP from the client application
e MODELRSP DB2 output pipe sample code

Understanding MODELRSP

MODELRSP is a RSP sample COBOL Il program that provides examples
of:

e Using a DB2-format output pipe
« Defining a SQLDA with all possible datatypes represented
e Using the SPAREA to communicate with MainframeConnect

e Using the RSP commands to manage a data pipe and communicate
status

e Sending data to the client application
e Handling errors

In theMODELRSP example, keyword variables, variable text, or data are
not sent as input to the RSP. The sample program is shown in its entirety.
The program also contains many in-line comments (denoted with standard
asterisks) to explain the flow of processing and clarify points.

69

The SPAREA in MODELRSP

For simplicity, the example does not include database access code. Instead, it
sends 11 columns of employee datato illustrate 11 types of datayou can
transmit to the client application.

The SPAREA in MODELRSP

This section describes how MODELRSP uses SPAREA fields and RSP
commands, aswell as a brief example of the SPAREA from MODELRSP.

How MODELRSP uses SPAREA fields

SPRC

SPSTATUS

SPMSG

70

This section explains how MODELRSP uses the return code, status, and
message fields. See Appendix F, “The SPAREA” for detailed information on
all SPAREA fields.

TheSPRC (return code) field communicates the success or failure of an RSP
command.

Note Your code should check ti$PRC field after issuing any RSP command.

The followingMODELRSP code fragment shows how an RSP accesses the
SPRC field to get this information:

IF SPRC IS NOT EQUAL TO ' 000’
MOVE W6- CLOSPI PE TO ERROR1- CALL
PERFORM 9800- PI PE- ERROR- M5G THRU 9800- EXI T
GO TO 9999- RETURN- TO- CALLER.

The SPSTATUS field communicates processing status in the remote database
to the RSP. As shown in the followitMODELRSP code fragment, the RSP

also uses thBPSTATUS field to communicate status on its own processing to
the client application.

MOVE ‘OK’ TO SPSTATUS.
CALL ‘STATUS’ USING SPAREA.

The SPMSG field communi cates messages back to the client application. Then
the SPAREA issues the RSP MESSAGE command as shown in the following
modified MODELRSP code fragment:

MOVE SPRC TO ERROR1-SPRC.
MOVE ERROR1-MSG TO SPMSG.

APPENDIX B MODELRSP DBZ2 output pipe sample RSP

MOVE ' E TO SPSTATUS.
CALL ' MESSACE' USI NG SPAREA.

In this case, the client application receives the error message in SPMSG.

You can issue the MESSAGE command with message text of up to 100 bytes
with USING SPAREA:

MOVE ' &K' TO SPSTATUS.
MOVE ' THIS | S THE OK MESSAGE TO SPMSG
CALL ' MESSAGE' USI NG SPAREA.

Refer to Appendix A, “RSP commands” for detail about MESSAGE
command.

Using RSP commands with the SPAREA

The MODELRSP program uses these RSP commamikENPIPE, PUTPIPE,
CLOSPIPE, STATUS, andMESSAGE. In all the supported programming
languages, the RSP commands are invoked with a staBdardstatement.

In COBOL Il, the RSP command can be enclosed in single quotes; in the @ther
supported languages, quotes are not necessary. The following COBOL I
statements show how your RSP code must use the RSP commands.

Note Single quotes in a COBOCALL statement indicate a “static call.”

CALL ' OPENPI PE’ USI NG SPAREA.
CALL ' PUTPI PE USI NG SPAREA
CALL ' CLCSPI PE USI NG SPAREA.
CALL ' STATUS USI NG SPAREA.
CALL ' MESSACE USI NG SPAREA.

The previous sample shows:

« Data pipe mode and format values are moved to the corresponding
SPAREA fields. Then the command is issued

CALL ‘OPENPIPE’ USING SPAREA.

* EachPUTPIPE generates one result row. Therefore, your code must issue
thePUTPIPE command for every row of data you send.

e A STATUS command always follows th&. OSPIPE command. This
ensures the processing status is communicated to the client application and
clears out the data pipe and all messages.

71

The SQLDA in MODELRSP

For more information on the RSP commands, their formats and results, see
Appendix A, “RSP commands”

SPAREA Example

In the following example, the LWKCOMMAREA is the RSP API
communication area. SPAREAC (the sample COBOL Il copy book provided
on the Open ServerConnect base tape) is included in the linkage section with a
COPY statement.

01 LVWKCOMVAREA.
COPY SPAREAC.

Further on in the program, the SPAREA fields pass information about the type
of data pipe the RSP uses and the pointers to the SQLDA.

MOVE * OUTPUT’ TO SPMODE.
MOVE * DB2’ TO SPFORMAT.

SET SPSQLDA TO ADDRESS OF SQLDA.
CALL ’ OPENPI PE USI NG SPAREA.

The following three SPAREA fields are used by the RSP to communicate to the
Open ServerConnect RSP API:

e SPMODE specifies the mode (input or output) of the data pipe.

* SPFORMAT specifies the format (DB2, STD, or BIN) of the data to be
transmitted through the pipe.

e SPSQLDA specifies the pointer to the SQLDA.

See “SPAREA field descriptions” on page 135 for more information on all the
SPAREA fields.

The SQLDA in MODELRSP

72

MODELRSP shows you how to create a SQLDA definition to send along with
data to the client application using a DB2 output pipe. (The SQLDA definition
in the RSP provides the data structure information sent along with the data to
the client.

APPENDIX B MODELRSP DBZ2 output pipe sample RSP

If you have not worked with a SQLDA definition, review Appendix G, “The
SQLDA"

Note If the client application you are using expects data structure information
to be transmitted with the data, use the DB2 format even if the data source is
not DB2. For client application software, such as PowerBuilder, check data
structure requirements in the vendor documentation.

Relating the standard SQLDA fields to the example fM@DELRSP that
follows, you can see the firSQLVAR definition is named MS-COLO01. ltis a
fixed-character datatype that can contain nulls (value 453) and is defined for
the first column of EMPLOYEE-DATARIXED-CHAR) that the sample RSP is
sending to the clienMODELRSP includes on&QLVAR definition for each of

the 11 columns of data it sends.

Rk R I b R Ik kI kR Sk Rk R Rk S S R Sk S S R o S

* DESCRI PTI ON OF THE MODEL SQLDA *
EE R R R R R R I I I I S I I I I
01 MODEL- SQLDA.
03 MB-SQLDAID PIC X(08) VALUE 'SQLDA .
03 M5 SQLDABC PIC S9(8) COW VALUE 500.
03 M- SQLN PIC S9(4) COWP VALUE 11.
03 M- SQLD PIC S9(4) COWP VALUE 11.
03 MB- COLOL.
* - COLUWN DATATYPE = FI XED CHAR (LENGTH 1 - 256)
05 MB- COLO1- SQLTYPE PIC S9(4) COVP VALUE 453.
05 MS- COLO1- SQLLEN PIC S9(4) COWP VALUE 5.
05 MS- COLO1- SQLDATA USAGE |'S PO NTER
05 MS- COLO1- SQLI ND USAGE |'S PO NTER VALUE NULL.
05 MB- COLO1- SQLNANEL Pl C S9(4) COWP VALUE 10.
05

M5- COLO1- SQLNAME PI C X(30) VALUE ' FI XED_CHAR .

Invoking MODELRSP from the client application

The client application invokedODELRSP using the command that
corresponds to the SQL transformation settifgJL) on DirectConnect:

73

MODELRSP DB2 output pipe sample code

PASSTHROUGH TSQL setting
USE PROCEDURE MODELRSRSP

SYBASE TSQL setting
EXECUTE MODELRSP

MODELRSP DB2 output pipe sample code

| DENTI FI CATI ON DI VI SI ON.

PROGRAM | D.
AUTHOR.
DATE- WRI TTEN.

MODEL RSP.
SYBASE | CD.

SEPTEMBER 15,

1993.

Rk Rk kS S Rk Rk ok b o S R R Rk R Rk kI b Sk o R R R S o o O b Rk

*
*
*
*
*
*
*
*

MODELRSP -

SAMPLE TO | LLUSTRATE SQLDA USAGE.

THI' S SAMPLE STORED PROCEDURE HAS A LOT OF | NTERNAL
DOCUMENTATI ON TO HELP EXPLAI N AND | LLUSTRATE THE PROPER

USAGE OF THE SQLDA FCR A DB2 QUTPUT PI PE.

A RONVIS SET UP

FOR ALL DATATYPES AND ALL WLL BE SET TO ALLOW NULLS.

ENVI RONVENT DI VI SI ON.

DATA DI VI SI ON.

WWORKI NG- STORAGE SECTI ON.
01 FILLER

01
01
01
01
01

01

74

COWWAREA- POl NTER
SQLDA- PO NTER
EMPLOYEE- DATA- POl NTER
| NDI CATOR- VAR- POl NTER
SQLDA- SI ZE

WS- LI TERALS.

05
05
05
05
05
05

WS- STATUS
WS- MESSACGE
Ws-COWM T
WS- ROLLBACK
WS- OPENPI PE
WS- PUTPI PE

Pl C X(27)

VALUE

LR R O S O O R O O

" VVORKI NG- STORAGE STARTS HERE' .

USAGE | S PO NTER
USAGE | S PO NTER
USAGE | S PO NTER
USAGE IS PO NTER

PIC S9(8) COW.
PIC X(06) VALUE ' STATUS .
PIC X(07) VALUE ’ MESSAGE .
PI C X(06) VALUE ' COMM T’ .
PI C X(08) VALUE ' ROLLBACK' .
PI C X(08) VALUE ' OPENPI PE .
PIC X(07) VALUE ’ PUTPI PE .

*
*
*
*
*
*
*
*

APPENDIX B MODELRSP DBZ2 output pipe sample RSP

R R S S S R S S R O

*

*

E N I A N N N N SR

05 Ws- GETPI PE PIC X(07) VALUE ' GETPI PE .
05 Ws- CLOSPI PE PI C X(08) VALUE ' CLOSPI PE .
01 MESSAGES.

05 ERROR1- MSG

07 ERROR1- TEXT1 PIC X(19) VALUE
"ERROR WTH CALL TO '.
07 ERROR1- CALL PI C X(10) VALUE SPACES.
07 ERROR1- TEXT2 PIC X(14) VALUE
' - SPRC CODE: '.

07 ERROR1- SPRC PI C X(03) VALUE SPACES.

05 ERROR2- MSG
07 ERROR2- TEXT2 PI C X(46) VALUE SPACES.

05 WS- LONG VARCHAR- TEXT.
07 FILLER PI C X(50) VALUE
"THIS IS A LINE OF VERY LONG TEXT TO DEMONSTRATE TH .
07 FILLER PI C X(50) VALUE
" AT A LONG VARCHAR DATATYPE CAN BE SENT DOMN A DB2 .
07 FILLER PI C X(50) VALUE
"QUTPUT PI PE WTH NO PROBLEMS, WORRI ES, OR CONSTERN .
07 FILLER PI C X(50) VALUE
"ATION, AS LONG AS ONE REMEMBERS THAT LARGE AMOUNTS' .
07 FILLER PI C X(50) VALUE
" OF DATA WLL ALWAYS HAVE AN ELEMENT OF UNEXPECTED .
07 FILLER PI C X(50) VALUE

"NESS. EVEN SO, USE SYBASE FOR ALL YOUR SCLUTI ONS. .

DESCRI PTI ON OF THE MODEL SQLDA

khkkhkkhkkhkhkkhhkhkhhkhhhkhhkhhhkhhkhhhkddhkhhhdhkhhhdhkhhhkddhdrhdhhdhdrhrxdrxhdrx*x*x

SQLTYPES USED | N SQLDA:

VALUE DATA TYPE NULLS ALLOWED
384/385 DATE NO' YES
388/389 TIME NO' YES
392/393 TI MESTAWP NO' YES
448/ 449 CHAR VAR ABLE LENG NO' YES
452/ 453 CHAR FIXED LENGTH NO' YES
456/ 457 CHAR LONG VAR ABLE NO' YES
480/ 481 FLOATI NG POl NT NO' YES
484/ 485 DECI MAL NO' YES
496/ 497 LARGE | NTEGER NO' YES
500/501 SMALL | NTEGER NO' YES

Rk R S b S Rk Ik kS I R kS R R R S o R S R R O

NOTE: ALL DATATYPES IN THI S EXAMPLE ARE DEFI NED AS NULLABLE

*

75

MODELRSP DB2 output pipe sample code

Rk b b S R Rk R I ok S S ok R SRR Rk kO bk R R S o b o O

K e e o e e e e e e e m e .- *
* MODEL- SQLDA |'S USED TO HOLD THE COLUWN DESCRI PTIONS I N *
* WORKI NG STORAGE. THI'S |'S DONE THI S WAY BECAUSE YOU CANNOT *
* USE VALUE CLAUSES IN A COBOL LI NKAGE SECTION.... *
K e e o e e e e o e e e m e .- *
01 MODEL- SQLDA.
* - EYE CATCHER - MUST ALWAYS SAY ’ SQLDA
03 M- SQLAID PIC X(08) VALUE 'SQLDA .
* - SIZE OF SQLDA = 16 + (44 * SQLN VALUE)
03 MB- SQLDABC PIC S9(8) COVP VALUE 500.
* - NUMBER OF SQLVAR OCCURENCES
* - MUST MATCH VALUE OF MS-SQLD
03 M- SQLN PIC S9(4) COWP VALUE 11.
* - NUMBER OF SQLVAR OCCURENCES ACTUALLY USED
* - MUST MATCH VALUE OF MS- SQLN
03 MB-SQLD PIC S9(4) COWP VALUE 11.
03 MB- COLOL.
* - 1ST COLUWN DATATYPE = FI XED CHAR (LENGTH 1 - 256)
05 MS- COLO1- SQLTYPE PI C S9(4) COWP VALUE 453.
05 MS- COLO1- SQLLEN PI C S9(4) COWP VALUE 5.
* - SQLDATA WLL BE SET TO ADDRESS OF DATA FI ELD
05 MB- COLO1- SQLDATA USAGE |'S POl NTER,
* - SQLIND WLL BE SET TO ADDRESS OF A S9(4) COWP FI ELD
* - VHEN COWP FIELD S VALUE | S LESS THAN ZERO THEN
* - COLUWN I'S NULL - ONLY USED WHEN COLUWN |'S NULLABLE
05 MS- COLO1- SQLI ND USAGE |'S PO NTER VALUE NULL.
* - SQLNAMEL IS THE LENGTH OF THE COLUWN NAME
05 MB- COLO1- SQLNANEL PI C S9(4) COWP VALUE 10.
* - SQLNAME |'S ALWAYS 30 | N LENGTH
05 M- COLO1-SQLNAVE PIC X(30) VALUE ' FI XED CHAR .
03 Ms- COLO2.
* - 2ND COLUWN DATATYPE = DATE (LENGTH ALVAYS 10)
05 MB- COL02- SQLTYPE PI C S9(4) COWP VALUE 385.
05 MB- COL02- SQLLEN PI C S9(4) COWP VALUE 10.
05 MB- COL02- SQLDATA USAGE | S POl NTER,
05 MS- COL02- SQLI ND USAGE |'S PO NTER VALUE NULL.
05 MS- COL02- SQLNAVEL PI C S9(4) COWP VALUE 4.
05 NMS- COL02- SQLNAVE PI C X(30) VALUE ' DATE .
03 MS- COLO3.
* - 3RD COLUWN DATATYPE = VARI ABLE LENGTH CHAR (1- 256)
05 MB- COL03- SQLTYPE PI C S9(4) COWP VALUE 449.
05 MS- COLO3- SQLLEN PI C S9(4) COWP VALUE 30.
05 MS- COLO3- SQLDATA USAGE |'S PO NTER
05 MS- COLO3- SQLI ND USAGE |'S PO NTER VALUE NULL.
05 MB- COL0O3- SQLNANEL PI C S9(4) COWP VALUE 7.

76

APPENDIX B MODELRSP DBZ2 output pipe sample RSP

E B I B A T B B N N

03

03

03

05 MS- COLO3- SQLNAME PI C X(30) VALUE ' VARCHAR .
VB- COLO4.

4TH COL - DATATYPE = SMALL | NTEGER (LENGTH ALWAYS 2)
CORRESPONDI NG PI C S9(4) COMP - UP TO5 DIG TS.

05 M- COLO04- SQLTYPE Pl C S9(4) COVP VALUE 501.
05 MS- COLO04- SQLLEN PI C S9(4) COVP VALUE 2.
05 MS- COL04- SQLDATA USAGE |'S PO NTER
05 MS- COLO4- SQLI ND USAGE |'S PO NTER VALUE NULL.
05 M- COLO4- SQLNAVEL Pl C S9(4) COVP VALUE 9.
05 MS- COLO4- SQLNAVE PI C X(30) VALUE ’ SMALL_INT .
MS- COLO5.
5TH COL - DATATYPE = PACKED DECI MAL
05 MS- COLO5- SQLTYPE PI C S9(4) COVP VALUE 485.
___ *
NOTE: FOR PACKED DECI MAL DATATYPES ONLY!!!!! *
LENGTH | S DECI MAL TRANSLATI ON OF HEX " PPSS" *
(PRECI S| ON AND SCALE) *
WHERE "PP" = NUMBER OF TOTAL DI G TS *
AND "SS' = NUMBER OF DIGI TS TO RI GHT OF DECI MAL *
S9(3) V99 COMP-3 WOULD BE X 0502' OR I N DEC '’ 1282 *
S9(11) V99 COMP-3 WOULD BE X 0D02' OR IN DEC ' 3330° *
SQLLEN = (PP * 256) + SS *
1282=5*256+2==> FOR S9(3) V99 *
*
05 MS- COLO5- SQLLEN PI C S9(4) COVP VALUE +1282.
05 MS- COLO5- SQLDATA USAGE |'S PO NTER
05 MS- COLO5- SQLI ND USAGE |'S PO NTER VALUE NULL.
05 MB- COLO5- SQLNAVEL PI C S9(4) COWP VALUE 10.
05 M- COLO5- SQLNAVE PI C X(30) VALUE ’ PACKED DEC .
VS- COLO6.
6TH COL - DATATYPE = TIME (LENGTH ALWAYS 8) ' HH. MM SS
05 MS- COL06- SQLTYPE PI C S9(4) COWP VALUE 389.
05 MS- COL06- SQLLEN PI C S9(4) COVP VALUE 8.
05 M- COL06- SQLDATA USAGE |'S PO NTER.
05 M- COL06- SQLI ND USAGE |'S PO NTER VALUE NULL.
05 M- COL06- SQLNAVEL PI C S9(4) COVP VALUE 4.
05 MS- COL06- SQLNAMVE PI C X(30) VALUE ' TIME .
MB- COLO7.
7TH COL - DATATYPE = TI MESTAMP (LENGTH 19 OR 26)
PI C X(19) VALUE ’ YYYY- MVt DD: HH: MM SS'
Pl C X(26) VALUE ’ YYYY- Mt DD: HH: MM SS: NNNNNN
05 M- COLO7- SQLTYPE Pl C S9(4) COVP VALUE 393.
05 MS- COLO7- SQLLEN PI C S9(4) COVP VALUE 26.
05 MS- COLO7- SQLDATA USAGE |'S PO NTER
05 MS- COLO7- SQLI ND USAGE |'S PO NTER VALUE NULL.
05 M- COLO7- SQLNAVEL Pl C S9(4) COVP VALUE 9.

77

MODELRSP DB2 output pipe sample code

05

03 M5
* - 8TH COL -

05
05
05
05
05
05

03 M-
* - 9TH COL -

05
05
05
05
05
05

M5- COLO7- SQLNAME
COL08.

PI C X(30) VALUE ' TI MESTAMP .

DATATYPE = FLOAT (COWMP-1 LENGTH ALWAYS 4)

SI NGLE PRECI SI ON FLOAT (COWP-1 LENGTH ALWAYS 4)

MS- COL08- SQLTYPE
MS- COL08- SQLLEN
MS- COL08- SQLDATA
MS- COL08- SQLI ND
MB- COL08- SQLNANMEL
MB- COL08- SQLNAME

COL09.

PI C S9(4) COWP VALUE 481.

PI C S9(4) COWP VALUE 4.
USAGE |'S POl NTER,

USAGE |'S PO NTER VALUE NULL.
PI C S9(4) COWP VALUE 10.

PI C X(30) VALUE ’ FLOATING P’ .

DATATYPE = FLOAT (COWP-2 LENGTH ALWAYS 8)

DOUBLE PRECI SI ON FLOAT (COWP-2 LENGTH ALWAYS 8)

MS- COL09- SQLTYPE
MS- COL09- SQLLEN
MB- COL09- SQLDATA
MB- COL09- SQLI ND
MB- COL09- SQLNANMEL
M5- COL09- SQLNANE

03 Ms-COL10.

* -10TH COL -

*

PI C S9(4) COWP VALUE 481.

PI C S9(4) COWP VALUE 8.
USAGE | S POl NTER,

USAGE |'S PO NTER VALUE NULL.
PI C S9(4) COWP VALUE 10.

PI C X(30) VALUE ' DBL_FLOATP .

DATATYPE = LARCE | NTEGER (LENGTH ALWAYS 4)
- CORRESPONDI NG PIC S9(8) COWP - UP TO 10 DA TS.

05 Ms- COL10- SQLTYPE PI C S9(4) COWP VALUE 497.
05 Ms- COL10- SQLLEN PI C S9(4) COWP VALUE 4.
05 MBS COL10- SQLDATA USAGE |'S PO NTER
05 MBS COL10- SQLI ND USAGE | S POl NTER VALUE NULL.
05 MB- COL10- SQLNAVEL PI C S9(4) COWP VALUE 7.
05 MS- COL10- SQLNANE PI C X(30) VALUE ’ | NTEGER .
03 Ms-COL11.
* - 11TH COL DATATYPE = LONG VAR ABLE LENGTH CHAR (1-32K)
05 Ms-COL11- SQLTYPE PI C S9(4) COWP VALUE 457.
05 M- COL11- SQLLEN PI C S9(4) COWP VALUE 300.
05 M- COL11- SQLDATA USAGE | S POl NTER
05 MB-COL11- SQLI ND USAGE |'S PO NTER VALUE NULL.
05 MB- COL11- SQLNANEL PI C S9(4) COWP VALUE 8.
05 M5- COL11- SQLNANE PI C X(30) VALUE ’ LVARCHAR .

* THIS SWTCH IS USED FOR TESTING | F RPC CALL

77 RSPRPC- SW TCH

88 RPC- CALL

LI NKAGE SECTI ON,
R R R O I S S I kR O O R O
* THE LI NKAGE SECTI ON DEFI NES MASKS FOR DATA AREAS

* THAT ARE EI THER PASSED TO THE PROGRAM | N THE CASE OF THE

* COMVAREA OR CREATED BY THE PROGRAM | N THE CASE OF THE SQLDA

78

PI C S9(4) COVP VALUE 0.

VALUE 0.

APPENDIX B MODELRSP DBZ2 output pipe sample RSP

*

*

*

AND DATA FI ELDS.

UNLI KE WORKI NG- STORAGE, STORAGE ASSCCI ATED W THI N THE LI NKAGE
SECTION | S AVAI LABLE TO OTHER PROGRAMS BY PASSI NG ADDRESSES
AND USI NG MASKS.

IT 1S I MPORTANT TO NOTE, THAT EVEN THOUGH THE DEFI NES | N

THE LI NKAGE SECTI ON LOOK EXACTLY LI KE THOSE I N VWORKI NG
STORAGE, NO SPACE | S ASSCOCI ATED W TH THESE DEFI NES I N LI NKAGE
UNTIL IT IS "GETMAI NED'.

EE R S R S R S S R I O O O O

EE I B A S T B B N I

01 DFHCOMMAREA.
05 NOT- USED PIC X(1).

khkkhkkhkkkhkhkhhkhkkhhkhhkhkhhkhkhhkdhhhhhkhdhkhhhkdhhdhkhhhdhhdrhdhxdhhdhhrhxdhhdrhxkxx*x

* THIS IS THE ACTUAL SPAREA PO NTER AND DEFI NI TI ON *

khkkhkkhkkhkhkkhkhkhkkhhkhhhkhhkhhhkhhkhhhkddhkhhhdhkhrhhdhkhhhkddhdrhdhkhdhdrhrxdrxhxxx*x

01 LWKCOWVAREA.
COPY SPAREAC.

khkkhkkhkkkhkhkhhkhkkhhkhhhkhhkhkhhkdhhhhhkhdhkhhhkdhhdhkhhhkdhhdrhdhxdhhdrhrxdrhdrhxk,x*x

* NULL | NDI CATOR VARI ABLES - SET TO -1 IF NULL; O IF NOT NULL. *

* ONLY REQUI RED FOR COLUMNS DEFI NED AS ALLOA NG NULLS! *
EE R I I R R I I I I I I I R R I R R I I R R R I R R R I R R R I R R I I R R R I R R I R I I I R I
01 | NDI CATOR VAR ABLES.

10 FI XED- CHAR- | ND PI C S9(4) COWP.

10 DATE- OUT- | ND PI C S9(4) COWP.

10 VAR- CHAR- | ND PI C S9(4) COWP.

10 SMALL- I NT-1ND PI C S9(4) COWP.

10 PACKED- DEC- | ND PI C S9(4) COWP.

10 TI ME- OUT- | ND PI C S9(4) COWP.

10 TI MESTAWP- | ND PI C S9(4) COWP.

10 FLOAT- SGL- | ND PI C S9(4) COWP.

10 FLOAT- DBL- | ND PI C S9(4) COWP.

10 LARGE- | NT-1 ND PI C S9(4) COWP.

10 LARGE- VCHAR- | ND PI C S9(4) COWP.
ER R I I I R R I I I I I R R I I I R I I I I R R R I R R R I R R R I R R R I I R I R I I I I Rk I
* DESCRI PTI ON OF THE EMPLOYEE DATA *
EE R R R R I I I I I I I R
* NOTE THAT VARCHAR AND LONG VARCHAR FI ELDS ARE PRECEDED BY *

A TWO- BYTE COVP LENGTH FI ELD. SQLDA KNOAS NOT TO | NCLUDE THE *
EXTRA TWO BYTES I N THE LENGTH OF THE DATA. WANT TO SEE YOUR *
REG ON COVE DOMN? TRY LEAVI NG THE LENGTH FI ELD QUT. . .

THE FI RST TWO BYTES OF YOUR DATA WLL BE USED TO CALC THE

* F X X

*
*

79

MODELRSP DB2 output pipe sample code

*

LENGTH OF YOUR DATA AND CI CS WLL START TO EAT | TSELF. ..

*

Rk Sk R R Rk R I Sk S ok R R R SRRk ok kR R R Rk I S o S R O S S

01 EMPLOYEE- DATA.
FI XED- CHAR
DATE- QUT
VAR- CHAR.

THI S IS USED AS A PLACE HOLDER I N THE COMMUNI CATI ON
AREA FOR THE COLUWMN VALUES DESCRI BED | N THE MODEL-
SQLDA. THI S I'S DONE BECAUSE SYBASE USES PO NTERS TO
PASS DATA AND ADDRESS I N COBCL CAN ONLY BE SET IN THE

80

10
10
10

10
10
10
10
10
10
10
10

15
15

VCHAR- LENGTH
VCHAR- DATA

SMALL- I NT
PACKED- DEC

TI ME- QUT

TI MESTAMP
FLOAT- SGL
FLOAT- DBL
LARGE- | NT
LARGE- VAR- CHAR.

15
15

SQLDA -

01 SQLDA.
SQLDAI D
SQLDABC
SQLN
SQLD
SQLVARN

03
03
03
03
03

05
05
05
05
05
05

L- VCHAR- LENGTH
L- VCHAR- DATA

LI NKAGE SECTI ON

SQLTYPE
SQLLEN
SQLDATA
SQLI ND
SQLNAVEL
SQLNAVE

PI C X(05) .
Pl C X(10).

Pl C S9(4) COVP.
PI C X(30).
Pl C S9(4) USAGE COWP.

PI C S999V99 USAGE COWP- 3.

PI C X(08).

Pl C X(26).

COVP- 1.

COVP- 2.

Pl C S9(8) USAGE COWP.

Pl C S9(4) COWP.
Pl C X(300)

PIC X(8).

PI C S9(8) COVP.
Pl C S9(4) COWP.
Pl C S9(4) COWP.
OCCURS 11.

Pl C S9(4) COVP.
Pl C S9(4) COVP.
USAGE | S POl NTER
USAGE |'S PO NTER.
Pl C S9(4) COVP.
Pl C X(30).

EXEC CI CS HANDLE CONDI TI ON
I NVREQ(9999- RETURN- TO- CALLER)
END- EXEC.

EEE T I A

APPENDIX B MODELRSP DBZ2 output pipe sample RSP

0000- MAI N- PROCESSI NG,
PERFCRM 1000- I NI TI ALI ZATI ON THRU 1000- EXIT.
PERFCRM 5000- PROCESS- DATA THRU 5000- EXI T.
PERFCORM 9000- WRAP- UP THRU 9000- EXI T.
EXEC CI CS
RETURN
END- EXEC.

GOBACK.

* o o *
PERFORM 1050- SPAREA- SETUP THRU 1050- EXI T.
PERFCRM 1100- TEST- SQLDA THRU 1100-EXIT.
PERFORM 1200- GET- STOCRAGE THRU 1200-EXIT.
PERFORM 1300- SET- ADDRESSES THRU 1300- EXIT.
PERFCRM 1400- OPEN- QUTPUT- PI PE THRU 1400-EXIT.

1000-EXIT.
EXIT.

Rk I kb Ik R R Rk Ik kS S Rk R I bk o kR R O

* |F THS IS A RPC CALL, CALL RPSETUP TO I NI Tl ALI ZE SPAREA
* AND OPEN SERVER (TRANSACTI ON ROUTER SERVI CE)

*IF THS IS A RSP CALL, SPAREA |IS PASSED IN THE COVAREA.
* (DI RECTCONNECT) .

* FOR TRACING, MOVE 'Y TO SPTRCOPT

Rk I kb R R Rk R Sk kb o R R Sk ok

MOVE ElI BCALEN TO RSPRPC- SW TCH.

81

MODELRSP DB2 output pipe sample code

| F RPC- CALL
EXEC CI CS GETMAI N
SET (COWAREA- POl NTER)
FLENGTH (LENGTH OF LWKCOMVAREA)
END- EXEC
SET ADDRESS OF LWKCOMMVAREA TO COMMAREA- POl NTER
CALL ' RPSETUP' USI NG SPAREA
ELSE

SET ADDRESS OF LWKCOMVAREA TO ADDRESS OF DFHCOWVIVAREA.

1050-EXIT.
EXIT.

1100- TEST- SQLDA.

EE Rk I S O R S S S O S I O

* CALCULATE THE CORRECT SQLDA SI ZE | NTO " SQLDA- SI ZE"

MULTI PLY M5- SQLN BY 44 G VI NG SQLDA- SI ZE.
ADD +16 TO SQLDA- SI ZE.
MOVE SQLDA- SI ZE TO Ms- SQLDABC.

Rk I o R b S R IR S b o O kS b S R IRk R b ok kR

* CHECK TO MAKE SURE THE CALCULATED SI ZE EQUALS ACTUAL SI ZE
* IF 1T DOESN T THEN A SQLDA FIELD I'S M SSING OR ONE
* OF THE SQLDA FI ELDS HAS THE WRONG PI CTURE SI ZE.

I F (LENGTH OF MODEL- SQLDA) NOT EQUAL SQLDA- SI ZE
MOVE ’ SQLDA/ SQLN SI ZE I N ERROR TO ERROR2- TEXT2
PERFCORM 9810- ERROR- MSG THRU 9810-EXI T
GO TO 9999- RETURN- TO- CALLER.

1100-EXIT.
EXIT.

1200- GET- STORAGE.

Rk R S S S O S S S S O O

* ALLOCATE A BLOCK OF STORAGE TO BE USED FOR THE SQLDA

* SET PO NTER VARI ABLE TO ADDRESS OF ALLOCATED STORAGE

* USE FLENGTH TO ALLOCATE STORAGE ABOVE THE 16M LI NE
EXEC CI CS GETMAIN

82

APPENDIX B MODELRSP DBZ2 output pipe sample RSP

SET (SQLDA- POl NTER)
FLENGTH (LENGTH OF SQLDA)
END- EXEC.

LR R G S

* ASSCOCI ATE THE LI NKAGE SQLDA MASK TO THE ALLOCATED STORACE
* BY SETTING THE MASK ADDRESS TO THE ADDRESS OF THE STORACE
SET ADDRESS OF SQLDA TO SQLDA- PO NTER.

LR I G O S S

* ALLOCATE A BLOCK OF STCORAGE TO BE USED FOR THE DATA
* SET PO NTER VARI ABLE TO ADDRESS OF ALLOCATED STORAGE
EXEC CI CS GETMAI N
SET(EMPLOYEE- DATA- PO NTER)
FLENGTH(LENGTH OF EMPLOYEE- DATA)
END- EXEC.
SET ADDRESS OF EMPLOYEE- DATA TO EMPLOYEE- DATA- PO NTER

Rk kb S Rk I I Rk kS kb S R R R bk R Rk b o

* ALLOCATE A BLOCK OF STORAGE TO BE USED FCOR NULL | NDI CATORS
* ONLY REQUI RED FOR COLUMNS DEFI NED AS ALLOW NG NULLS
* SET PO NTER VARI ABLE TO ADDRESS OF ALLOCATED STORAGE
EXEC CI CS GETMAI N
SET(| NDI CATOR- VAR- POl NTER)
FLENGTH(LENGTH OF | NDI CATOR- VARI ABLES)
END- EXEC.
SET ADDRESS OF | NDI CATOR- VARI ABLES TO | NDI CATOR- VAR- PO NTER.

1200-EXIT.
EXIT.

1300- SET- ADDRESSES.

EE S O S O S S S O

SET THE PO NTER VARI ABLES | N THE LI NKAGE SECTI ON SQLDA TO
THE ADDRESSES OF THE DATA LOCATI ONS ALSO I N THE LI NKAGE
SECTION | E: THE DATA FI ELDS | N EMPLOYEE- DATA

*
*
*
*
* THESE ADDRESSES MUST BE ADDRESSES ASSCCI ATED W TH VARI ABLES
* DEFINED IN THE LI NKAGE SECTI ON BECAUSE THE OPEN SERVER API

* PROGRAM MUST BE ABLE TO ACCESS THI S STORAGE.

*

*

*

*

THE MODEL- SQLDA | S MOVED TO THE SQLDA TO I NI Tl ALI ZE
THE COLUW TYPES AND SI ZES.........

EEE R S S S R S R O S R O

83

MODELRSP DB2 output pipe sample code

MOVE MODEL- SQLDA TO SQLDA.

SET SQLDATA(1) TO ADDRESS OF FI XED- CHAR.
SET SQLDATA(2) TO ADDRESS OF DATE- OUT.
SET SQLDATA(3) TO ADDRESS OF VAR CHAR.
SET SQLDATA(4) TO ADDRESS OF SMALL- I NT.
SET SQLDATA(5) TO ADDRESS OF PACKED- DEC.
SET SQLDATA(6) TO ADDRESS OF Tl ME- OUT.
SET SQLDATA(7) TO ADDRESS OF TI MESTAMP.
SET SQLDATA(8) TO ADDRESS OF FLOAT- SGL.
SET SQLDATA(9) TO ADDRESS OF FLOAT- DBL.
SET SQLDATA(10) TO ADDRESS OF LARGE- | NT.
SET SQLDATA(11) TO ADDRESS OF LARGE- VAR- CHAR

Rk I O R R S S

* SET SQLIND TO ADDRESS OF NULL | NDI CATCR FI ELDS
* FOR ANY COLUWMN DEFI NED AS NULLABLE

EE Ik O

SET SQLIND(1) TO ADDRESS OF FI XED- CHAR- | ND.
SET SQLIND(2) TO ADDRESS OF DATE- OUT- | ND.
SET SQLIND(3) TO ADDRESS OF VAR- CHAR- | ND.
SET SQLIND(4) TO ADDRESS OF SMALL- I NT-I ND.
SET SQLIND(5) TO ADDRESS OF PACKED- DEC- | ND.
SET SQLIND(6) TO ADDRESS OF TI ME- QUT- | ND.
SET SQLIND(7) TO ADDRESS OF TI MESTAMP- | ND.
SET SQLIND(8) TO ADDRESS OF FLOAT- SGL- | ND.
SET SQLIND(9) TO ADDRESS OF FLOAT- DBL- | ND.
SET SQLIND(10) TO ADDRESS OF LARGE- | NT-I ND.
SET SQLIND(11) TO ADDRESS OF LARGE- VCHAR- | ND.
1300- EXI T.
EXI T.

* AN OPEN PI PE WLL SET UP THE CCOLUWN | NFORMATI ON,

* WHICH WLL EVENTUALLY BE SENT TO THE CLIENT.......
TO SPMODE.

TO SPFORVAT.

SET SPSQLDA TO ADDRESS OF SQLDA.

84

* X X X

APPENDIX B MODELRSP DBZ2 output pipe sample RSP

CALL ' OPENPI PE' USI NG SPAREA.

IF SPRC IS NOT EQUAL TO ' 000’
MOVE W&- OPENPI PE TO ERROR1- CALL
PERFORM 9800- PI PE- ERROR-M5G ~ THRU 9800- EXI T
GO TO 9999- RETURN- TO- CALLER.

1400- EXIT.
EXIT.

PERFCRM 5300- LOAD- A- ROW THRU 5300-EXIT.
PERFCRM 5500- SEND- A- ROW THRU 5500- EXI T.
PERFORM 5400- LOAD- A- NULL- ROW THRU 5400- EXI T.
PERFCRM 5500- SEND- A- ROW THRU 5500- EXI T.

5000- EXI T.
EXIT.

K o o o o e o e - *
K o o o e e o e - *
* COLUWN DATA | S HARDCODED FOR THI S EXAMPLE. *
K o o o o o o o o o e 2 *

MOVE * 00100’ TO FI XED- CHAR.

MOVE * 1993- 09- 16’ TO DATE- QUT.

MOVE 30 TO VCHAR- LENGTH.

MOVE ' A ROCSE BY ANY OTHER .’ TO VCHAR- DATA.

MOVE 123 TO SMALL- I NT.

MOVE 123. 45 TO PACKED- DEC.

MOVE ’ 11. 35. 25’ TO TI Me- QUT.

MOVE * 1993-10- 31: 10: 34: 24’ TO Tl MESTAMWP.

MOVE 1. 00345 TO FLOAT- SGL.

MOVE 0. 0023544 TO FLOAT- DBL.

MOVE 1234567 TO LARGE- I NT.

MOVE 300 TO L- VCHAR- LENGTH.

MOVE WS- LONG VARCHAR- TEXT TO L- VCHAR- DATA.

R R S S O R O

85

MODELRSP DB2 output pipe sample code

* MOVE ZERO TO NULL | NDI CATOR FI ELDS TO | NDI CATE NOT NULL

MOVE 0 TO FI XED- CHAR- | ND.
MOVE 0 TO DATE- QUT- | ND.
MOVE 0 TO VAR- CHAR- | ND.
MOVE 0 TO SNMALL- I NT-1ND.
MOVE 0 TO PACKED- DEC- | ND.
MOVE 0 TO TI ME- QUT- | ND.
MOVE 0 TO TI MESTAVP- | ND.
MOVE 0 TO FLOAT- SGL- | ND.
MOVE 0 TO FLOAT- DBL- | ND.
MOVE 0 TO LARGE- | NT-1ND.
MOVE 0 TO LARGE- VCHAR- | ND.
5300- EXI T.
EXI T.
K o o o o e o e - *
5400- LOAD- A- NULL- ROV
* *

EE R R S S S O O S O

* MOVE -1 TO NULL I NDI CATOR FI ELDS TO | NDI CATE NULL
* LEFTOVER DATA I N DATA FI ELDS WLL BE | GNORED

MOVE -1 TO FI XED- CHAR- | ND,
MOVE -1 TO DATE- OUT- | ND.
MOVE -1 TO VAR- CHAR- | ND.
MOVE -1 TO SMALL- I NT- | ND.
MOVE -1 TO PACKED- DEC- | ND.
MOVE -1 TO TI ME- OUT- | ND.
MOVE -1 TO TI MESTAVP- | ND.
MOVE -1 TO FLOAT- SGL- | ND.
MOVE -1 TO FLOAT- DBL- | ND.
MOVE -1 TO LARGE- | NT- | ND.
MOVE -1 TO LARGE- VCHAR: | ND.
5400- EXI T.
EXIT.
K o o o o e - *
5500- SEND- A- ROW
K e .- *
* *

* PUTPI PE SENDS A RESULT ROW TO THE OUTPUT BUFFER, WH CH*

86

APPENDIX B MODELRSP DBZ2 output pipe sample RSP

* WLL EVENTUALLY BE SENT DOWN TO THE CLI ENT. ... *

CALL ' PUTPI PE USI NG SPAREA.

IF SPRC I'S NOT EQUAL TO ' 000’
MOVE WS- PUTPI PE TO ERROR1- CALL
PERFORM 9800- Pl PE- ERROR- M5G THRU 9800- EXI' T
GO TO 9999- RETURN- TO- CALLER.

5500- EXI T.
EXI T.
___ *
9000- WRAP- UP.
K o o e e e o e - *
PERFORM 9200- CLOSE- PI PE THRU 9200- EXI T.
PERFORM 9900- ALL- DONE THRU 9900- EXI T.
* IF TH'S I'S AN RPC CALL, PERFORM OPEN SERVER CLOSE
| F RPC- CALL
PERFORM 9950- RPDONE THRU 9950- EXI T.
9000- EXI T.
EXI T.
___ *
9200- CLOSE- PI PE.
K o e o o e . *
K e e o e . *
CLOSEPI PE 1S LIKE CLOSING A FILE, PLACES AN EOF MARKER
K o o e e e o e - *
CALL ' CLOSPI PE USI NG SPAREA.
| F SPRC |'S NOT EQUAL TO ' 000’
MOVE W&- CLOSPI PE TO ERRORL- CALL
PERFORM 9800- PI PE- ERROR- MSG THRU 9800- EXI T
GO TO 9999- RETURN- TO- CALLER.
9200- EXI T.
EXIT.
*

87

MODELRSP DB2 output pipe sample code

*
*
*

*

*

*

9

*

*
*

*

88

9800- PI PE- ERROR- M5G.

R S S S S S

I F NO ERRORS, MOVE ' OK' TO SPSTATUS BEFORE CALLI NG MESSAGE.
| F ERRCRS, MOVE 'E' TO SPSTATUS.
El THER WAY MOVE A MESSAGE UP TO A 100 CHAR | NTO SPMSG

Rk R I b o R R Rk b ok kb O S S R Sk kR R SRk S b S Rk I kR

___ *
MESSAGE WLL WRI TE THE 100 BYTE SPM5G TO A MSG BUFFER, *
VWHI CH W LL EVENTUALLY BE WRI TTEN TO THE CLI ENT. .. *

___ *

MOVE SPRC TO ERROR1- SPRC.
MOVE ERROR1- MSG TO SPMSG

MOVE ' E TO SPSTATUS.
CALL ' MESSAGE' USI NG SPAREA.

800-EXIT.

EXIT.
__ *
9810- ERROR- MSG.
___ *
___ *

MESSAGE WLL WRITE THE 100 BYTE SPM5G TO A MSG BUFFER, *
VWHI CH W LL EVENTUALLY BE WRI TTEN TO THE CLI ENT. .. *
___ *
MOVE ERROR2- MSG TO SPMSG
MOVE ' E TO SPSTATUS.
CALL ' MESSAGE' USI NG SPAREA.

9810- EXI T.

EXIT.
__ *
9900- ALL- DONE.

*

Rk R I b R Rk kS o o R R Sk kS Sk I Ik Rk kS b o O R R

I F NO ERRORS, MOVE ' OK' TO SPSTATUS BEFORE CALLI NG STATUS*
| F ERRORS, MOVE 'E TO SPSTATUS BEFORE CALLI NG STATUS *

APPENDIX B MODELRSP DBZ2 output pipe sample RSP

CAN MOVE UP TO 8 CHARS | NTO SPCODE (SPMSG | S | GNORED)
BUT EI THER WAY ALWAYS CALL STATUS AFTER CLOSPI PE
CALLI NG STATUS W LL AUTOVATI C CLOSE ANY OPEN PI PES

CALLI NG STATUS W LL ALSO FLUSH ANY RESULTS AND/ OR
MESSACES FROM THE BUFFERS, TO THE CLI ENT

*
*
*
*
*
*
Rk S R R R b ok I o R Ik kS kS Rk R I b ok S o O R R I ok o b R R

*
*
*
*
*
*
*

MOVE ' OK' TO SPSTATUS.
CALL ' STATUS USI NG SPAREA.

9900- EXI T.
EXIT.

Rk bk S S R Ik S b ok S R R R R Ik Sk S bk S R R R S

* CLOSE OPEN SERVER
* IF THS IS AN RPC CALL, PERFORM OPEN SERVER CLOSE

kkkhkkhkkkhkhkkhhkhkkhhkhhhkhhkhkhhkdhhdhkhdhkhhhkdhhkdhkhdhdrhkhrhdhkhrhrdxk*xx

CALL ' RPDONE' USI NG SPAREA.

9950- EXI T.
EXIT.

Rk bk S R R Sk kO S o S R R R R Ok R R R

* FOR EMERGENCY BAI L- QUT
CALL ' RPDONE' USI NG SPAREA.
EXEC CI CS
RETURN
END- EXEC.

9999- EXI T.
EXIT.

89

MODELRSP DB2 output pipe sample code

90

APPENDIX C RSP3C STD input and output
pipe sample RSP

If you want to write an RSP to send single-column rows of character
strings, review the RSP3C sample RSP. RSP3C illustrates how to use
input and output data pipesin STD format to echo data records sent to it
from the client application. Recall that with STD format data pipes, the
datais transmitted as one VARCHAR column.

This appendix discusses the following topics:
e Using the SPAREA with RSP3C

e Specifying error handling

« Client application processing

e« RSP3C STD input and output pipe sample code

Using the SPAREA with RSP3C

The SPAREA is the storage area used to pass information between the
RSP and Open ServerConnect.

In the following code fragment, the DFHCOMMAREA is the Open
ServerConnect communication area. SPAREAC is the COBORY
definition.

01 DFHCOMVAREA.
COPY SPAREAC.

SPMAXLEN and SPRECLEN

RSP3C uses the SPAREA to pass information about the type of data pipe
to MainframeConnect.

MOVE ' | NPUT’ TO SPMODE.
MOVE ’ STD TO SPFORVAT.

91

Using the SPAREA with RSP3C

92

MOVE 55 TO SPMAXLEN.
CALL ' OPENPI PE' USI NG SPAREA.

In this exampl e, the type and format of the pipe are specified using the
SPAREA SPMODE and SPFORMAT fields. Because the exact length of the
record is not known, a maximum record length is specified with SPMAXLEN.

In the following example, you can see that because you already set the
maximum input record size with SPMAXLEN and the OPENPIPEcommand,
you do not need to reset SPRECLEN for each GETPIPE command.
MainframeConnect determines the size of the input record and sets
SPRECLEN accordingly.

SET SPI NTO TO ADDRESS OF W5- | NPUT- REC
CALL ' GETPI PE' USI NG SPAREA

In the following example, RSP3C uses SPRECLEN with aPUTPIPEcommand
to pass the length of an output record to MainframeConnect.

SET SPFROM TO ADDRESS OF W5- | NPUT- REC
MOVE 55 TO SPRECLEN
CALL ' PUTPI PE' USI NG SPAREA

The following table describes these SPAREA fieldsin RSP3C and explains
how they are used.

APPENDIX C RSP3C STD input and output pipe sample RSP

Table C-1: SPAREA fields describing records

SPAREA

Field Use

SPMODE Specifies the mode of the data pipe. Valid valuesare INPUT’
or 'OUTPUT".

SPFORMAT Specifies the format of the data to be transmitted through the
pipe. Valid values are:
» 'DB2' (only for output pipes)
e 'STD'
* 'BIN'

SPMAXLEN Specifies the maximum record length of records transmitted
through a STD or BIN format pipe.
Note For DB2 or STD format pipes, you provide maximum
record length information in the SQLDA.

SPRECLEN Specifies the length of a particular record transmitted through

a STD or BIN format pipe. For output pipes, the RSP sets this
value; for input pipes, MainframeConnect sets this value.

Note You must specify either SPMAXLEN or SPRECLEN, which defines the
actual length of a particular data record.

SPINTO and SPFROM
The following sample shows how to use the SPINTO field.

SET SPI NTO TO ADDRESS OF W&- | NPUT- REC
CALL " GETPI PE USI NG SPAREA

Use the SPINTO field to specify the address of the storage location where the
RSP places the input data it receives from the client application. The SPINTO
field is used with the GETPIPE command, which reads client application data
from an input pipe.

In RSP3C, the input and output storage area are defined as follows:

A GETMAIN is issued to allocate this storage area

A pointer was set to the area

The WS- INPUT-REC variable is associated with that pointer, as shown:

93

Specifying error handling

EXEC Cl CS

GETMAI N SET(PARTSPOI NTER)

FLENGTH(55)

END- EXEC.
SET ADDRESS OF WS- | NPUT- REC TO PARTSPOI NTER.

RSP3C uses acorresponding field, SPFROM, to specify the address of storage
where the RSP placesthe datait is returning with the PUTPIPE command. The
PUTPIPE command returns data to the client application through an output
pipe.

SET SPFROM TO ADDRESS OF W5- | NPUT- REC
MOVE 55 TO SPRECLEN
CALL * PUTPI PE USI NG SPAREA

Again, the storage is defined within the RSP,

Note You must specify SPINTO for input pipes.

Specifying error handling

RSP3C handles status and messages the same way MODELRSP does. It uses
three SPAREA fields to communicate status and messages to
MainframeConnect: SPRC, SPSTATUS, and SPMSG. See “SPAREA
definitions” on page 138 for a description of how they are used.

Note Your code should always check tBeRC field after issuing any RSP
command. See “Specifying error handling” on page 31 for more information
on error handling.

Client application processing

RSP3C uses both input and output data pipes in STD format to transmit data to
and from the client application. It includes a sample of3l& you might use
to call it.

94

APPENDIX C RSP3C STD input and output pipe sample RSP

You can use STD format input and output pipesto transmit datawhen you have
mirror applications on the host and on the LAN. If both programs contain the
same data definitions, or if only one column is returned, the additional data

structureinformation that would comefrom a SQL DA definition is not needed.

The statement that can invoke RSP3C from the client application is shown in
the next subsection, followed by the results echoed back to the client
application. RSP3C requires at least one data record. This program reads
standard input records of up to 55 charactersin length. It allows any number of
rows to be sent and returned.

Invoking from the client application (ISQL)
The following ISQL invokes RSP3C:

C:.\ DI RECTCONNECT>> i sql - Sdcservice - Uuserid
USE PROCEDURE W TH DATA RSP3C ;

TH S IS THE FI RST STRI NG OF DATA

AND THIS I S THE SECOND RECORD OF DATA
AND THHS IS THE THI RD AND SO ON

[EnY

OO WwWN

(€O)
The USE PROCEDURE statement includesaWITH DATA clause preceding the

RSP name. WITH DATA indicatesthat 1SQL should send the ASCII format data
following the USE PROCEDURE statement to the RSP,

Returning results to the client application
RSP3C returns the following results to the client.

**-- THE FOLLOWNG IS A LI ST OF THE DATA RECORDS SENT.
RECH#- 01: THIS IS THE FI RST STRI NG OF DATA

RECH#- 02: AND THIS | S THE SECOND RECORD OF DATA

REC#- 03: AND THIS IS THE THHRD AND SO ON

(4 rows affected)

1QUT

C: \ DI RECTCONNECT>>

95

RSP3C STD input and output pipe sample code

RSP3C STD input and output pipe sample code

| DENTI FI CATI ON DI VI SI ON.
PROGRAM | D. RSP3C.

kkkhkkkkhkhkhhkkhhkhkhhkhhkhkhhhkkhhhhhkhhhkhhkhhhhhhhhhdhhrhdhkhhhhdhdrhrdhhrhdxhxixx

* RSP3C - STD I NPUT PI PES PROCEDURE *
* *
* TH'S SAVMPLE STORED PROCEDURE WAS WRI TTEN TO USE A "STD' | NPUT *
* AND QUTPUT PIPE FOR | LLUSTRATION. | T REQUI RES AT LEAST ONE *
* DATA RECORD TO BE PASSED TO I T WHEN | NVOKED. *
* AN EXAMPLE OF | NVOKING I T: *
* *
* USE PROCEDURE W TH DATA RSP3C ; *
* TH'S IS THE FIRST AND ONLY DATA RECORD *
* . *
* ‘ *
* DATA RECORDS ARE SET FOR UP TO 55 CHARS | N LENGTH. ALL *
* DATA RECORDS W LL BE RETURNED THROUGH THE OUTPUT Pl PE AS *
* VERI FI CATI ON. *
* *
EE I R I S S O S O R O
ENVI RONVENT DI VI SI ON.
DATA DI VI SI ON.
WORKI NG STORAGE SECTI ON,
R R R R EEEEEEEEEREEEESEEEEEEEEEEEEEEEEREEEEEEEREEEEEEEEEEEEEEEEEEEEE RS
* ONE PO NTER |'S USED FOR BOTH | NPUT AND OUTPUT RECORD AREA
* IN TH S CASE BECAUSE THE RECORDS WLL BE THE SAME LENGTH,
EE I R I S Sk R S
01 SAMPLE- PO NTER
10 PARTSPO NTER USAGE |'S POl NTER
R E R R EEEEEEEEEEEEESEEEEEEEESEEEEEEEEREEEEEEEREEEEEEEEEEEEEEEEEEEEE RS
* SW TCHES FOR RECORD PROCESS| NG CONTROL. *
R R I O O S S R S S
01 WS- SW TCHES.
10 WS- MORE- RECORDS- | N- SW PIC X(01) VALUE 'Y .
88 MORE- RECORDS- | N VALUE ' Y .
88 NO- MORE- RECORDS- | N VALUE ' N .
10 WS- ERROR- HAPPENED- SW PIC X(01) VALUE 'N .
88 ERROR- HAPPENED VALUE 'Y .
88 NO- ERROR- YET VALUE ' N .

96

APPENDIX C RSP3C STD input and output pipe sample RSP

Rk R I b R Ok kI R Rk Sk kS b b ok S R R R R o R R R G Sk b o R

* A NUMBER FOR | NCRI MENTI NG *

khkkhkkhkkkhkhkkhhkhkhhkdhhhkhhkhhhkkhhkhhhkddhkhhhdhkhrhhdhkhhhkddhkdrhkdhkhhhdrhkrxdrxhdrx*x*x

01 WS- VARI ABLES.

05 W& | NCRI NUM PIC 99 VALUE ZERCES.
05 | NREC- CTR PI C S9(8) COVP VALUE 0.
05 W& DI S-NUM PI C 9(4) VALUE ZERCES.
01 NMESSAGES.
05 ERRORL- MBG
07 ERRORIL- TEXT1 PIC X(19) VALUE
" ERROR W TH CALL TO ' .
07 ERRORI- CALL PIC X(10) VALUE SPACES.
07 ERRORL- TEXT2 PIC X(14) VALUE
' . SPRC CODE: .
07 ERRORIL- SPRC PIC X(03) VALUE SPACES.
EE R I S S o S I R O R S
* QUTPUT RECORD DESCRI PTI ONS. *

Rk bk I R Ik kO S S Rk Ik kR b S R R R R ko ok R R R kR ok I b

01 Ws- QUTPUT- REC.
10 W& OQUT- M5G- AREA.

15 FILLER PI C X(07) VALUE ' RECH#-> '.
15 W5 QUT- M5G- NUM PI C X(02) VALUE SPACES.
15 FILLER PIC X(01) VALUE ':’.

10 W& QUT- SOVE- DATA PI C X(45) VALUE SPACES.

01 WS- QUT- DATA- MG
10 FILLER PI C X(55) VALUE
"**.-> THE FOLLOW NG IS A LI ST OF THE DATA RECORDS SENT. ' .

* THIS SWTCH IS USED FOR TESTING | F RPC CALL
77 RSPRPC-SWTCH PIC S9(4) COWP VALUE 0.
88 RPC- CALL VALUE 0.

01 COMVAREA- PO NTER USAGE IS PO NTER

LI NKAGE SECTI ON.

R O S R O
* THE LI NKAGE SECTI ON DEFI NES MASKS FOR DATA AREAS THAT ARE

* PASSED BETWEEN THI S PROGRAM AND MAI NFRAMECONNECT.

Rk bk R R Ik Ik kO o S R R R I Rk R Rk kR O

01 DFHCOVMVAREA.
05 NOT- USED PIC X(1).

97

RSP3C STD input and output pipe sample code

Rk Sk R R Rk R I Sk S ok R R R SRRk ok kR R R Rk I S o S R O S S

* TH'S IS THE ACTUAL SPAREA POl NTER AND DEFI NI TI ON *
PR R R R R EEEEEEEEEEEEEEEEREEEEEEEEEEREEEREEEEEEEEEEEEEEEEEEEEEEEEEEE SRR
01 LWKCOVNVAREA.

COPY SPAREAC.

Rk b R R IRk Ik kS b O b ok O R R R Sk Sk kR R S ok R SRR S R

* TH'S AREA |'S USED FOR BOTH | NPUT AND QUTPUT BECAUSE BOTH
* TYPES OF RECORDS ARE THE SAMVE LENGTH IN THI S CASE.
EEREEEEEEEEEEEEEESEE]
01 W& | NPUT- REC.

10 W& | NPUT- DATA.

15 WS- I NPUT-1ST-5 PI C X(05).
15 FILLER PI C X(40).
10 W&- | NPUT- REST PI C X(10).

PROCEDURE DI VI SI ON.
000- MAI N- PROCESSI NG,
PERFCRM 100- I NI TI ALI ZE THRU 100-EXIT.

I F NO- ERROR- YET
PERFCORM 500- PROCESS- | - O THRU 500- EXIT.

PERFCRM 900- WRAP- UP THRU 900- EXIT.

EXEC Cl CS
RETURN
END- EXEC.

GOBACK.

000-EXIT.
EXIT.

100- I NI TI ALI ZE.

ERE I I I I I I I R I I I R I I R I I R I I S R R I I I I I R I I

* |F TH'S IS A RPC CALL, CALL RPSETUP TO I NI TI ALI ZE SPAREA
* AND OPEN SERVER (TRANSACTI ON ROUTER SERVI CE)

* |F THIS IS A RSP CALL, SPAREA |'S PASSED | N THE COMVAREA.
* (DI RECTCONNECT) .

* FOR TRACING, MOVE 'Y TO SPTRCOPT

Rk I ok S b Sk Ik R R S o R IR S ok Sk Sk S kR R O o O o

98

APPENDIX C RSP3C STD input and output pipe sample RSP

MOVE ElI BCALEN TO RSPRPC- SW TCH.

| F RPC- CALL
EXEC Cl CS GETMAI N
SET (COMVAREA- POl NTER)
FLENGTH (LENGTH OF LWKCOWVAREA)
END- EXEC
SET ADDRESS OF LWKCOMMAREA TO COMMAREA- POl NTER
CALL ' RPSETUP' US| NG SPAREA
ELSE

SET ADDRESS OF LWKCOMVAREA TO ADDRESS OF DFHCOWMIVAREA.

MOVE ' OK' TO SPSTATUS.
SET MORE- RECORDS- | N TO TRUE.

khkkhkkhkkhkhkhhkhkhhkhhhkhhkhhhhhkhhhkddhkhhhdhkhrhdhkhhhkddhkdrhdhkhdhdrhrxdrxhdrx*x*x

* ALLOCATE A BLOCK OF STCORAGE TO BE USED FOR THE DATA
* SET PO NTER VARI ABLE TO ADDRESS OF ALLOCATED STORAGE

Rk bk I R Ik Ik kO S O R R R R R b o Sk R R R b S R R R S o kR R

EXEC Cl CS
GETMAI N SET(PARTSPOI NTER)
FLENGTH(55)
END- EXEC.
SET ADDRESS OF WS- | NPUT- REC TO PARTSPO NTER
PERFORM 110- OPEN- | NPUT- Pl PE THRU 110- EXI T.

I F NO ERROR- YET
PERFORM 120- OPEN- QUTPUT-PI PE THRU 120- EXI T.

100-EXIT.
EXIT.

110- OPEN- | NPUT- PI PE.

khkkhkkhkkhkhkhhkhkkhhkdhhhkhhkhhkhkhhkhhhkddhkhhhdhkhrhdhkhhhkddhdrhdhkhdhdrhrxdrxdrxxx

* OPEN THE | NPUT PI PE. *
Rk b O R R Ik kO S R IR R I S S kb R R o o R R b o R R Rk I o
MOVE * | NPUT’ TO SPMODE.
MOVE ' STD TO SPFORMAT.
MOVE 55 TO SPMAXLEN.

CALL ' OPENPI PE' USI NG SPAREA.

Rk bk I R IRk Ik kO o Sk R R R R Ik kR R R R ko ok R R R R o kO R R

* |F OPEN FAI LED, THEN | SSUE AN ERROR MESSAGE. *

khkkhkkhkhkkhkhkhkhkhkkhhkhhhdhkhhhkkhhkhhhkddhkhhhdhkhrhhdhkhhhkddhdrhdhhdhdrhrxdrxhdrx*x*x

99

RSP3C STD input and output pipe sample code

I F SPRC NOT = ' 000’

SET ERROR- HAPPENED TO TRUE
MOVE * OPENPI PE' TO ERROR1- CALL
PERFCRM 800- DO- MESSAGE THRU 800-EXIT.
110-EXIT.
EXIT.

120- OPEN- QUTPUT- PI PE.

R R R S S O S S R S S O O R O
* AFTER A SUCCESSFUL OPENPI PE FOR QUTPUT: HEADER, TABLE, AND

* COLUWN | XF RECORDS ARE GENERATED AND SENT TO APPC.

Rk S R S R Ok I R R kO R Ik kS b ok S I kR R R IR R o S I Rk R S b o O

MOVE * QUTPUT’ TO SPMCDE.
MOVE * STD TO SPFCORVAT.
MOVE 55 TO SPMAXLEN.

CALL ' OPENPI PE' USI NG SPAREA.

Rk S R S R Ik kI o S S R R S bk ko kI R R R R I S O R R S S

* |F OPEN FAI LED, THEN | SSUE AN ERROR MESSAGE. *

EE S R R G S O S S R S S O O

I F SPRC NOT = ' 000’

SET ERROR- HAPPENED TO TRUE
MOVE ' OPENPI PE’ TO ERROR1- CALL
PERFCRM 800- DO- MESSACE THRU 800- EXIT.
120-EXIT.
EXIT.

500- PROCESS- | - O
MOVE 0O TO W5- | NCRI NUM
PERFCRM 510- SEND- RECORDS- HEADI NG THRU 510- EXIT.
I F NO ERROR- YET
PERFCORM 540- PROCESS- DATA- RECS THRU 540-EXI T
UNTI L NO MORE- RECORDS- | N.

500-EXIT.
EXIT.

510- SEND- RECORDS- HEADI NG

MOVE WS- QUT- DATA- M5G TO WS- | NPUT- REC.

100

APPENDIX C RSP3C STD input and output pipe sample RSP

SET SPFROM TO ADDRESS OF W5- | NPUT- REC.

PUTPI PE SENDS A RESULT ROW TO THE QUTPUT BUFFER, WH CH*
W LL EVENTUALLY BE SENT DOAN TO THE CLI ENT APPLI CATI ON*
*

CALL ' PUTPI PE' USI NG SPAREA.

* X X X

I F SPRC NOT = ' 000’

SET ERROR- HAPPENED TO TRUE
MOVE * PUTPI PE ’ TO ERROR1- CALL
PERFORM 800- DO- MESSAGE THRU 800- EXI T.
510- EXIT.
EXIT.

540- PROCESS- DATA- RECS.

kkkhkkhkhkkhkhkhhkhkhhkhhhhhkhhhdhhkhhhkddhkhhhdhhkhrhhdhkhhhddhkdrhkdhkhhhdrhrxdrxdxx*x*x

* OBTAIN THE DATA RECORDS SENT W TH PROGRAM AND SEND BACK TO PI PE*

R bk S R R Ik kO R Rk R R S S kS O R IR S S b S R IR Sk I o

I F NO ERROR- YET
PERFORM 542- READ- RECCRDS THRU 542-EXIT.

I F NO ERROR- YET
AND MORE- RECORDS- | N
PERFORM 544- \W\RI TE- RECORDS THRU 544-EXIT.

540-EXIT.
EXIT.

542- READ- RECCRDS.

Rk b R I R IRk kO o kR R R R R R Ok R R R R Rk kS b o R R kI o
* READ AN | NPUT RECORD THROUGH THE | NPUT Pl PE *
* NOTE THAT THE SPRECLEN DCESN T NEED TO BE SET BECAUSE THE *
* MAI NFRAMECONNECT SETS THI' S FI ELD WHEN | T SENDS THE | NPUT RECORD.

Rk R R R R Rk Ik kS b S Sk kR Rk ok R R R O o o R R S ok kR R kI kT

ADD 1 TO I NREC- CTR
SET SPINTO TO ADDRESS OF W&- | NPUT- REC.
CALL ' GETPI PE' USI NG SPAREA.

EVALUATE SPRC
VWHEN ' 000" CONTI NUE
VWHEN ' ECF" SET NO- MORE- RECORDS- I N TO TRUE
VWHEN OTHER PERFORM

101

RSP3C STD input and output pipe sample code

SET NO- MORE- RECORDS- I N TO TRUE

SET ERROR- HAPPENED TO TRUE

MOVE ' GETPI PE TO ERROR1- CALL

PERFORM 800- DO- MESSAGE THRU 800-EXI T
END- PERFORM

END- EVALUATE.

Rk Sk R R Rk R I Sk S o S R R R R Rk Ik Ik kR R ok S R R S Rk R O

* TH'S I'S JUST TO PREVENT ACCI DENTAL RUNAVAY.
khkkkhkkhkkhkhkkhkhkhhkhhhkhhkhkhhkhhhdhhhdhkhhkhdhhkhkdhhdhhhhdhkdrhdhkhdhhdhrdrhdxhxxx*x
| F W& | NPUT- 1ST-5 = SPACES
OR | NREG- CTR > 500

SET NO- MORE- RECORDS- | N TO TRUE
SET ERROR- HAPPENED TO TRUE
MOVE * RUNAVAY '’ TO ERROR1- CALL
PERFCRM 800- DO- MESSAGE THRU 800-EXI T
END- | F.
542-EXI T.
EXIT.

544- VWRI TE- RECORDS.

R R R S S O S S R S S O O R
* REFORVAT THE | NPUT RECORD AND SEND BACK DOWN THE OQUTPUT PIPE *
* NOTE THAT SPRECLEN IS RESET TO 55 EACH Tl ME BECAUSE THE VALUE *

* M GHT BE CHANGED BY THE PREVI QUS GETPI PE. *
Rk S R S R Rk R I Sk S ok S R R Sk R IRk kR S ok R R R R kb S
ADD 1 TO WS- | NCRI NUM
MOVE WS- | NCRI NUM TO W5- QUT- M5G- NUM
* MOVE WS- | NPUT- DATA TO WS- QUT- SOVE- DATA.
MOVE SPACES TO W5- QUT- SOVE- DATA.
MOVE WS- | NPUT- DATA (1: SPRECLEN) TO WS- QUT- SOVE- DATA.
MOVE Ws- QUTPUT- REC TO WS- | NPUT- REC.
MOVE 55 TO SPRECLEN.

SET SPFROM TO ADDRESS OF W&- | NPUT- REC.

PUTPI PE SENDS A RESULT ROW TO THE QUTPUT BUFFER, WHI CH*
W LL EVENTUALLY BE SENT DOWN TO THE CLI ENT APPLI CATI ON*

CALL ' PUTPI PE' USI NG SPAREA.

* X X X

I F SPRC NOT = ’ 000’
SET NO- MORE- RECORDS- | N TO TRUE
SET ERROR- HAPPENED TO TRUE

102

APPENDIX C RSP3C STD input and output pipe sample RSP

MOVE * PUTPI PE ’ TO ERROR1- CALL
PERFORM 800- DO- MESSAGE THRU 800- EXI T.

544-EXIT.
EXIT.

800- DO- MESSAGE.

Rk bk I R Ik kO R IR R R T O S kb I R S R O kS ok I

* SOVETHI NG FAI LED, SO | SSUE AN ERROR MESSAGE AND GET OUT. *
khkkhkkhkhkkhkhkhkhkhkhhkhhhkhhkhhhhhkhhhkddhkhhhdhhkhrhhdhkhhhkdhhkdrhkdhkhhhdrhkrxdrxkh,xx*x*x
MOVE SPRC TO ERRORL- SPRC.
MOVE ERRORL- MBG TO SPMSG.
MOVE ' E' TO SPSTATUS.
K o e o e o e - *
* MESSAGE WLL WRI TE THE 100 BYTE SPMSG TO A MSG BUFFER, *
* WHI CH WLL EVENTUALLY BE WRI TTEN TO THE CLI ENT *
* APPLI CATI ON *
* *

CALL ' MESSACE' USI NG SPAREA.

I F SPRC NOT = ' 000’

SET NO- MORE- RECORDS- | N TO TRUE
SET ERROR- HAPPENED TO TRUE.
800- EXIT.
EXIT.
900- V\RAP- UP.
khkkhkkhkhkkhkhkhhkhkhhkhhhkhhkhhhkhhkhhhkddhkhhhdhhrhhkdhkhhhddhdhrhdhkhdhdrhrxdrxdrxx*x
* CLOSE PIPES - | SSUE STATUS. *

Rk bk I R R Rk O b o R IR R R b S kb R IRk b S b SRR R T kO b

K o o e e e o e - *
CLOSEPI PE IS LI KE CLOSI NG A FILE, PLACES AN EOF MARKER
K o o e o e - *
I F NO ERROR- YET
MOVE ’ | NPUT’ TO SPMODE

CALL ' CLGOSPI PE' USI NG SPAREA

I F SPRC NOT = ' 000’
SET ERROR- HAPPENED TO TRUE
MOVE ' CLCSPI PE TO ERROR1- CALL
PERFORM 800- DO- MESSAGE THRU 800- EXI T.

I F NO ERROR- YET
MOVE ' QUTPUT’ TO SPMODE

103

RSP3C STD input and output pipe sample code

CALL ' CLGSPI PE' USI NG SPAREA
I F SPRC NOT = ’ 000’

SET ERROR- HAPPENED TO TRUE

MOVE * CLOSPI PE' TO ERROR1- CALL

PERFORM 800- DO- MESSAGE THRU 800-EXI T
END- | F

END- | F.

I F NO- ERROR- YET
MOVE ' K TO SPSTATUS
CALLI NG STATUS W LL FLUSH ANY RESULTS AND/ OR
MESSACES FROM THE BUFFERS, TO THE CLI ENT APPLI CATI ON
CALL ' STATUS USI NG SPAREA
I F SPRC NOT = ' 000’

* % X

SET ERROR- HAPPENED TO TRUE
MOVE * STATUS TO ERROR1- CALL
PERFORM 800- DO- MESSAGE THRU 800-EXI T
END- | F
ELSE
MOVE ' E TO SPSTATUS
MOVE * MYERCCDE' TO SPCCDE
CALL ' STATUS USI NG SPAREA
END- | F.

Rk bk b S O R R I kS S ok R R Rk Ik kS b S ok O R R o

* CLOSE OPEN SERVER
* IF THHS IS AN RPC CALL, PERFORM OPEN SERVER CLOSE
Rk I S O S R S S S S R
| F RPC- CALL
CALL ' RPDONE USI NG SPAREA.

900- EXIT.
EXIT.

104

* % X

APPENDIX D RSPA4C keyword variable
sample RSP

If you want to passkeyword values, use sample RSP4C. RSP4C isan RSP
that reads up to 50 keywords and echoes them to a client application
through a STD format output pipe. It also includes code that allowsyou to
control whether messages and return codesreturn asoutput. The examples
in this section illustrate its capabilities.

This appendix discusses the following topics:
e Client application processing

e Sample input and results

e RSP4C error handling

« Keyword sample code fragment

* RSP4C keyword variable sample code

Client application processing

TheRSP4C sample RSP is written to receive keywords that are up to 15
characters in length (including tB8 and keyword values up to 28
characters in length. All keywords and their values are returned to the
client application through a STD format output pipe for display.

For display purposes onlRSP4C overwrites the rightmost five

characters (positions 24-28) of the keyword values with the length of the
values (determined by Open ServerConnect or MainframeConnect) and
sends them to the RSP through the keyword variable Rb®IC does

not corrupt the actual data.

105

Sample input and results

Sample input and results

Figure D-1 on page 106 shows an example of afile used asinput to ISQL.EXE
to send keywords and valuesto an RSP program named RSP4C. Figure D-2 on
*** 'RSPAC.LOG’ on page 107 *** shows an example of the echoed input.

You can use input and output filesin your ISQL command. This example uses
RSPAC.SQL asthe input file and RSP4C.LOG as the output file:

I SQL - SDB2T - UxxxxxXxxx -Pyyyyyyyy -i RSP4C. SQL - oRSPAC. LOG

RSP4C.SQL sample input
The following figureillustrates the use of keyword variables.
Figure D-1: RSP4C.SQL

C:\DIRECTCONNECT>> isqgl -Sdcservice -Uuserid

USE PROCEDURE RSP4C &KEY1='A Test of keywords' &KEY2=Another test
&KEY3="507?"

GO

The RSP accepts atext string and converts it to uppercase for processing.

To process text strings with embedded blanks, mixed-case, or special
characters, enclose them within delimiters. The value passed in &KEY2 is
counted only to the blank and is only partially echoed. The value passed in
&KEY1 isenclosed in single quotes, while the value passed in & KEY3 is
enclosed in double quotes.

RSP4C.LOG sample results

RSPAC.LOG, the following figure, contains the results the client application
receives after invoking RSP4C:

106

APPENDIX D RSPA4C keyword variable sample RSP

Figure D-2: RSP4C.LOG
4 I

1212
COLUMNO1

**—— THE FOLLOWING IS A LIST OF THE KEYWORDS SENT.

KEYW- 01:&KEY1 = 'A Test of keywords' 0020
KEYW- 02:&KEY2 = ANOTHER 0007
KEYW- 03:&KEY3 = 'so?! 0005
(4 rows affected)
1
o /

You can see that & KEY2, input as ANOTHER, is counted only to the blank.

RSP4C error handling

The examples in this section demonstrate how the sample RSP suppresses the
error code or the text of the error message.

No error code The code in the following figure passes &ERRORMSG= to ERROR-CHECK.
Figure D-3: ERRORMSG example

C:\DIRECTCONNECT>> isql -Sdcservice -Uuserid
USE PROCEDURE RSP4C &ERRORMSG=TESTIT

GO

12

The following figure contains the results that the client application receives:

107

RSP4C error handling

Figure D-4: ERRORMSG response
4 N\

RSP_STD PIPE

**—— THE FOLLOWING IS A LIST OF THE KEYWORDS SENT.
KEYW- 01:&ERRORMSG = TESTIT 0006

(2 rows affected)
THIS IS YOUR ERROR MESSAGE TEXT.

RSP Completion Code=152183236

The RSP code does not set
SPSTATUS=" E

and so does not pass a value through the SPRC field. As aresult, the
“DG21002: Result failed. Database server error code” message does not
display an error code.

No message The code in the following figure passeSTATUSMSG= to STATUS-CHECK.
Figure D-5: STATUSMSG example

USE PROCEDURE RSP4C &STATUSMSG=YES
GO
12

The following figure contains the results that the client application receives:

108

APPENDIX D RSPA4C keyword variable sample RSP

Figure D-6: STATUSMSG response

**-- THE FOLLOWN NG IS A LI ST OF THE KEYWORDS SENT.
KEYW 01: &STATUSMSG = YES 0003

RSP Conpl eti on Code=152183220

RSP4C’s paragraph 522-SEND-KEYWORD-HEADING on writes the
following:

**-- THE FOLLONNG IS A LI ST OF THE KEYWORDS SENT.

In RSP4C’s paragraph 524-READ-WRITE-KEYWORDS on , however,
STATUS-CHECK sets the ERROR-HAPPENED switch.

Keyword sample code fragment

The following COBOL Il code fragment shows one way to code an RSP to
handle keyword variables.

LI NKAGE SECTI ON.
01 DFHCOMVAREA.
COPY SPAREAC.

Rk bk I R R Rk kO S R IR R R R S o kR R R R R o o S R IR kR kI b S

* LINKAGE TO CALLI NG PROGRAM *

khkkhkkhkhkkhkhkkhhkhkkhhkhhhhhkhhhkhhkhhhkddhkhhkhdhhkhrhhdhkhhhkddhkdrhdhkhhhdrhrxdrxh,rx*x*x

01 KEYWORD- VTABLE.
10 VTABLE- SI ZE PI C S9(8) COWP.
10 VTABLE- ENTRY OCCURS 0 TO 50 TI MES
DEPENDI NG ON VTABLE- SI ZE
| NDEXED BY VTABLE- | NDEX.

15 VTABLE- NAME USAGE IS PO NTER
15 VTABLE- VALUE USAGE | S PO NTER
15 VTABLE- NAME- LENGTH PI C S9(4) COwP.
15 VTABLE- VALUE- LENGTH PI C S9(4) COwP.

109

RSP4C keyword variable sample code

01 TABLE- NAME PI C X(15).
01 TABLE-VALUE PI C X(28).
01 W5-1 NPUT- REC.

10 W5- | NPUT- DATA PI C X(45).

10 WS- | NPUT- REST PI C X(10).

R R R S O S R R S O O R S

* MAKE SURE AT LEAST ONE KEYWORD WAS SENT ALONG W TH PROGRAM *

Rk S R R Ok O kR R R ok kR R Rk R Rk kI O R R S O b o b S R

MOVE 0O TO W5- 1 NCRI NUM

| F SPVARTAB = NULL
PERFORM 700- LOAD- KEYWORD- ERROR THRU 700- EXI T
GO TO 510-EXIT.

| F VTABLE-SI ZE NOT > 0O
PERFORM 700- LOAD- KEYWORD- ERROR THRU 700- EXI T
GO TO 510-EXIT.

SET ADDRESS OF KEYWORD- VTABLE TO SPVARTAB.

RSP4C keyword variable sample code

RSP4C isan exampleof aCOBOL Il RSP written to handle keyword variables
sent to it from the client application.

| DENTI FI CATI ON DI VI SI ON.
PROGRAM- I D. RSP4C.

R R G S O S S S R S S O O R O

* RSP4C - DOCTORED STORED PROCEDURE *
* *
* TH'S SAVMPLE STORED PROCEDURE WAS WRI TTEN TO USE A "STD' *
* OUTPUT Pl PE AND KEYWORDS FOR | LLUSTRATION. | T REQUI RES AT *
* LEAST ONE KEYWORD/ VALUE BE PASSED TO | T WHEN | NVOKED.

*

* *
* USE PROCEDURE RSP4AC &FI RSTKEYWORD=F| RSTVALUE ; *
* *
* *

TH S PROGRAM | S SET UP TO ACCEPT KEYWORDS OF UP TO 15 CHARS

110

APPENDIX D RSPA4C keyword variable sample RSP

* I N LENGTH AND UP TO 28 CHARS FOR THE KEYWORD VALUES. ALL *
* KEYWORDS, KEYWORD VALUES, W LL BE RETURNED *
* THROUGH THE OUTPUT PI PE AS VERI FI CATI ON. *
* *
* ALSO 2 SPECI AL KEYWORDS ARE SET UP TO TEST ERROR MESSAG NG *
* THE ERROR CONDI TIONS SEND ' E' TO SPSTATUS *
* - ONE USI NG "MESSAGE" AND ONE USI NG " STATUS". *
* &ERRORMBG : 'E TO SPSTATUS, MSG TO SPMSG, CALLS ' MESSAGE *
* &MVESSAGE : ' OK' TO SPSTATUS, MSG TO SPMsG, CALLS ' MESSAGE *
* &STATUSMSG : 'E TO SPSTATUS, MSG TO SPCODE, CALLS ’ STATUS *
* &STATNEMSG : ' OK' TO SPSTATUS, MSG TO SPCODE, CALLS ' STATUS *
* *
Rk bk I R R Ik Ik R IRk R R I S kR R R o R R R S b o kS R R

ENVI RONMVENT DI VI SI ON.

DATA DI VI SI ON.

WORKI NG STORAGE SECTI ON.

Rk bk I R Ik Ik R Rk R R Sk kR R R Rk o o O R R R O kR T

* PO NTERS TO | NPUT AND QUTPUT RECORD AREA. *

EE S R O O S O S R O O

01 WS- PO NTERS.

10 W& QUTPUT- PO NTER USAGE |'S PO NTER
Rk bk I R IRk kO R R R IR Rk O S b S R S o kT o I
* SWTCHES FOR RECORD PROCESSI NG CONTROL. *
khkkhkkhkhkkhkhkhhkhkhhkhhhkhhkhhhkkhhkhhhkddhkhhhdhkhrhhdhkhhhddhdrhdhkhdhdrhrxdrxhrxx*x
01 WS- SW TCHES.
10 W5 ERROR- MSG- SW PIC X(01) VALUE 'N .
88 SEND- TEST- ERROR- MSG VALUE "Y' .
88 NO- M5G REQUI RED VALUE ' N .
10 W& ERROR- STATUS- MSG- SW PIC X(01) VALUE 'N .
88 SEND- TEST- ERR- STATUS- MSG VALUE "Y' .
88 NO- STATUS- REQUI RED VALUE "N .
10 WS NCERR- STATUS- MSG- SW PIC X(01) VALUE 'N .
88 SEND- NOERROR- STATUS- MSG VALUE "Y' .
88 NO- ERROR- REQUI RED VALUE ' N .
10 WS- ERROR- HAPPENED- SW PIC X(01) VALUE "N .
88 ERROR- HAPPENED VALUE "Y' .
88 NO ERROR- YET VALUE "N .

111

RSP4C keyword variable sample code

Rk S R I R Rk R I kb ok Sk R R R SRRk ok kR A IR R S R o O R S O

* A NUMBER FOR | NCRI MENTI NG,

*

R R S I S R S S O R

01 W5- VARI ABLES.
05 W5-1 NCRI NUM
05 W5-DI S-NUM
05 VTABLE-CTR
05 ERROR- CHECK

05 STATUS- CHECK

05 STATNE- CHECK

05 MESSNE- CHECK

01 MESSAGES.

05 ERROR1- MBG
07 ERROR1- TEXT1

"ERROR WTH CALL TO .

07 ERROR1- CALL
07 ERROR1- TEXT2

' - SPRC CODE: '.
07 ERROR1- SPRC

PIC 99 VALUE ZERCES.
PI C 9(4) VALUE ZERCES.
PI C S9(8) COWP VALUE 1.
PI C X(15) VALUE

* &ERRORVBG .

PI C X(15) VALUE

* &STATUSMVBG .

PI C X(15) VALUE

' &STATNEMSG .

PI C X(15) VALUE

* &VESSAGE .

PIC X(19) VALUE

PIC X(10) VALUE SPACES. |
PIC X(14) VALUE

PI C X(03) VALUE SPACES.

Rk S S R Rk R Sk S S ok kR R R IRk Ik kT S b O R R R R S S R

* OUTPUT RECORD DESCRI PTI ON.

*

R R R G S O S S R S S O

01 WS- QUT- KEYWORD- MBG
10 FILLER

PI C X(55) VALUE

"**--> THE FOLLOWNG IS A LI ST OF THE KEYWORDS SENT. .

01 H TABLE- NAME.

10 H TABLE- NAME-T OCCURS 15 TI MES.

15 H T- NAME
01 H TABLE- VALUE.

PIC X

10 H TABLE- VALUE-T OCCURS 28 TI MES.

15 HT- VALUE

01 WS- KEYWORD- REC.
10 W&- KEY- MSG- AREA.
15 FILLER
15 W5 KEY- M5G- NUM
15 FILLER
10 W& KEYWORD- QUT

112

PIC X

PI C X(07) VALUE ' KEYW> ’.
PI C X(02) VALUE SPACES.
PIC X(01) VALUE ’:'.

PI C X(15) VALUE SPACES.

APPENDIX D RSPA4C keyword variable sample RSP

10 FILLER PIC X(02) VALUE '=".
10 W& KEY- VALUE- OUT.
15 FILLER PI C X(24) VALUE SPACES.
15 W5- KEY- VAL- LEN PI C X(04) VALUE SPACES.

* THIS SWTCH IS USED FOR TESTING | F RPC CALL
77 RSPRPC-SWTCH PIC S9(4) COWP VALUE 0.
88 RPC- CALL VALUE 0.

01 COMVAREA- PO NTER USAGE IS PO NTER
LI NKAGE SECTI ON.

01 DFHCOVMAREA.
05 NOT- USED PIC X(1).

R S S S R

* TH S IS THE ACTUAL SPAREA PO NTER AND DEFI NI TI ON *
Rk bk I R Ik kO S R R Rk kT S o kR R R R ok b O R Rk kR kS b
01 LWKCOWWAREA.

COPY SPAREAC.

EE R I R S R R R O S

* THS IS THE MASK FOR THE KEYWORD VARI ABLE TABLE THAT THE
* MAI NFRAMECONNECT W LL CREATE FOR YOUR RSP TO PROCESS.
Rk Sk R R R Ik Ik kS b o R IR R ok kR R R R O b S S R S o
01 KEYWORD- VTABLE.
10 VTABLE- SI ZE PI C S9(8) COwWP.
10 VTABLE-ENTRY OCCURS 0 TO 50 TI MES
DEPENDI NG ON VTABLE- SI ZE
| NDEXED BY VTABLE- | NDEX.

15 VTABLE- NAME USAGE IS PO NTER
15 VTABLE- VALUE USAGE IS PO NTER
15 VTABLE- NAME- LENGTH PI C S9(4) COwWP.
15 VTABLE- VALUE- LENGTH PI C S9(4) COwWP.

Rk kI Rk kS b ok S kR R R R Sk Sk R b o S R R R S b R R R S o

* THESE ARE THE DATA VARI ABLES THAT THE KEYWORDS AND THE

* KEYWORD VALUES W LL BE PLACED | NTO FOR ACCESS BY THE RSP.

* IN TH S CASE THE LENGTHS WERE SET TO 15 FOR KEYWORDS AND

* 28 FOR THE KEYWORD VALUE FOR TESTI NG PURPOSES.

R I S
01 TABLE- NAME PI C X(15).
01 TABLE- VALUE PI C X(28).

01 LS-QUTPUT- REC.

113

RSP4C keyword variable sample code

10 LS- QUTPUT- DATA PI C X(55).

000- MAI N- PROCESSI NG
PERFCRM 100- I NI TI ALI ZE THRU 100-EXIT.

I F NO- ERROR- YET
PERFCORM 500- PROCESS- | - O THRU 500- EXIT.

PERFCRM 900- WRAP- UP THRU 900- EXIT.

EXEC Cl CS
RETURN
END- EXEC.

GOBACK.

000-EXIT.
EXIT.

100- I NI TI ALI ZE.

Rk I kb S R SRR Sk I o O kS b o R IR kI bk o R O

IF TH'S IS A RPC CALL, CALL RPSETUP TO I NI TI ALI ZE SPAREA
AND OPEN SERVER (TRANSACTI ON ROUTER SERVI CE)

IF TH'S IS A RSP CALL, SPAREA IS PASSED | N THE COMMAREA.
(DI RECTCONNECT) .

FOR TRACING, MOVE 'Y TO SPTRCOPT

*
*
*
*
*
Rk Ik S b S R SRR Sk I b o O kS b Sk R IRk R I bk o kO R

MOVE ElI BCALEN TO RSPRPC- SW TCH.

| F RPC- CALL
EXEC CI CS GETMAIN
SET (COMVAREA- PO NTER)
FLENGTH (LENGTH OF LWKCOMVAREA)
END- EXEC
SET ADDRESS OF LWKCOMVAREA TO COMVAREA- PO NTER
CALL ' RPSETUP USI NG SPAREA
ELSE

SET ADDRESS COF LWKCOMVAREA TO ADDRESS OF DFHCOWIVAREA.

114

APPENDIX D RSPA4C keyword variable sample RSP

Rk I kb R R I I Ok R R R R o S I S R

MOVE ' OK' TO SPSTATUS.

khkkhkkhkhkkhkhkhhkhkhhkkhhhkhhkhhhkhhkhhhkddhkhhhdhhkhrhhdhkhhhkdhhkdrhdhkhhhdrhrxdhxkh,rx*x*x

* ALLOCATE A BLOCK OF STORAGE TO BE USED FOR THE DATA
* SET PO NTER VARI ABLE TO ADDRESS OF ALLOCATED STORAGE

Rk bk I R R Ik I O S R R Rk R T S S kR R IR S b R R R I

EXEC Cl CS
GETMAI N SET(WS- OQUTPUT- POl NTER)
LENGTH(55)
END- EXEC.
SET ADDRESS OF LS- OUTPUT- REC TO WS- QUTPUT- POl NTER.

PERFORM 120- OPEN- QUTPUT- PI PE THRU 120-EXIT.

100-EXIT.
EXIT.

120- OPEN- QUTPUT- PI PE.

khkkhkkhkhkkhkhkhhkhkhhkhhhkhhkhhhkkhhkhhhkddhkhhhdhkhdhhdhkhhhkdhhkdrhkdhkhdhdrhrxdrxhdxx*x*x

* OPEN THE OUTPUT PI PE. *
R SRR SR EEEEEEEREEEESEEEREEREEEEEEEEEEEESEEEEEEEEEEEEEEREEEREEEEEEE RS
MOVE * STD TO SPFORMAT.
MOVE 55 TO SPMAXLEN.
MOVE * QUTPUT’ TO SPMODE.
K o e - *
* AN OPEN PIPE WLL SET UP THE COLUWN | NFCRVATI ON, WHI CHt
* WLL EVENTUALLY BE SENT TO THE CLIENT.......
* *

CALL ' OPENPI PE' USI NG SPAREA.

EE R I O S S R R

* |F OPEN FAI LED, THEN | SSUE AN ERROR MESSAGE. *

Rk bk R R R Ik kO o O R Rk R R IR Rk O S kS R R O R R R o

I F SPRC NOT = ' 000’

SET ERROR- HAPPENED TO TRUE
MOVE * OPENPI PE' TO ERROR1- CALL
PERFORM 800- ERROR- MESSAGE THRU 800- EXI T.
120-EXIT.
EXIT.

500- PROCESS- | - O,

115

RSP4C keyword variable sample code

PERFORM 510- KEYWORD- | NPUT- CHECK ~ THRU 510- EXIT. |

I F NO- ERROR- YET
PERFCORM 520- PROCESS- KEYWORDS THRU 520- EXI T.

500- EXI T.
EXIT.

510- KEYWORD- | NPUT- CHECK.

R R R S O S R S S O O R S R

* MAKE SURE AT LEAST ONE KEYWORD WAS SENT ALONG W TH PROGRAM *

Rk S R S R Ok I R R kO R Ik kS b ok S I kR R R IR R o S I Rk R S b o O

MOVE 0O TO WS- | NCRI NUM

| F SPVARTAB = NULL
PERFCRM 700- LOAD- KEYWORD- ERRCR THRU 700-EXIT
GO TO 510-EXIT.

I F VTABLE-SI ZE NOT > 0O
PERFCRM 700- LOAD- KEYWORD- ERRCR - THRU 700-EXIT
@O TO 510-EXIT.

SET ADDRESS OF KEYWORD- VTABLE TO SPVARTAB.

510- EXI T.
EXIT.

520- PROCESS- KEYWORDS.
PERFCORM 522- SEND- KEYWORD- HEADI NG THRU 522- EXIT.

I F NO- ERROR- YET
PERFORM 524- READ- WRI TE- KEYWORDS THRU 524-EXI T.

I F NO- ERROR- YET
PERFORM 548- TEST- FOR- ERR- KEY THRU 548- EXI T.

520-EXIT.
EXIT.

522- SEND- KEYWORD- HEADI NG

MOVE WS- OUT- KEYWORD- MSG TO LS- QUTPUT- REC.
MOVE 55 TO SPRECLEN.

116

APPENDIX D RSPA4C keyword variable sample RSP

SET SPFROM TO ADDRESS OF LS- QUTPUT- REC.

K o o e o e - *
* PUTPI PE SENDS A RESULT ROW TO THE OUTPUT BUFFER, WHI CH*
* WLL EVENTUALLY BE SENT DOWN TO THE CLI ENT APPLI CATI ON. *
K o o o o o o o o o e e o e 2 *
CALL ' PUTPI PE' USI NG SPAREA.
I F SPRC NOT = ' 000’
SET ERROR- HAPPENED TO TRUE
MOVE * PUTPI PE ’ TO ERROR1- CALL
PERFORM 800- ERROR- MESSAGE THRU 800- EXI T.
522-EXIT.
EXIT.

524- READ- WRI TE- KEYWORDS.
kkkhkkhkhkkhkhkhhkhkhhkhhhhhkhhhdhhkhhhkddhkhhhdhhkhrhhdhkhhhddhkdrhkdhkhhhdrhrxdrxdxx*x*x
* OBTAIN THE KEYWORD VARI ABLES AND DI SPLAY THEM DOWN QUTPUT PI PE *
* THE KEYWORD VALUE LENGTH (VTABLE- VALUE- LENGTH(VTABLE- | NDEX)) *
* PASSED FROM MAI NFRAMECONNECT W LL BE PLACED AT THE LAST FOUR

* BYTES OF THE KEYWORD VALUE DI SPLAY. TH S WLL DEMONSTATE THE
* WAY MAI NFRAMECONNECT DETERM NES THE LENGTH OF THE KEYWORD

* VALUE MAY NOT MATCH EXACTLY WHAT WAS SENT BECAUSE THE COUNTI NG
* STOPS AT THE FI RST SPACE | F THE DATA IS NOT DELI M TED.

* NOTE THAT THI S DOES NOT MEAN ONLY PART OF THE KEYWORD VALUE

* DATA WAS SENT - I T ONLY MEANS THE COUNTI NG STOPS AT THE SPACE
*

*
*
*
*
*
*
*
R R R EEEEEEEEEEEREEEESEREEEEEREEEEREEREEESEEEEEEEREEEEEEEEEEEREEESEEEE]
PERFORM W TH TEST AFTER
VARYI NG VTABLE- | NDEX FROM 1 BY 1
UNTI L VTABLE- SI ZE = VTABLE- | NDEX
SET ADDRESS OF TABLE-NAMVE TO VTABLE- NAVE(VTABLE- | NDEX)
MOVE TABLE- NAVE TO H TABLE- NAVE
MOVE VTABLE- NANE- LENGTH(VTABLE- | NDEX)
TO VTABLE- CTR

ADD 1 TO VTABLE- CTR
PERFORM UNTI L VTABLE-CTR > 16
MOVE SPACE TO H T- NAME (VTABLE- CTR)
ADD 1 TO VTABLE- CTR
END- PERFORM
MOVE H- TABLE- NAME TO WS- KEYWORD- QUT
I F W5- KEYWORD- QUT = ERROR- CHECK
MOVE 'Y’ TO WS- ERROR- M5G- SW
END- 1 F
I F W6- KEYWORD- QUT = STATUS- CHECK
MOVE 'Y TO WS- ERROR- STATUS- M5G- SW

117

RSP4C keyword variable sample code

END- | F
| F W6- KEYWORD- QUT = STATNE- CHECK

MOVE 'Y’ TO WS- NCERR- STATUS- M5G- SW
END- | F

I F W&- KEYWORD- QUT = MESSNE- CHECK
MOVE " THIS | S YOUR NON ERROR MESSAGE TEXT.’

TO SPMSG
MOVE ' 14’ TO SPCCDE
CALL ' MESSAGE' USI NG SPAREA

END- | F
SET ADDRESS OF TABLE- VALUE
TO VTABLE- VALUE(VTABLE- | NDEX)
MOVE TABLE- VALUE TO H TABLE- VALUE
MOVE VTABLE- VALUE- LENGTH(VTABLE- | NDEX)
TO VTABLE- CTR, W&- DI S- NUM

ADD 1 TO VTABLE- CTR
PERFORM UNTI L VTABLE- CTR > 29
MOVE SPACE TO H T- VALUE (VTABLE- CTR)
ADD 1 TO VTABLE- CTR
END- PERFORM
MOVE H- TABLE- VALUE TO WS- KEY- VALUE- QUT
MOVE WS- DI S- NUM TO WS- KEY- VAL- LEN
ADD 1 TO WS- | NCRI NUM
MOVE WS- | NCRI NUM TO WS- KEY- MBG- NUM
MOVE WS- KEYWORD- REC TO LS- QUTPUT- REC
SET SPFROM TO ADDRESS OF LS- QUTPUT- REC
MOVE 55 TO SPRECLEN

CALL ' PUTPI PE' USI NG SPAREA
I F SPRC NOT = ' 000’
SET ERROR- HAPPENED TO TRUE
MOVE * PUTPI PE ’ TO ERROR1- CALL
PERFORM 800- ERROR- MESSAGE THRU 800-EXI T
END- | F

END- PERFCRM

524-EXIT.

EXIT.

548- TEST- FOR- ERR- KEY.

R R R S O O R S S O R O R

* TEST FOR ERROR MESSAGE REQUESTED - SEND ONE | F SO

Rk R R S S O S S S R S S O R S

118

| F SEND- TEST- ERROR- M5G

MOVE ' N TO W5- ERROR- M5G- SW
MOVE " THI S | S YOUR ERROR MESSAGE TEXT.’
TO SPM5G

*

APPENDIX D RSPA4C keyword variable sample RSP

MOVE * ERR54321’ TO SPCODE
K o o o o o o o o o e e o e 2 *
* MESSAGE WLL WRITE THE 100 BYTE SPMsG TO A M5G BUFFER, *
* WHICH W LL EVENTUALLY BE WRI TTEN TO THE CLI ENT *
* APPLI CATI ON. *
K o o o o o o o o o e e o e 2 *
CALL ' MESSACE' USI NG SPAREA.
I F SPRC NOT = ' 000’
SET ERROR- HAPPENED TO TRUE
548- EXI T.
EXIT.

700- LOAD- KEYWORD- ERROR.

khkkhkkhkhkkhkhkhhkhkkhhkhhhkhhkhhhdhhkhhhkddhkhhhdhkhrhdhkhhhkddhkdrhkdhkhdhdrhrxhdhxhdrx*x*x

* |F AT LEAST ONE KEYWORD IS NOT SUPPLI ED - SEND MSG AND STOP. *

khkkhkkhkkhkhkkhkhkhkkhhkhhhkhhkhhhkhhkhhhkddhkhhhdhkhrhhdhkhhhkddhdrhdhkhdhdrhrxdrxhxxx*x

SET ERROR- HAPPENED TO TRUE.

MOVE ' * ERROR - NO KEYWORDS SENT' TO SPMSG

MOVE ' E TO SPSTATUS.
K o o o e e o e - *
* MESSAGE WLL WRI TE THE 100 BYTE SPMSG TO A MBG BUFFER, *
* WHI CH WLL EVENTUALLY BE WRI TTEN TO THE CLI ENT *
* APPLI CATI ON *
K o e o o e . *

CALL ' MESSAGE US| NG SPAREA.

| F SPRC NOT = ' 000’

SET ERROR- HAPPENED TO TRUE.

700-EXI T.

EXI T.

800- ERROR- MESSAGE.

Rk b R S R Rk kO b S Sk R R R R R o kR R R Rk o o S R R R o S R kI

* SOVETHI NG FAI LED, SO | SSUE AN ERRCR MESSAGE AND GET OUT. *
R R O I o S
MOVE SPRC TO ERRORL- SPRC,
MOVE ERRORL- MBG TO SPVSG
MOVE ' E TO SPSTATUS.
K e e o o e . *
* MESSAGE WLL WRI TE THE 100 BYTE SPMSG TO A MSG BUFFER, *
* \WHI CH WLL EVENTUALLY BE WRI TTEN TO THE CLI ENT *

119

RSP4C keyword variable sample code

* APPLI CATI ON *

CALL ' MESSAGE' USI NG SPAREA.

I F SPRC NOT = ' 000’
SET ERROR- HAPPENED TO TRUE.

800-EXIT.
EXIT.

900- V\RAP- UP.

Rk Sk R Rk Ik I kS o R IR Sk o kb R S R R S b bk b R R O

* CLOSE PI PES - |SSUE STATUS.

Rk Sk kb R I Ik R Rk kS Sk R R S IR kS O R R S S b I

I F NO- ERROR- YET

MOVE * QUTPUT’ TO SPMCDE
K o o o o e o e - *
CLOSEPI PE IS LIKE CLOSI NG A FILE, PLACES AN ECF MARKER
* *

CALL ' CLGSPI PE' USI NG SPAREA

I F SPRC NOT = ' 000’
SET ERROR- HAPPENED TO TRUE
MOVE * CLOSPI PE' TO ERROR1- CALL
PERFORM 800- ERROR- MESSAGE THRU 800- EXI T.

| F SEND- TEST- ERR- STATUS- M5G
OR ERROR- HAPPENED

MOVE ' N TO WS- ERROR- M5G- SW
MOVE "' THI S | S YOUR STATUS MESSAGE TEXT.'’
TO SPM5G
MOVE ’ - 321’ TO SPCCDE
MOVE ' E TO SPSTATUS
ELSE
| F SEND- NCERROR- STATUS- M5G
MOVE ' N TO W5- ERROR- M5G- SW
MOVE " THIS | S YOUR STATUS NCERROR TEXT.’
TO SPM5G
MOVE '’ 12’ TO SPCCDE
MOVE ' OK' TO SPSTATUS
ELSE
MOVE ' OK' TO SPSTATUS
END- | F.
K o o o o o o o o o e 2 *
* CALLI NG STATUS W LL FLUSH ANY RESULTS AND/ OR *

120

APPENDIX D RSPA4C keyword variable sample RSP

* MESSAGES FROM THE BUFFERS, TO THE CLI ENT APPLI CATION *

CALL ' STATUS USI NG SPAREA.
I F SPRC NOT = ' 000’

SET ERROR- HAPPENED TO TRUE

MOVE * STATUS TO ERROR1- CALL

PERFORM 800- ERROR- MESSAGE THRU 800-EXI T
END- | F.

kkkhkkhkkkhkhkkhhkhkkhhkhhkhkhhkhkhhkdhhhdhkhdhkhhhkdrhkdhkhhhdrhkdrhkdhkhrhxdxk*xx

* CLOSE OPEN SERVER
* IF THS IS AN RPC CALL, PERFORM OPEN SERVER CLOSE
Rk bk kS S Rk Ik S S ok Sk kR R Sk kb R Rk S S
| F RPC- CALL
CALL ' RPDONE USI NG SPAREA.

900-EXIT.
EXIT.

121

RSP4C keyword variable sample code

122

aprenpix e RSP8C variable text sample
RSP

RSPSC is a sample RSP that reads variable text and uses output pipes to
echo the data the client application sendsto it. If you want to pass
parametersto the RSP without using keywords, RSP8C isauseful sample.

This appendix discusses the following topics:
« Client application processing

e RSP8C variable text sample code

Client application processing

The following Figure E-1 contains an example that uSe% to invoke
theRSP8C sample RSHRSPSC reads up to 10,000 bytes of variable text

as input and returns the same data for display in 50-byte blocks, as shown
in.

123

Client application processing

124

Figure E-1: Sample RSP8C input

-

’

GO

C:\DIRECTCONNECT>> isqgl -Sdcservice -Uuserid

USE PROCEDURE RSP8C
12345678911234567892123456789312345678941234567895
12345678911234567892123456789312345678941234567895
12345678911234567892123456789312345678941234567895
12345678911234567892123456789312345678941234567895
12345678911234567892123456789312345678941234567895
12345678911234567892123456789312345678941234567895
12345678911234567892123456789312345678941234567895
12345678911234567892123456789312345678941234567895
12345678911234567892123456789312345678941234567895
12345678911234567892123456789312345678941234567895

/

In the preceding figure, the variable input text string, 500 charactersin length,
isseparated into ten 50-byte bl ocksthat have acarriage-control character at the
end of each block.

The carriage-control character counts as the 51st character of each block. The
following figure shows that the carriage-control characters arereflected in the
output data records as spaces, making the total number of characters returned
510.

APPENDIX E RSP8C variable text sample RSP

Figure E-2: Sample RSP8C output

4 N

12345678 910 11 12 13 COLUMNO1

**—— THE FOLLOWING IS 50 BYTE BLOCKS OF VARIABLE TEXT RECVD
REC#- 01:12345678911234567892123456789312345678941234567895
REC#- 02: 1234567891123456789212345678931234567894123456789
REC#- 03:5 123456789112345678921234567893123456789412345678
REC#- 04:95 12345678911234567892123456789312345678941234567
REC#- 05:895 1234567891123456789212345678931234567894123456
REC#- 06:7895 123456789112345678921234567893123456789412345
REC#- 07:67895 12345678911234567892123456789312345678941234
REC#- 08:567895 1234567891123456789212345678931234567894123
REC#- 09:4567895 123456789112345678921234567893123456789412
REC#- 10:34567895 12345678911234567892123456789312345678941
REC#- 11:234567895

(12 rows affected)

(N J

RSP8C variable text sample code

RSP8C isan example of an RSP written to handle variable text sent to it from
the client application. The code in this sample RSP follows.

| DENTI FI CATI ON DI VI SI ON.
PROGRAM | D. RSP8C

khkkhkkhkkkhkhkkhhkhkhhkhhhkhhkhhhkhhkhhhkddhkhhhdhkhrhhdhkhhhkddhkdrhkdhkhdhdrhrxhdrxhdrx*x*x

* RSP8C - DOCTORED STORED PROCEDURE *

* THI'S SAMPLE STORED PROCEDURE WAS WRI TTEN TO USE A VARI ABLE *
* TEXT PARAMETER OF UP TO 10, 000 BYTES AND ECHCES I T BACK THRU *

* A STANDARD QUTPUT PI PE IN 50 BYTE | NCREMENTS. *
* *
* USE PROCEDURE W TH DATA RSP8C ' THIS I S A VERY BI G PARAMETER *
* *
* THE VARI ABLE TEXT DOESN' T HAVE TO BE DELIM TED W TH QUOTES OR *
* DOUBLE QUOTES. *

khkkhkkhkhkkhkhkhhkhkhhkhhhhhkhhhhhhhhkddhkhhhdhkhrhhdhkhhhkddhkhrhkdhkhdhdrhrxdrxhrx*x*x

ENVI RONMVENT DI VI SI ON.

DATA DI VI SI ON.

125

RSP8C variable text sample code

WORKI NG- STORAGE SECTI ON.

khkkkhkkhkkhkkkhkhkkhhkhhhkhhkhkhhkhkhhkdhhhhhkhhhdhhkhkdhhhhhhhdhdrhdhkddhhdhrdrhdxh,xx*x*x

* PO NTERS TO | NPUT AND QUTPUT RECORD AREA. *
R R R G S O O S S R S S O O R O R
01 WS- SAMPLE- PO NTER

10 WS- QUTPUT- PO NTER USAGE |I'S PO NTER

khkkkhkkhkkhkhkkhkhkkhhkhhhkhhkhkhhkhkhhkdhhhhkhhhdhhkhdhhdhhhhdhdrhdhkddhhdhdrhdxhdrx*x*x

* SWTCHES FOR RECORD PROCESSI NG CONTROL. *

R R R G S S R S S O O

01 WS- SW TCHES.

10 WS- ERROR- HAPPENED- SW PIC X(01) VALUE 'N .
88 ERROR- HAPPENED VALUE 'Y’ .
88 NO- ERROR- YET VALUE ' N .

10 Ws- QUTPUT- DONE- SW PIC X(01) VALUE 'N .
88 QUTPUT- DONE VALUE ' Y'.
88 MORE- QUTPUT VALUE ' N .

* THIS SWTCH IS USED FOR TESTING | F RPC CALL
77 RSPRPC-SWTCH PIC S9(4) COW VALUE 0.
88 RPC- CALL VALUE 0.

01 COMVAREA- PO NTER USAGE IS PO NTER

Rk ok kR R Rk R R IRk Ik kT o b S S R R I o S b O S R R Sk I

* A NUMBER FOR | NCREMENTI NG *

R R R G S O I S S R S S O R O

01 W5- VARI ABLES.

05 W5-1 NCRI NUM PIC 99 VALUE ZERCES.
05 VTABLE-CTR PI C S9(8) COWP VALUE 0.
05 WS- LEN-HOLD PI C 9(4) VALUE ZERCES.
01 MESSAGES.
05 ERROR1- MSG
07 ERROR1- TEXT1 PIC X(19) VALUE
"ERROR WTH CALL TO .
07 ERROR1- CALL PI C X(10) VALUE SPACES.
07 ERROR1- TEXT2 PIC X(14) VALUE
' - SPRC CODE: '.
07 ERROR1- SPRC PI C X(03) VALUE SPACES.
R R Sk S kR R ok S R R ok kI S R Rk R b S S R R R O o S I
* QUTPUT RECORD DESCRI PTI ON. *

Rk bk kS Rk R S ok R R R Sk o Sk kR R S ok R R R R S ok b S S

01 Ws- QUTPUT- REC.

126

APPENDIX E RSP8C variable text sample RSP

10 W& QUT- M5G- AREA.
15 FILLER
15 Ws- QUT- M5SG- NUM
15 FILLER

10 W&- QUT- SOVE- DATA

01 WS- QUT- DATA- MSG
10 FILLER

"**--> THE FOLLON NG I S 50 BYTE

10 FILLER

01 V- TABLE- BLOCKS.

PI C X(07)
PI C X(02)
PI C X(01)
PI C X(50)

PI C X(55)

BLOCKS OF

Pl C X(05)

10 V- TABLE-BLOCKS-T OCCURS 200 TI MES.

15 V- ROW

01 W5- VTABLE- REC.
10 W5 VTABLE- AREA.
15 FILLER

"THIS IS THE LENGTH I N SPVARLEN : ’.

15 W5- VTABLE- NUM
15 FILLER

LI NKAGE SECTI ON.

PI C X(50)

Pl C X(33)

PI C X(04)
PI C X(03)

VALUE ' RECH#-> .
VALUE SPACES.
VALUE "’ :’.

VALUE SPACES.

VALUE
VARI ABLE TEXT .
VALUE ' RECVD .

VALUE SPACES.

VALUE

VALUE SPACES.
VALUE SPACES.

R I S S S S

* THE LI NKAGE SECTI ON DEFI NES MASKS FOR DATA AREAS THAT ARE
* PASSED BETWEEN THI S PROGRAM AND NAI NFRAMECONNECT.

Rk bk R I R Ik O b o S R SRR R R ok kO b o ok R R I S b S o

khkkhkkhkhkkhkhkhhkhkhhkhhhkhhkhhhkhhkhhhkddhkhhhdhkhrhdhkhhhkddhkdrhdhkhdhdrhrxdrxhrx*x*x

* LINKAGE TO CALLI NG PROGRAM

*

Rk bk I R IRk kS R R R IR S kb O S S R R R b o R R R I o

01 DFHCOVVAREA.

05 NOT- USED PIC X(1).

05 DUMW- AREA PIC X(1).
EE R I S o S R O S I
* TH'S IS THE ACTUAL SPAREA PO NTER AND DEFI NI TI ON *

Rk bk I R R Ik kR Rk R R Rk kO R kS kR Rk kT kI b

01 LVWKCOWWVAREA.
COPY SPAREAC.

EE S O O S S R O R

* VARI ABLE FOR ALL | NCOM NG VARI ABLE TEXT PARAMETERS *

Rk bk I R IRk Ik kO o Sk R R R R Ik kR R R R ko ok R R R R o kO R R

PI C X(10000) .

01 | NPUT- VALUE

127

RSP8C variable text sample code

01 WS- QUTPUT- RECCRD.
10 Ws- QUTPUT- DATA

PI C X(60).

000- VAl N- PROCESSI NG

PERFORM 100- 1 NI Tl ALI ZE

I F NO- ERROR- YET
PERFCORM 500- PROCESS- | - O

PERFCRM 900- WRAP- UP

EXEC Cl CS
RETURN

END- EXEC.

GOBACK.

000-EXIT.
EXIT.

100- I NI TI ALI ZE.

THRU 100-EXIT.

THRU 500- EXIT.

THRU 900- EXIT.

EE Rk R G S O R S S S O

(DI RECTCONNECT) .

*
*
*
*
*
*

MOVE ElI BCALEN TO RSPRPC- SW TCH.

| F RPC- CALL
EXEC CI CS GETMAIN

FOR TRACING MOVE 'Y TO SPTRCOPT

LR R S O S S S S S

IF THHS IS A RPC CALL, CALL RPSETUP TO I NI TI ALI ZE SPAREA
AND OPEN SERVER (TRANSACTI ON ROQUTER SERVI CE)
IF THHS IS A RSP CALL, SPAREA IS PASSED I N THE COMVAREA.

SET (COMVAREA- PO NTER)
FLENGTH (LENGTH OF LWKCOMVAREA)

END- EXEC

SET ADDRESS COF LWKCOMVAREA TO COMVAREA- PO NTER

MOVE 'Y’
CALL ' RPSETUP
ELSE

128

TO SPTRCOPT
USI NG SPAREA

APPENDIX E RSP8C variable text sample RSP

SET ADDRESS OF LWKCOMVAREA TO ADDRESS OF DFHCOVIVAREA

MOVE 'Y

MOVE ' OK'

PERFORM 110- ESTABLI SH- | NPUT

TO SPTRCOPT.

TO SPSTATUS.

THRU 110-EXIT.

Rk bk I R R Ik I O S R R Rk R T S S kR R IR S b R R R I

* ALLOCATE A BLOCK OF STCRAGE TO BE USED FOR THE DATA
* SET PO NTER VARI ABLE TO ADDRESS OF ALLOCATED STORAGE

R R S S R S S O R O

EXEC ClI CS
GETMAI N SET(W8- QUTPUT- POl NTER)
LENGTH(60)
END- EXEC.

SET ADDRESS OF Ws- QUTPUT- RECORD

I F NO ERROR- YET
PERFORM 120- OPEN- QUTPUT- PI PE

100-EXIT.
EXIT.

110- ESTABLI SH- | NPUT.

| F SPVARLEN < 1
SET ERROR- HAPPENED
MOVE * NO PARMS'
PERFORM 800- ERROR- MESSAGE
GO TO 110-EXIT

ELSE
MOVE SPVARLEN
MOVE W&- LEN- HOLD
MOVE W&- VTABLE- REC

TO W5- QUTPUT- PO NTER

THRU 120-EXIT.

TO TRUE
TO ERROR1- CALL
THRU 800-EXI'T

TO WS- LEN- HOLD
TO WS- VTABLE- NUM
TO SPMsG

MOVE ' OK TO SPSTATUS

K o o o o o o o o o o e e o e 2 *
* MESSAGE WLL WRI TE THE 100 BYTE SPMSG TO A MG BUFFER, *
* WHICH WLL EVENTUALLY BE WRI TTEN TO THE CLI ENT *
* APPLI CATI ON *
*

CALL ' MESSAGE' USI NG SPAREA.
SET ADDRESS OF | NPUT- VALUE

MOVE | NPUT- VALUE (1: SPVARLEN)

TO SPVARTXT.

TO V- TABLE- BLOCKS.

129

RSP8C variable text sample code

IF V-ROWN (1) = SPACES

SET ERROR- HAPPENED TO TRUE
MOVE * SPACES TO ERROR1- CALL
PERFCRM 800- ERROR- MESSAGE THRU 800- EXIT.

IF V-ROWN (1) = LOM VALUES

SET ERROR- HAPPENED TO TRUE
MOVE * LOWALUE TO ERROR1- CALL
PERFCRM 800- ERROR- MESSAGE THRU 800-EXIT.
110-EXIT.
EXIT.

120- OPEN- QUTPUT- PI PE.

MOVE ' STD TO SPFORVAT.
MOVE 60 TO SPMAXLEN.
MOVE ' OUTPUT' TO SPMODE.
K e e e e e e e e e e m e .- *
* AN OPEN PIPE WLL SET UP THE COLUMN | NFORVATI ON, WHI CH*
* WLL EVENTUALLY BE SENT TO THE CLIENT APPLI CATI ON *
K o o o e o o e - *
CALL ' OPENPI PE' US| NG SPAREA
| F SPRC NOT = ' 000’
SET ERROR- HAPPENED TO TRUE
MOVE ' OPENPI PE TO ERRORL- CALL
PERFORM 800- ERROR- MESSAGE THRU 800- EXI T.
120-EXI T.
EXIT.

500- PRCCESS- | - O,

I F NO- ERROR- YET
PERFCORM 540- PROCESS- DATA- RECS THRU 540- EXI T.

500- EXI T.
EXIT.

540- PROCESS- DATA- RECS.

Rk S R S IRk R o S o R R R Rk Ik Ik kR S ok O R R R o R R R R S O

* OBTAI N VARI ABLE TEXT SENT W TH PROGRAM *

Rk S R R R Rk R I S kR R R IRk Ik Ik kR S o O R R R R o b S b S O

130

APPENDIX E RSP8C variable text sample RSP

MOVE 0O TO WS- | NCRI NUM
PERFCRM 542- SEND- RECORDS- HEADI NG THRU 542-EXIT.
I F NO ERROR- YET
PERFORM 544- READ- VRl TE- RECORDS THRU 544-EXI T
UNTI L OUTPUT- DONE OR ERROR- HAPPENED.

540-EXIT.
EXIT.

542- SEND- RECORDS- HEADI NG

| F SPSTATUS = ' K

MOVE WS- OUT- DATA- MBG TO WS- QUTPUT- RECORD
MOVE 60 TO SPRECLEN
SET SPFROM TO ADDRESS OF WS- QUTPUT- RECORD
* *
* PUTPI PE SENDS A RESULT ROW TO THE OUTPUT BUFFER, VI CH*
* WHICH WLL EVENTUALLY BE WRI TTEN TO THE CLI ENT *
* APPLI CATI ON *
K o e - *
CALL ' PUTPIPE USI NG SPAREA
| F SPRC NOT = ' 000’
SET ERROR- HAPPENED TO TRUE
MOVE ' PUTPI PE TO ERRORL- CALL
PERFORM 800- ERROR- MESSAGE THRU 800-EXI T
END- | F
END- | F.
542-EXI T.
EXIT.

544- READ- WRI TE- RECORDS.

khkkhkkhkhkkhkhkhkhkhkhhkhhhkhhkhhkhhhkhhhkddhkhhhdhkhrhhdhkhhhkddhdrhkdhkhhhdrhrxhdrxhrx*x*x

* LOOP THROUGH VARI ABLE TEXT TABLE AND SEND BACK TO CLI ENT IN *

* 50- BYTE CHUNKS UNTI L ALL ARE RETURNED. *
Rk R I b S R R Ik kI b R R S bk Sk kR R O S S R R kS S
ADD 1 TO WS- | NCRI NUM
VTABLE- CTR.
| F V-ROW (VTABLE- CTR) | S = SPACES
OR V- ROW (VTABLE-CTR) 1S = LOW VALUES

OR VTABLE- CTR > 200
| F VTABLE-CTR = 1

131

RSP8C variable text sample code

MOVE W&- | NCRI NUM TO W& OUT- NBG- NUM
MOVE V- ROW (VTABLE-CTR) TO WS- OUT- SOVE- DATA
MOVE WS- OUTPUT- REC TO W& OUTPUT- RECORD
SET SPFROM TO ADDRESS OF WS- QUTPUT- RECORD
* *
* PUTPI PE SENDS A RESULT ROW TO THE OUTPUT BUFFER, *
* WHI CH WLL EVENTUALLY BE WRI TTEN TO THE CLI ENT *
* APPLI CATI ON *
K o o o e e o e - *
CALL ’ PUTPI PE' USI NG SPAREA
| F SPRC NOT = ' 000’
SET ERROR HAPPENED TO TRUE
MOVE * PUTPI PE TO ERRORL- CALL
PERFORM 800- ERROR- MESSAGE THRU 800- EXI T
END- | F
END- | F
SET OUTPUT- DONE TO TRUE
ELSE
MOVE WS- | NCRI NUM TO W& OUT- NBG- NUM
MOVE V- ROW (VTABLE- CTR) TO W& OUT- SOVE- DATA
MOVE W&- QUTPUT- REC TO W& OUTPUT- RECORD
SET SPFROM TO ADDRESS OF WS- QUTPUT- RECORD
* *
* PUTPI PE SENDS A RESULT ROW TO THE OUTPUT BUFFER, WHI CH*
* WLL EVENTUALLY BE SENT DOWN TO THE CLI ENT APPLI CATI ON*
K e e o e e e e e e e m e .- *
CALL ' PUTPI PE' USI NG SPAREA
| F SPRC NOT = ' 000’
SET ERROR- HAPPENED TO TRUE
SET OUTPUT- DONE TO TRUE
MOVE * PUTPI PE TO ERRORL- CALL
PERFORM 800- ERROR- MESSAGE THRU 800- EXI T
END- | F
END- | F.
544-EXI T.
EXIT.

800- ERROR- MESSAGE.

R R R S O O R S S O R O R

* SOVETHI NG FAI LED, SO | SSUE AN ERROR MESSAGE AND GET QUT. *
Rk R R S S O S S S R S S O R S
MOVE SPRC TO ERROR1- SPRC.
MOVE ERROR1- MSG TO SPMSG
MOVE ' E TO SPSTATUS.

132

APPENDIX E RSP8C variable text sample RSP

K o o o o o o o o e e e o e 2 *
* MESSAGE WLL WRITE THE 100 BYTE SPMSG TO A M5G BUFFER, *
* WHICH WLL EVENTUALLY BE WRI TTEN TO THE CLI ENT *
* APPLI CATI ON *
K o o e e e o e - *

CALL ' MESSACE' USI NG SPAREA.

I F SPRC NOT = ’ 000’

SET ERROR- HAPPENED TO TRUE.
800-EXIT.

EXIT.
900- VWRAP- UP.
kkkhkkhkhkkhkhkhhkhkhhkdhhhkhhkhhhkhhkhhhkddhkhhhdhhkhrhhdhkhhhkddhdrhdhkhdhdrhrxdrxkhdrx*x*x
* CLOSE PIPES - | SSUE STATUS. *

EE S R O S O S R R O

I F NO ERROR- YET

MOVE * QUTPUT’ TO SPMODE
K o o o o o o o o e 2 *
CLOSEPI PE IS LI KE CLOSI NG A FILE, PLACES AN EOF MARKER
* *

CALL ' CLOSPI PE' USI NG SPAREA

I F SPRC NOT = ' 000’
SET ERROR- HAPPENED TO TRUE
MOVE * CLCSPI PE TO ERROR1- CALL
PERFORM 800- ERROR- MESSAGE THRU 800- EXI T.

I F NO ERROR- YET

MOVE ' OK' TO SPSTATUS
ELSE

MOVE ' E TO SPSTATUS

MOVE * MYERCCDE' TO SPCODE
END- | F.

CALLI NG STATUS W LL FLUSH ANY RESULTS AND/ OR
MESSAGES FROM THE BUFFERS, TO THE CLI ENT APPLI CATI ON
CALL ' STATUS USI NG SPAREA.

I F SPRC NOT = ' 000’

*F X X
* % X X

SET ERROR- HAPPENED TO TRUE

MOVE * STATUS TO ERROR1- CALL

PERFORM 800- ERROR- MESSAGE THRU 800-EXI T
END- | F.

133

RSP8C variable text sample code

Rk bk kS Rk R I ok S S o R R S Sk kR R bk O kS O

* CLOSE OPEN SERVER

* IF THHS I'S AN RPC CALL, PERFORM CPEN SERVER CLOSE
EE Sk S S O S R
| F RPC- CALL

CALL ' RPDONE USI NG SPAREA.

900- EXIT.
EXIT.

134

APPENDIX F

The SPAREA

The SPAREA containsall of the pointers, codes, and command detail sthat
the RSP needs to exchange with the RSP API. Every RSP receives or
sends information using the SPAREA.

This appendix discusses the following topics:

* SPAREA field descriptions

e Copying SPAREA definitions to the RSP
* SPAREA definitions

SPAREA field descriptions

SPHEADER

SPRESRVED

SPTRCOPT

SPSTATUS

The RSP, Open ServerConnect, and MainframeConnect use the SPAREA
by accessing the values from tBRAREA fields. The wordReserved in
the descriptions indicates that the RSP cannot write to the field.

SPHEADER contains the character string *SPAREA*. The character
string serves as an eye catcher for locatings#%&REA in a dump.
Reserved.

SPRESRVD contains values used by MainframeConnect to process
commandsReserved.

SPTRCOPT controls the trace option. If the field contains 'Y' when an
Open ServerConnect command is issued, trace records are written to the
TSQ, CEooxxx, wherexxxxxx is the first six characters of the user ID.

SPSTATUS is used by an RSP or by Open ServerConnect to indicate the
success or failure of processing.

When used by an RSP, it refers to RSP processing. When used by Open
ServerConnect, it refers to processing on the remote database.

Valid values are:

*« 'OK'indicates success.

135

SPAREA field descriptions

SPCODE
SPFORMAT

SPMODE

SPRC

SPFROM

SPINTO

SPSQLDA

SPVARTXT

136

* 'E'indicates an error.

 'W'indicates a warning.

* 'R'indicates results.

The RSP useSPCODE to supply user-defined error codes.

The RSP useSPFORMAT to specify the data format when opening a data pipe.
Valid values are: DB2, STD, and BIN.

The RSP useSPMODE to specify the mode of the data pipe. Valid values are
INPUT or OUTPUT.

MainframeConnect use&PRC to indicate the success or failure of an RSP
command. Valid return codes are:

e '000' indicates successful completion.
e xxX indicates a MainframeConnect error number.
« 'EOF' indicates an End of File on input data.

¢ 'ACE'indicates an APPC communication error (when the
MainframeConnectemporary Storage Type configuration property is set
to None).

e 'CAN'indicates that the client application issu@@B&ANCEL command.

The RSRuses SPFROM to specify the address of the STD or BIN format data
record that it writes to the output pipe. See PUTPIPE on page 66 for an
example of usingPFROM.

The RSP useSPINTO to specify the address of a storage area where the STD
or BIN format data record read from the input pipe can be placed. See
GETPIPE on page 63 for an example of uSRgNTO.

The RSP and MainframeConnect uSeSQLDA to specify the address of an
SQLDA that describes the data records. This field is only used for DB2 format
output data pipes. The RSP must build the SQLDA and supply this pointer
when it opens the pipe.

For information on SQLDA structure, see the IBM SQL reference guide for
DB2. A sample SQLDA definition is provided in Appendix B, “MODELRSP
DB2 output pipe sample RSP”

SPVARTXT contains the pointer of the variable text that the client application
may optionally send to the RSP. This field contawis

APPENDIX F The SPAREA

SPVARTAB

SPMAXLEN

SPRECLEN

SPVARLEN

SPPREFIX
SPMSG

SPVARTAB contains the pointer of the variable substitution table, which is
created if the client sends keyword variables (that is, & KEY WORD=value
format). If keyword variables are not sent, thisfield contains null.

The RSP uses SPMAXLEN to specify the maximum record length for records
read from or written to a STD or BIN format pipe. See “Using data pipes” on
page 19 for more information.

The RSP and MainframeConnect uSeRECLEN to specify the length of
records read from or written to a STD or BIN format data pipe.

For output pipes, the RSP must set this field to the length of the record it writes
(unless it is writing fixed-length records of the same siz&PagAXLEN). For

input pipes, Open ServerConnect sets this field to the length of the record it is
sending to the RSP.

For more information, see “SPMAXLEN and SPRECLEN" on page 91. Also
see “Using data pipes” on page 19 for more information.

SPVARLEN contains the length of the variable text that the client may
optionally send to the RSP. This field contains zeros.

Not used.

The RSP use3PMSG to place message text it sends the client application with
aMESSAGE command.

Copying SPAREA definitions to the RSP

SPAREA definitions in Assembler, COBOL Il, PL/I, and C are distributed with
Open ServerConnect and are reproduced in this appendix. You can copy the
appropriate definition into your RSP and provide the necessary information for
the relevant fields. The SPAREA definitions are in the
SYBASE.ORSP310B.CICS.SOURCE library, and their definitions are
reproduced on the indicated page:

* SPAREAA—Assembler on “SPAREAA assembler definition” on page
139

* SPAREAC—COBOL Il on “SPAREAC COBOL Il definition” on page
139

* SPAREAP—PL/1 on “SPAREAP PL/1 definition” on page 140
* SPAREAX—C on “SPAREAX C definition” on page 141

137

SPAREA definitions

Withinyour RSP, copy the SPAREA definition asshownin thefollowing table.
For an example of copying the SPAREA in the context of an RSP written in
COBOL Il, seethe samplesin Chapter 3, “Writing An RSP”

Table F-1: SPAREA copy statements

Language Copy Syntax

Assembler COPY SPAREAA

coBOL I COPY SPAREAC.

PL/I EXEC SQ. | NCLUDE SPAREAP;
C #include “SPAREAX.H”

When you compile the RSP, the concatenation sequen&& B must

include a DD statement for the MainframeConnect sample program library.
See Chapter 4, “Compiling an RSP” and Chapter 5, “Testing and invoking an
RSP” for detalils.

The SPAREA definitions are reproduced on the following pages.

Note There are several fields in the SPAREA definitions in the following
section that are used only for Client Services Applicatf@®As). Those
fields are described in th@pen ClientConnect Programmer’s Reference for
Client Services Applications

SPAREA definitions
This section contains the following SPAREA definitions:
e SPAREAA Assembler definition
e SPAREAC COBOL definition
e SPAREAP PL/1 definition
e SPAREAX C definition

These examples show how each programming language opens an input pipe for
a STD format data pipe with a maximum record length of 400 bytes.

138

APPENDIX F

The SPAREA

SPAREAA assembler definition

*

*

* STORED PROCEDURE COMMUNICATION AREA *

*.

*

SPAREA DSECT
SPHEADER DS CL8
SPRESRVD DS CL33
SPTRCOPT DS CL1
SPSTATUS DS CL2
SPCODE DS CL8
SPFORMAT DS CL3
SPMODE DS CL6
SPRC DS CL3
SPFROM DS OF
SPINTO DS OF
SPSQLDA DS F
SPVARTXTDS F
SPVARTABDS F
SPROWS DS F
SPMAXLEN DS OH
SPRECLENDS H
SPVARLENDS H
SPPREFIXDS CL1
SPMSG DS CL100
SPFILL2 DS CL3
SPSQL DS F
SPATTACHDS CL8
SPUSERID DS CL8
SPPWD DS CL8
SPCMPOPT DS CL1
SPIND DS CL1
SPDATE DS CL8
SPTIME DS CL8
SPCONFIGDS CL4
SPSERVER DS CL30
DS CL32
SPEND EQU *

EYE CATCHER
SERVER INFORMATION
TRACE OPT
STATUS INDICATOR
ERROR CODE
PIPE FORMAT
PIPE MODE
RETURN CODE
FROM ADDRESS
INTO ADDRESS
SQLDA ADDRESS
VARIABLE TEXT
VARIABLE TABLE
ROWS AFFECTED
MAXIMUM LENGTH OF STD RECORD
RECORD LENGTH
VARIABLE TEXT LENGTH
MESSAGE FILE PREFIX
MESSAGE AREA
NOT USED
SQL BUFFER ADDRESS
ATTACHMENT NAME
USERID
PASSWORD
COMPRESSION OPTION
MESSAGE INDICATOR
DATE
TIME
CONFIGURATION ID
SERVER NAME

FILLER

SPAREAC COBOL Il definition

*

*

* STORED PROCEDURE COMMUNICATION AREA *

*.

*

139

SPAREAP PL/1 definition

03 SPAREA.

05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05
05

SPHEADER
SPRESRVD
SPTRCOPT
SPSTATUS
SPCODE
SPFORVAT
SPMODE
SPRC
SPFROM
SPI NTO
SPSQLDA
SPVARTXT
SPVARTAB
SPROAS
SPMAXLEN
SPRECLEN
SPVARLEN
SPPREFI X
SPMVBG

FI LLER
SPSQL
SPATTACH
SPUSERI D
SPPWD
SPCVPOPT
SPI ND
SPDATE
SPTI ME
SPCONFI G
SPSERVER
FI LLER

PI C X(8).

PI C X(33).

Pl C X.

PIC X(2).

PI C X(8).

PI C X(3).

PI C X(6).

PIC X(3).

USAGE | S POl NTER
REDEFI NES SPFROM USAGE | S PO NTER
REDEFI NES SPI NTO USAGE | S POl NTER
USAGE |'S PO NTER
USAGE |'S PO NTER
Pl C S9(8) COWP.
Pl C S9(4) COWP.
REDEFI NES SPMAXLEN PI C S9(4) COWP.
Pl C S9(4) COWP.
PIC X.

Pl C X(100).

PI C X(3).

USAGE | S PO NTER
PIC X(8).

PIC X(8).

PI C X(8).

PIC X(1).

PIC X(1).

PI C X(8).

PIC X(8).

Pl C(4) .

Pl C(30) .

PI C X(32).

SPAREAP PL/1 definition

/**/

/* STORED PROCEDURE COMMUNI CATI ON AREA */
/**/
DCL 1 COMVPTR
DCL 1 SPAREA BASED(COWPTR),

140

3 SPHEADER
3 SPRESRVD
3 SPTRCOPT
3 SPSTATUS

PO NTER;

CHAR(8),
CHAR(33),
CHAR(1),
CHAR(2) ,

APPENDIX F The SPAREA

3 SPCODE CHAR(8) ,

3 SPFORMAT CHAR(3) ,

3 SPMODE CHAR(6) ,

3 SPRC CHAR(3),

3 SPFROM POl NTER ALI GNED,

3 SPVARTXT POl NTER

3 SPVARTAB POl NTER

3 SPROWS FI XED BI N(31) ALl GNED,
3 SPMAXLEN FI XED BI N(15) ALl GNED,
3 SPVARLEN FI XED BI N(15) ALl GNED,
3 SPPREFI X CHAR,

3 SPMSG CHAR(100),

3 SPFILL2 CHAR(3) ,

3 SPSQL POl NTER ALI GNED,

3 SPATTACH CHAR(8)

3 SPUSERI D CHAR(8)

3 SPPWD CHAR(8)

3 SPCMPOPT CHAR(1),

3 SPIND CHAR(1),

3 SPDATE CHAR(8) ,

3 SPTIME CHAR(8) ;

3 SPCONFI G CHAR(4) ,

3 SPSERVER CHAR(30) ,

3 SPFILL3 CHAR(32) ;

DCL SPINTO PO NTER BASED(AD_SPFROM ;

DCL SPSQLDA PO NTER BASED(AD_SPFROM ;

DCL SPRECLEN POl NTER BASED(AD_SPMAXLEN) ;

DCL SPSQL PO NTER BASED(AD_SPSQL) ;

DCL (AD_SPFROM AD SPMAXLEN, AD SPSQL) POl NTER
AD_SPFROVEADDR(SPFROM) ;

AD_SPMAXLEN=ADDR(SPMAXLEN) ;

AD_SPSQL=ADDR(SPSQL) ;

SPAREAX C definition

#i f

ndef SP_DEFS

#defi ne SP_DEFS

/*

Various declarations and definitions for Stored Procedures for C.
Shoul d be usable with the SAS/ C conpiler, and with slight

nodi fication, the I1BM /370 conpiler. Uses the SAS/ C digraphs for
square brackets - "(]" for the left square bracket, and "])" for the
ri ght square bracket.

SAS/ C and ¢/ 370 are tradenmarks of the SAS Institute, Inc. and | BM

141

SPAREAX C definition

Cor poration respectively.

*/
#i ncl ude "sql da. h"
/*
Keyword vari abl e tabl e declarati on.
*/
struct VARTAB {
unsi gned | ong var TablL; /* Nunmber of entries in table (<<= 50) */
struct VARENT {
char *var Nare; /* Variabl e nanme */
char *var Val ue; /* Variabl e val ue */
short var NanelL; /* Variable nane |length */
short varVal L; /* Variable value length */
} varent(]150]);
b
/*
Stored Procedure Communi cation Area declaration.
*/
struct SPAREA {
char spheader (]8]); /* DS CL8 Eye catcher */
char spresrvd(]33]) /* DS CL33 Server information */
char sptrcopt; [* DS CL1 Trace options */
char spstatus(]2]); /* DS CL2 St atus indi cator */
char spcode(]8]); /* DS CL8 Error code */
char spformat(]3]); /* DS CL3 Pi pe format */
char spnode(]6]); /* DS CL6 Pi pe node */
char sprc(]3]); /* DS CL3 Ret urn code */
uni on {
char *spfrom /* DS 0A From addr ess */
char *spinto; /* DS 0A Into address */
struct SQLDA *spsqglda; /* DS A SQLDA address */
}
char *spvartxt; /* DS A Vari abl e text */
struct VARTAB *spvartab; /* DS A Vari abl e tabl e */
int sprows; /* DS F Rows af f ect ed */
uni on {
short spmaxl en; /* DS OH Max | ength of STD rec */
short spreclen; /* DS H Record | ength */
3
short spvarl en; /* DS H Variabl e text |ength */
char spprefix; /* DS CL1 Message file prefix */
char spmsg(]100]); [* DS CL100 Message area */
char _f0(]3]); /* Padding for alignnent */
struct SQLBUF *spsql; /* DS A SQL buffer address */
char spattach(]8]); /* DS CL8 Attachment nane * |
char spuserid(]8]); [* DS CL8 Useri d */

142

APPENDIX F The SPAREA

char sppwd(]8]); /* DS CL8 Passwor d */
char spcnpopt; /* DS CL1 Conpr essi on option */
char spind; /* DS CL1 Message indi cator */
char spdate(]8]); /* DS CL8 Request execution date */
char sptine(]8]); /* DS CL8 Request execution tinme */
char spconfig]4]); /* DS CL4 Confi guration nane */
char spserver(]30]); /* DS CL30 Server nane */
char _f1(]132]); /* Padding to end of record */

3

/*

Stored procedure function decl arations.

*/
voi d attach(struct SPAREA *); /* Attach to renote server */
voi d cl ospi pe(struct SPAREA *); /* C ose input/output pipe */
void comit(struct SPAREA *); /* 1ssue SYNCPO NT w COW T */
voi d cssetup(struct SPAREA *); /* Initialize SPAREA */
voi d detach(struct SPAREA *); /* Detach fromrenote server */
voi d get msg(struct SPAREA *); /* CGet a nmessage */
voi d get pi pe(struct SPAREA *); /* Get row frominput pipe */
voi d get pi pe(struct SPAREA *); /* Put row to output pipe */
voi d message(struct SPAREA *); /* |ssue nmessage */
voi d openpi pe(struct SPAREA *); /* Open input/output pipe */
voi d regexec(struct SPAREA *); /* Execute SQ request */
voi d rescheck(struct SPAREA *); /* Check for results */
voi d rol |l back(struct SPAREA *); /* Issue SYNCPO NT w ROLLBACK */
voi d status(struct SPAREA *); /* |ssue status */

#endi f

143

SPAREAX C definition

144

APPENDIX G TheSQLDA

The SQLDA isacollection of variables and pointers that provide column
information about data being transmitted to the client application.

Note The SQLDA isanIBM standard; seethe IBM DB2 SQL Reference
for more information.

This appendix discusses the following topics:
e SQLDA variables and fields

* SQLDA datatypes

e Writing a SQLDA

e Sample COBOL Il SQLDA

e Sample C SQLDA

SQLDA variables and fields

A SQLDA consists of four variableSQLDAID, SQLDABC, SQLN, and
NLD), followed by an arbitrary number 8)LVARs. A SQLVAR is a
structure containing five fields.

The following table describes the SQLDA variables.

145

SQLDA datatypes

Table G-1: SQLDA variables

This SQLDA

variable: Performs this function:

SQLDAID Contains an eye catcher of “SQLDA” for use in storage
dumps

SQLDABC Contains the length of the SQLDA, equal to
SQLN*44+16

QLN Contains the total number of occurrenceSQfVAR

LD Indicates the number of columns described by

occurrences asQLVAR

Each occurrence of SQLVAR describes one column of the result row you are
sending to the client application. The following table describes the five fields
that each occurrence of SQLVAR contains.

Table G-2: SQLDA fields

This SQLDA field: Performs this function:

SQLTYPE Contains a 3-digit value that representsitit@type of
the column and whether or not it allows null values.
Table G-3 on page 147 contains the valid data type

values.

SQLLEN Contains the external length of a value from the
column.

SQLDATA Contains the address of the data being transmitted

SQLIND Contains the address of an indicator, which tells
whether the column is nullable. Use a value less than
zero if null.

SQLNAME Contains the name or label of the column, or a string of
length zero if the name or label does not exist.

SQLNAMEL Contains the length of the column.

SQLDA datatypes

146

The following table contains the SQLDA datatypes and their 3-digit values.
Each datatype has two available values to indicate whether an occurrence of
the datatype allows nulls. (For up-to-date information, see the current SQL
manual.

APPENDIX G The SQLDA

Table G-3: SQLDA datatypes

Data Type Nulls Not Allowed Nulls Allowed
DATE 384 385
TIME 388 389
TIMESTAMP 392 393
CHAR VARIABLE LENG 448 449
CHAR FIXED LENGTH 452 453
CHAR LONG VARIABLE 456 457
FLOATING-POINT 480 481
DECIMAL 4834 485
LARGE INTEGER 496 497
SMALL INTEGER 500 501

Writing a SQLDA
To write amodel SQLDA definition, perform the following steps:

1 Inthe WORKING-STORAGE section of the RSP, include a SQL DA with
a SQLVAR definition for each column you send in your resullt.

Note Sybase APIsuse pointers; COBOL can only handle setting pointers
initslinkage section.

2 Include a description of the SQLDA template.

The SQLDA template and the description go inthe LINKAGE SECTION
so they can be accessed by programs outside the RSP, such as
MainframeConnect.

3 Optionally, re-calculate the size of your SQLDA definition or as an
alternative, you can have the compiler do thisfor you with (LENGTH OF).

For an example of the compiler alternative, see Appendix B,
“MODELRSP DB2 output pipe sample RSP” in the 1100-TEST-SQLDA
paragraph.

4 Allocate storage for the model SQLDA definition and set a pointer to that
address.

For an example of this, see Appendix B, “MODELRSP DB2 output pipe
sample RSP” in the 1200-GET-STORAGE paragraph.

147

Sample COBOL Il SQLDA

5 Movethe model SQLDA definition residing in WORKING-STORAGE
into the template SQLDA (in the all ocated storage in the linkage section).

For an example of this, see Appendix B, “MODELRSP DB2 output pipe
sample RSP” in the 1300-SET-ADDRESSES paragraph.

Sample COBOL Il SQLDA

Rk ok b S Rk kR Rk kb o Ok R R R ok S S S R kO o

* The followi ng sanple description of the SQLDA is for COBOL II.
* A conmpl ete description of each field and its purpose may be
*found in the “DB2 SQL Reference.” Note that SQLDABC (SQLDA

* Byte Count) may be initialized with:

*

* MOVE LENGTH OF SQLDA TO SQLDABC.

* * *kkdkk *kkdkk *kkdkk

01 SQLDA.
03 SQLDAID PIC X(8).
03 SQLDABC PIC S9(8) COMP.
03 SQLN PIC S9(4) COMP.
03 SQLD PIC S9(4) COMP.
03 SQLVAR OCCURS 0 TO 300 TIMES
DEPENDING ON SQLN.
05 SQLTYPE PIC S9(4) COMP.
05 SQLLEN PIC S9(4) COMP.
05 SQLDATA USAGE IS POINTER.
05 SQLIND USAGE IS POINTER.
05 SQLNAME.

07 SQLNAMELENGTH PIC S9(4) COMP.
07 SQLNAMEVALUE PIC X(30).

Sample C SQLDA

/*
Sample SQLDA declaration and #defines for all DB2 datatypes.
*/
#ifndef SQLDA_DEF
#define SQLDA_DEF
struct SQLDA {
unsigned char sqldaid[8];
long sqldabc;
short sqln;

148

APPENDIX G The SQLDA

short sql d;
struct sqlvar {
short sql type;

uni on {
short sqllen;
struct {

unsi gned char precision
unsi gned char scal €;
} SQLDECI MAL;
} SQLLEN;
unsi gned char *sql data
short *sqlind;
struct sql nane {
short | ength;
unsi gned char data [30];

} sql nane;
} sqlvar[O0];
}

#def i ne DATE 384 /* SQLTYPE for DATE */
#defi ne NDATE 385 /* SQ.TYPE for DATE w NULL */
#define TIME 388 /* SQTYPE for TIME */
#define NTI ME 389 [* SQLTYPE for TIME w NULL */
#defi ne TI MESTAWP 392 [* SQLTYPE for TIMESTAMP */
#defi ne NTI MESTAMP 393 [* SQLTYPE for TIMESTAMP W NULL */
#defi ne VARCHAR 448 /* SQ.TYPE for VARCHAR */
#defi ne NVARCHAR 449 /* SQTYPE for VARCHAR w NULL */
#defi ne CHAR 452 /* SQ.TYPE for CVARCHAR */
#defi ne NCHAR 453 [* SQLTYPE for VARCHAR w/ NULL */
#defi ne LONGVARCHAR 456 [* SQLTYPE for LONG VARCHAR */
#def i ne NLONGVARCHAR 457 /[* SQLTYPE for LVARCHAR w/ NULL */
#defi ne FLOAT 480 /* SQTYPE for FLOAT */
#defi ne NFLOAT 481 /* SQTYPE for FLOAT w NULL */
#defi ne DECI MAL 48 /* SQ.TYPE for DECI MAL */
#defi ne NDECI MAL 485 /* SQLTYPE for DECI MAL W NULLS */
#define | NTEGER 496 [* SQLTYPE for |NTEGER */
#defi ne NI NTEGER 497 [* SQLTYPE for INTEGER w NULL */
#define SMALLI NT 500 /* SQ.TYPE for SMALLINT Sa */
#defi ne NSMALLI NT 501 /* SQTYPE for SMALL w NULL Sa */

#endi f

149

Sample C SQLDA

150

Glossary

access management

access service

access service library

ACSLIB

Adaptive Server

administrative service
library

ADMLIB

American Standard Code
for Information
Interchange

API

application program
interface

ASCII

A DirectConnect feature that provides connectivity to non-Sybase targets.

The named set of properties, used with a DirectConnect Access Service
Library, to which clients connect. Each DirectConnect Server can have
multiple services.

A component of DirectConnect. A service library that provides access to
non-Sybase data contained i n adatabase management system or other type

of repository. Each such repository is called a “target.” Each access
service library interacts with exactly one target and is named accordingly.
See alsservice library.

Seeaccess service library.

The server in the Sybase Client-Server architecture. It manages multiple
databases and multiple users, tracks the actual location of data on disks,
maintains mapping of logical data description to physical data storage,
and maintains data and procedure caches in memory.

A service library that provides remote management capabilities and
server-side support. It supports a number of remote procedures (invoked
as RPC requests) that enable remote DirectConnect management. See also
remote procedure call andservice library.

Seeadministrative service library.

The standard code used for information interchange among data
processing systems, data communication systems, and associated
equipment. The code uses a coded character set consisting of seven-bit
coded characters (eight bits including a parity check).

Seeapplication program interface.

A functional interface, supplied by an operating system or other licensed
program, that allows an application program written in a high-level
language to use specific data or functions of the operating system or the
licensed program.

SeeAmerican Standard Code for Information Interchange.

151

Glossary

ASE/CIS

bulk copy transfer

call level interface

catalog

catalog stored
procedure

character set

CLI

client

client application

Client-Library

client-server

clustered index

codeset

152

Adaptive Server Enterprise/ Component Integration Services (formerly
OmniConnect). An add-on product for Adaptive Server that provides a
Transact-SQL interface to external data sources, including host data files and
tables in other database systems. OmniConnect replaces Omni SQL Gateway
and OmniSQL Server.

A transfer method in which multiple rows of dataareinserted into atableinthe
target database. See also transfer. Compare with destination-template
transfer.

A programming style that calls database functions directly from the top level
of the code. Usually it is contrasted with embedded SQL . See also dynamic
SQL and embedded SQL.

A system table that contains information about objects in a database, such as
tables, views, columns, and authorizations.

A stored procedure that provides information about tables, columns, and
authorizations. It isused in SQL generation and application development. See
also stored procedures.

A set of specific (usually standardized) characters with an encoding scheme
that uniquely defines each character. ASCII isacommon character set.

Seecall level interface.

In client/server systems, the part of the system that sends requests to servers
and processes the results of those requests. See also client/server. Compare
with server.

Software that is responsible for the user interface, including menus, data entry
screens, and report formats. See also client/server.

A library of routines that is part of Open ClientConnect™. See@jsn
ClientConnect.

An architecture in which the client is an application that handles the user
interface and local data manipulation functions, while the server provides data
processing access and management for multiple clients. Sediafgoclient
application, andserver.

An index in which the physical order and the logical (indexed) order is the
same. Compare withonclustered index.

Seecharacter set.

Glossary

commit

commitment control

configuration file
configuration set

connection
specification

conversion

CSP
CT-Library

data definition
language

database
management system

datatype

DB-Library

DBMS
DDL

destination-template
transfer

direct resolution

An instruction to a database to make permanent all changes made to one or
more database files since the last commit or rollback operation and to make the
changed records available to other users. Compare with rollback.

A means of grouping file operationsthat allows agroup of database changesto
be processed as asingle unit, or the removal of agroup of database changes as
asingle unit. See also commit, rollback

A filethat specifies the characteristics of a system or subsystem.
A section into which service library configuration files are divided.

Information required to make an Open ClientConnect or Open

ServerConnect™ connection. The connection specification consists of the
server name, platform, Net-Library™ driver name, and address information
required by the Net-Library driver being used.

The transformation between values that represent the same data item but which
belong to different datatypes. Information can be lost due to conversion
because accuracy of data representation varies among different data types.

Seecatalog stored procedure.

SeeClient-Library.

A language for describing data and data relationships in a database.

A computer-based system for defining, creating, manipulating, controlling,
managing, and using databases.

A keyword that identifies the characteristics of stored information on a
computer.

A Sybase and Microsoft API that allows client applications to interact with
ODS applications. See alapplication program interface.

Seedatabase management system.
Seedata definition language.

A transfer method in which source data is briefly put into a template where the
user can specify that some action be performed on it before execution against
a target database. See alsmsfer. Compare wittbulk copy transfer.

A type of service name resolution that relies upon a client application
specifying the exact name of the service to be used. Segaalsice name
resolution. Compare witlservice name redirection.

153

Glossary

DirectConnect

DirectConnect
Anywhere

DirectConnect
Manager

DirectConnect
Server

DirectConnect
Service

DirectConnect
Service Library

dll

dynamic link library

dynamic SQL

embedded SQL

event handler

global variable

globalization

154

A Sybase Open Server application that provides access management for non-
Sybase databases, copy management, and remote systems management. Each
DirectConnect consists of a server and one or more service librariesto provide
access to a specific data source. DirectConnect replaces the MDI Database
Gateway™ and the OmniSQL Access Module™.

A Sybase solution that gives client applications ODBC data access. It
combines the functionality of the DirectConnect architecture with ODBC to
provide dynamic SQL access to target data, as well as the ability to support
stored procedures and text and image pointers.

A Sybase application for Microsoft Windows that provides remote
management capabilities for DirectConnect products. These capabilities
include starting, stopping, creating, and copying services.

The component that provides general management and support functions (such
as log file management) to service libraries.

A named set of properties, used with a DirectConnect Service Library, to which
clients connect.

The component that provides a set of functions within the DirectConnect
Server environment.

Seedynamic link library.

A file containing executable code and data bound to a program at load time or
run time, rather than during linking. The code and data in a dynamic link library
can be shared by several applications simultaneously.

A term pertaining to the preparation and processing of SQL source statements
within a program while the program runs. The SQL source statements are
contained in host-language variables rather than coded directly into the
application program. Compare wishatic SQL.

A SQL statement embedded within a source program and prepared before the
program executes. After it is prepared, the statement itself does not change,
although values of host variables specified within the statement can change.

A device that processes requests and manages client communication.

System-defined variables that DirectConnect or the client application updates
on an ongoing basis.

The combination of internationalization and localization. See also
internationalization, localization.

Glossary

interfaces file

internationalization

keyword

localization

MDI Database
Gateway
Net-Library

nonclustered index

ODBC
OoDS

OmniConnect

Open Client

Open ClientConnect

Open Data Services

Open Database
Connectivity

An operating system file that must be available on each machine from which

connections to DirectConnect Anywhere or other Sybase products are made.

Each entry in the file determines how the host client software connects to the
Sybase product.

Theprocess of extracting local e-specific components from the source code and
moving them into one or more separate modules, making the code culturally
neutral so it can be localized for a specific culture. See also globalization.
Compare with localization.

A word or phrase reserved for exclusive use by Transact-SQL .

The process of preparing an extracted module for atarget environment, in

which messages are displayed and logged in the user’s language. Numbers,
money, dates, and time are represented using the user’s cultural convention,
and documents are displayed in the user’s language. Segalsalization.
Compare withinternationalization.

An MDI legacy product that gives client applications access to supported data
sources, such as AS/400 and DB2.

A Sybase product that lets PC applications become clients of Adaptive Server
or Open Server. See alsbient, Open Server.

An index that stores key values and pointers to data. Comparel uwéttered
index.

SeeOpen Database Connectivity.
SeeOpen Data Services.

The CIS functionality of ASE has incorporated the functionality of
OmniConnect and is referred to as ASE/CIS. S8&/CIS.

A Sybase product that provides customer applications, third-party products,
and other Sybase products with the interfaces required to communicate with
Open Server and Open Server applications.

A Sybase product that provides capability for the mainframe to act as a client
to LAN-based resources.

A product that provides a framework for creating server applications that
respond to DB-Library clients. See al38-Library.

A Microsoft API that allows access to both relational and nonrelational
databases.

155

Glossary

Open Server

Open ServerConnect
parameter

Partner Certification
Reports

precision

precision minus
scale

primary database

property

protocol

Registry

relational operators
relops

remote procedure
call

remote systems
management

request

rollback

156

A Sybase product that provides the tools and interfaces required to create a
custom server.

A Sybase product that provides capability for programmatic access to
mainframe data.

A variable with a constant value for a specified application that can denote the
application. Compare with property.

Sybase publications that certify third-party or Sybase products to work with
other Sybase products.

The maximum number of digitsthat can be represented in adecimal, numeric,
or float column.

The number of digits to the left of the decimal point.
In transfer processing, the database accessed by the access servicein atransfer
statement. Compare with secondary database.

A setting for aserver or servicethat defines characteristics, such ashow events
are logged or how datatypes are converted. Compare with parameter.

A set of rulesthat governs the behavior of the computers communicating on a
network.

The part of the Windows NT operating system that holds configuration
information for a particular machine.

Operators supported in search conditions.
Seerelational operators.

A stored procedure executed on a different server from the one onto which a
user islogged or on which theinitiating application resides.

A feature that allows a System Administrator to manage multiple
DirectConnect Servers and multiple services from aclient.

One or more database operations an application sends as aunit to the database.
During arequest, the application gives up control to the DBM S and waitsfor a
response. See also commit, rollback, and unit of work.

An instruction to a database not to implement the changes requested in a unit
of work and to return to the pretransaction state. See also transaction and
unit of work. Compare with commit.

Glossary

RPC

scale

secondary
connection

secondary database

server

server process ID

service

service library

service name
redirection

service name
redirection file

service name
resolution

SNRF

SPID

SQL

SQL descriptor area

SQL stored
procedure

SQLDA

Seeremote procedure call.

The maximum number of digits that can be stored to the right of the decimal
point by a numeric or decimal datatype.

The connection specified in the transfer statement. It represents anything that
can be accessed using Open ClientConnect, such as Adaptive Server or another
access service.

In transfer processing, the supported database that is specified in the transfer
statement. Compare with primary database.

A functional unit that provides shared services to clients over a network. See
also client/server. Compare with client.

A positive integer that uniquely identifies a client connection to the server.

A functionality available to DirectConnect applications. It is the pairing of a
service library and a set of specific configuration properties.

A set of configuration properties that determines service functionality.
Examples of servicelibraries include access service libraries and
administrative service libraries. See also access service library and
administrative service library.

A type of service name resolution that allows a System Administrator to map
alternative connections to services. See also service name resolution.
Comparewith direct resolution.

The default name of the file used for the service name redirection feature. See
also service name redirection.

The DirectConnect Server mapping of an incoming service name to an actual
service. See dso direct resolution, service name redirection.

See service name redirection file.

Seeserver process ID.

See structured query language.

A set of variables used in the processing of SQL statements.

A single SQL statement that is statically bound to the database. See also
stored procedures.

See SQL descriptor area.

157

Glossary

sgledit

sql.ini

statement

static SQL

stored procedures

structured query
language

Sybase SQL Server

System
Administrator

system stored
procedure

table

Tabular Data Stream

target

target database

TDS

transaction

158

A utility for creating and editing sql.ini files and file entries.

The interfaces file containing definitions for each DirectConnect Server to
which aworkstation can connect. See also interfaces file.

A single SQL operation, such asselect, update, or delete.

SQL statements that are embedded within a program and prepared before the
program runs. The statement itself does not change, although values of host
variables specified by the statement can change. Compare withdynamic
SQL.

A collection of SQL statements and optional control-of-flow statements stored
under aparticular name. Seealso Catalog Stored Procedure, SQL stored
procedure, and system stored procedure.

An IBM industry-standard language for processing datain arelational
database.

See Adaptive Server.

Theuser in charge of server system administration. For DirectConnect, the user
responsible for installing and maintaining DirectConnect Servers and
DirectConnect Service Libraries.

A Sybase-supplied store procedure that returns information about the access
service and the target database. See dl'so stored procedures.

An array of data or a named data object that contains a specific number of
unordered rows. Eachiteminarow can beidentified unambiguously by means
of one or more arguments.

An application-level protocol that Sybase clients and servers use to
communicate.

A system, program, or device that interprets and replies to requests received
from a source.

The database to which DirectConnect transfers data or performs operations on
specific data.

See Tabular Data Stream.

An exchange between a program on alocal system and a program on aremote
system that accomplishes a particular action or result.

Glossary

Transact-SQL

transfer

trigger

T-SQL

unit of work

view

wildcard

A Sybase enhanced version of the SQL database |language used to
communicate with Adaptive Server.

A DirectConnect feature that allows users to move data or copies of datafrom
one database to another. See also bulk copy transfer and destination-
template transfer.

A form of stored procedure that automatically executes when a user issues a
change statement to a specified table.

See Transact-SQL.

One or more database operations grouped under acommit or rollback. A unit of
work ends when an application commits or rolls back a series of requests, or
when the application terminates. See also commit, rollback, and
transaction.

An aternative representation of data from one or more tables. A view can
include all or some of the columns contained in the table or tables on which it
is defined.

A specia character that represents arange of charactersin a search pattern.

159

Glossary

160

Index

A

Abends, ASRA 58, 60
Access Service Library, processing RSPs
detailed information 8
overview 7
ampKEY 1 keyword variable 106
ampKEY 2 keyword varigble 106, 107
ampKEY 3 keyword variable 106
ampVARNAME keyword variable 49
ampY ESSTATUSMSG keyword variable 108
AMST command 47
Applicationplan 17
accessing DB2 data 41
authorization to execute 17
ASCl|-formatted data 54
ASRA abends
and OPENPIPE command 60
and PUTPIPE command 59
Assembler
SPAREAA definition 139
supported programming language 1
using RSP commands 61
Authority, EXECUTE 39

B

BIN format
binary data 55
overview 21
specifying 136
Binary data
inBIN format 21, 55, 136
inMIX format 30
transferring datato SQL Server 55
bind command 66
Buffer, request sizelimit 55
Building blocks for RSP/ICSA 48

C

C
SPAREAX definition 141
SQLDA sample 148
supported programming language 1
using RSP commands 61
CALL command 22
Carriagereturn 51
CECI command 46
Changes, coding 13
CHAR FIXED LENGTH datatype 147
CHAR LONG VARIABLE datatype 147
CHAR VARIABLE LENG datatype 147
Choosing asample RSP~ 33
CICSs
CALL command 22
CECIl command 46
LINK command 9, 11, 22, 57
NEWCOPY command 42
RETURN command 7,9, 11
SYNCPOINT command 63, 67
SYNCPOINT WITH ROLLBACK command
using COBOL Il in 43
viewing storage queues 46
Clause, WITH DATA 95
Client applications
and COMMIT/ROLLBACK 25
design considerations 18
Client information exchange 11
Client processing
and keyword varigbles 105
and variabletext 123
RSP3C sample RSP 94
CLOSPIPE command 62
CcOBOL 11
COPY definition 91
keyword variable sample code 109
SPAREAC definition 139
SQLDA sample 148

67

161

Index

supported programming language 1
usinginCICS 43
using RSP commands 61
Coding changes 13
command 74
Commands
EXECUTE 74
ISQL 106
See also MainframeCONNECT commands 62
See also RSP commands 61
USE PROCEDURE 74
COMMIT command 62
COMMIT statement 63
COMMIT/ROLLBACK management 25
Compiling RSPs
withDB2 40
without DB2 37
Configuration properties
settings 23
SQL 50
Configuration, software options 5
Contacting Sybase Technical Support ~ xi
COPY definition 91
copy statements, SPAREA 138
copying definitions 137
CRI/LF (carriagereturn/linefeed) 51
CREATE TABLE statement 35
CSA requirements 48

D

Data

ASCll-formatted 54
sendingto RSP 54
Dataformat 13

Data pipes

BIN format 136
concurrent input and x09 output 29
DB2format 136
design considerations 19
getting input from 63
information exchange 12
input 20

opening 64

output 21

162

sending output through 66
specifying format 65, 136
specifying input or output 65, 136
STD format 136
Datatransmission format 13
Databases supported 18
Datatype conversion 24
Datatypes. See SQLDA datatypes 146
DATE datatype 147
DB2 access
dynamicSQL 17
staticSQL 17
DB2 data
accessing 41
application plan 41
transferring to other databases 41
DB2errors 58
DB2 format
MODELRSP sample RSP 69
overview 22
specifying 136
DB2 output pipe sample RSP 70
DB2 packages 41
DB2plans 41
DB2 pooled threads 58
DB2-805error 58
DECIMAL datatype 147
Decimal error 59
Definition errors 59
Definitions
CopYy 091
copying SPAREA tothe RSP 137
SQLVAR 147
Delimiters
handling in Direct CONNECT 52
invarigbles 52
describe command 66
Design considerations 17
DFHECI stub routine 43
DG21002 error message 108
DirectConnect
datatype conversion 24
delimiter handling 52
invoking RSPs 50
SQL transformation 24
translating TDS records 19

Index

DirectConnect for DB2/MVS 12
Documentation questions

how to contact Sybase documentation group xv
Dynamic SQL 17

E

Electronic mail
Sybase DirectConnect documentation xv
EMPDATA test datafile 34
EMPFILE VSAM definition 34
EMPREPROJCL 34
EMPTAB createtable 34
error 58
Error handling
and STATUScommand 68
RSP design considerations 23
RSP3C sample RSP 94
SPAREA fields 31
specifying 31
SPRC error messages 57
Errors
DB2 58
DB2-805 58
definition 59
DG21002 108
packed decimal 59
EXEC statement 49
EXECUTE authority 39
EXECUTE command 74
EXECUTE statement 49
ExistingRSPs 13

F

Field descriptions, SPAREA 135
File transfer protocol
contacting Sybase Technica Support with xii
FLOATING-POINT datatype 147
Function keysfor testing 46

G

GETPIPE command 63

H

How to
contact Sybase Professional Services xiii
contact Sybase Technical Support xi
order additional copies of documentation xv
submit documentation questions ~ xv

IDMS 2,18
IMS 2,18
Information exchange
datapipes 12
SPAREA 11
Input datarequirements 55
Input pipes
considerationsfor using 28
overview 20
Input, for RSP8C sample RSP 124
Integrated Exchange Format 13
Invoking from client, MODELRSP sample RSP 73
Invoking RSPs
through DirectConnect 50
through TRS 53
ISQL command 106
ISQL.EXE file 106
IXF 13

J

JCL, EMPREPRO 34

K

Keyword variables
ampKEY1 106
ampKEY2 106, 107

163

Index

ampKEY3 106
ampSTATUSMSG 108
anpVARNAME 49
quotation marksin 51
RSPAC sample RSP 105
sample code fragment 109
sample program 109
using 26

L

LARGE INTEGER datatype 147
LF (linefeed) 51
Limits, request buffer size 55
Linefeed 51
LINK command
invoking RSPs 9, 11, 57
linking to other programs 22
Linking to other programs 22
Listing of program RSPs 34
LVARCHAR definition error 59

M

MainframeConnect commands
AMST 47
SPTEST 5,46
STATUS 31
MainframeConnect for DB2
configuration property settings
errorsrelatedto RSPs 57
setup 43
system requirements 12
MESSAGE command
description 64
exchanging information 64
useinwriting RSPs 36

with USING SPAREA command 71

Migration considerations
coding changes 13
existing RSP 13
from TSQL modes 53
new dataformat 13

MIX format

164

binary datain 30
MODELRSP sample RSP 34
content 69

description 69
invoking fromclient 73
overview 16
samplecode 74

Modes

PASSTHROUGH 49, 55

and USE PROCEDURE command

74
SYBASE 49,74
TSQL 53
TSQLO 49
TSQLL 49
TSQL2 49

MVS, setup 42

N

NEWCOPY command 42

O

Open ServerConnect
bind command 66
describecommand 66
system requirements 12
OPENPIPE command
and RSP return code 31
and RSP3C sample RSP 92, 93
ASRA abends 60
description 64
Options
WITH BINARY DATA 55
WITH DATA 54
Options, software configuration 5
Ordering additional copies of documentation xv
Output pipes
and STATUScommand 68
considerationsfor using 28
overview 21
Output, for RSP8C sample RSP 125

Index

P

Packages, DB2 41
Packed decimal error 59
PARTNO variable 35
PARTSTAB createtable 35
PARTSTAB member 35
PASSTHROUGH mode 74
input datarequirements 55
invoking RSPs 49
PCSQL.SAMPLE_PARTStable 35
PL/I
SPAREAP definition 140
supported programming language 1
using RSP commands 61

Plans
application 17,41
DB2 41

Pooled threads 58
precompiler program 39
Programming languages
Assembler 1, 61, 139
C 1,61,141,148
COBOL Il 1,43,61,91, 109, 139, 148
PL/l 1,61, 140
supported 1
Programming tasks, summary of 14
Programs
precompiler 39
PUTPIPE command
and RSP3C sample RSP 92, 94
ASRA abend 58, 59
description 66
in definition error 59

Q

Quotation marksin keyword variables 51

R

Remote Procedure Call 7
Renamethe sample RSP 35
Request buffer sizelimits 55
Requirements

CSA 48
inputdata 55
RSP 48
See also System requirements 51
RETURN command 7,9, 11
Returning results, RSP3C sample RSP 95
Reviewing asample RSP 16
ROLLBACK command 25
ROLLBACK statement 67
RPC 7
RPDONE command 67
RPSETUP command 68
RSP
commands 61
compiling 37, 39, 40
copying SPAREA definitions 137
datapipes 28
DB2 packages 41
DB2plans 41
design considerations 17
error handling 23, 31
existing and migration considerations 13
information exchange 11
linking to other programs 22
MainframeConnect for DB2 errorsrelatedto 57
messages 68
overview 1
processing through Access Service Library 7, 8
processing through TRS 5, 6
requirements 48
returncode 136
sending a special error code 136
sending datato 54
sending variables 136
specifying dataformat 136
stubroutines 42
summary of programming tasks 14
supported environments 12
system requirements 12
transferring datato SQL Server 23
troubleshooting 57
uses 2
with keyword variables 26
writing. See Writing RSPs 35
RSP commands
CLOSPIPE 62

165

Index

COMMIT 62
description 61
GETPIPE 63
MESSAGE 36,64, 71

OPENPIPE 31, 60, 64, 92, 93

PUTPIPE 58, 59, 66, 92, 94
RPDONE 67
RPSETUP 68
STATUS 36, 68
using in Assembler 61
usinginC 61
usinginCoOBOL Il 61
usinginPL/l 61

RSP DB2 errors 58

RSP stub routines. See Stub routines 13

RSP/CSA building blocks 48
RSP3C sample RSP 34
client processing 94
error handling 94
overview 16
returning results 95
samplecode 96
using SPAREA 91
RSPAC sample RSP 34
client processing 105
overview 16
samplecode 110
RSPAC.LOG output file 106
RSPAC.SQL input file 106
RSP8C sample RSP 34
client processing 123
overview 16
samplecode 125
Runtime overhead 17

S

SAMPO1A sample RSP
SAMPO1C sample RSP
SAMPO2A sample RSP
SAMPO2C sample RSP
SAMPO3A sample RSP
SAMPO3C sample RSP
SAMPO4A sample RSP
SAMPO4C sample RSP

RRRERRRR

166

Sample code

keyword variablesin COBOL Il 109
MODELRSP 74

RSP3C 96

RSPAC 110

RSP8C 125

with keyword varigbles 109
Sample RSPs

lising 34

MODELRSP 16, 69, 73
RSP3C 16,91, 94

RSPAC 16, 105

RSP8C 16,123

SAMP02C 48
Sending datato RSPs 54
Setup

DB2 packages 41
MainframeConnect for DB2 43
MVS 42
SMALL INTEGER datatype 147
Software

configuration options 5
SPAREA

copy statements 138

error handling fields 31

field description 135
information exchange 11
passing argumentsto 7,9, 11
SPAREAA Assembler definition 139
SPAREAC COBOL Il definition 139
SPAREAP PL/I definition 140
SPAREAX C definition 141
SPCODE field 136
SPFORMAT field 65, 92, 136
SPFROM field 66, 93, 94, 136
SPHEADER field 135
SPINTOfield 63, 93, 136
SPMAXLEN field 65, 92, 137
SPMODE field 62, 65, 92, 136
SPMSG field 64, 70, 94, 137
SPPREFIX field 137
SPRCfield 23, 70, 94, 108, 136
SPRECLEN field 63, 66, 92, 137
SPRESRVED field 135
SPSQLDA field 22, 66, 136
SPSTATUSfield 64, 68, 70, 94, 135

Index

SPTRCOPT field 135
SPVARLEN field 137
SPVARTAB field 27,137
SPVARTXT field 28, 136
Sybase-provided definitions 137
using with RSP3C sample RSP 91
SPAREAP communication area 34
SPAREAX communication area 34
SPCODE field 136
Special charactersin variables 52
SPFORMAT field
and RSP3C sampleRSP 92
description 136
with OPENPIPE command 65
SPFROM field
and RSP3C sample RSP 94
description 136
with PUTPIPE command 66
SPHEADERfield 135
SPINTO field
and RSP3C sample RSP 93
description 136
with GETPIPE command 63
SPMAXLEN field
and RSP3C sample RSP 92
description 137
with OPENPIPE command 65
SPMODE field
and RSP3C sample RSP 92
description 136
with CLOSPIPE command 62
with OPENPIPE command 65
SPMSG field
and RSP3C sampleRSP 94
description 137
using 70
with MESSAGE command 64
SPPREFIX field 137
SPRC field
and error handling 23
and RSP3C sample RSP 94
and RSPAC sample RSP 108
description 136
using 70
SPRECLEN field
and RSP3C sample RSP 92

description 137

with PUTPIPE command 63, 66
SPRESRVED field 135
SPSQLDA field

description 136

using with output pipes 22

with PUTPIPE command 66
SPSTATUSfield

and RSP3C sampleRSP 94

description 135

using 70

with MESSAGE command 64

with STATUS command 68
SPTEST command 46

software configuration option 5
SPTRCOPT field

description 135
SPVARLEN field 137
SPVARTARB field

description 137

using 27
SPVARTXT field

description 136

using 28
SQL

COMMIT statement 63

dynamic 17

ROLLBACK statement 67

SQLLEN field 59

static 17
SQL configuration property 50
SQL Server, transferring datato 23
SQL transformation 24
SQLD variable 146

SQLDA
and output pipes 22
Csample 148
COBOL Il sample 148
content 146

sample definition 69
SQLD variable 146
SQLDABC variable 146
SQLDAID variable 146
SQLDATA field 146
SQLIND field 146
SQLLEN field 146

167

Index

SQLN variable 146

SQLNAME field 146

SQLNAMEL fidld 146

SQLTYPE field 146

SQLVARfield 146

using 72,145

variables 146

writing 147
SQLDA datatypes

CHARFIXED LENGTH 147

CHARVARIABLE LENG 147

DATE 147

DECIMAL 147

FLOATING-POINT 147

LARGE INTEGER 147

SMALL INTEGER 147

TIME 147

TIMESTAMP 147
SQLDA fields 146
SQLDABC variable 146
SQLDAID variable 146
SQLDATA field 146
SQLDAX sample SQLDA 34
SQLIND field 146
SQLLEN field

description 146

packed decimal error 59
SQLN variable 146
SQLNAME field 146
SQLNAMEL fidld 146
SQLTYPE field 146
SQLVAR definition 147
SQLVARfield 146
Statements

CREATETABLE 35

EXEC 49

EXECUTE 49

SPAREA copy 138

USE PROCEDURE 49, 95
StaticSQL 17
STATUS command

and open output pipes 68

description 68

for error occurrence 31

useinwriting RSPs 36
STD format

168

overview 20
sample program 91
specifying 136

Stored Procedure Communication Area. See SPAREA

7,911

Stored Procedure Test window 47, 48
Stub routines

DFHECI 43

link-editing 42

migration considerations 13
Summary of programming tasks 14
SYBASE mode

and EXECUTE command 74

invoking RSPs 49
Sybase Professional Services

how to contact xiii
SYNCPOINT command 63, 67
SYNCPOINT WITH ROLLBACK command
System requirements

DirectConnect for DB2/IMVS 12

MainframeConnect for DB2 12

Open ServerConnect 12

T

Tasks, programming 14
TDS

overview 13

records 19
Technical Support

how to contact xi
Test results for SAMP02C sample RSP 48
Testing

sampleRSP 35

using function keys 46
Text variables 26
Threads, pooled 58
TIME datatype 147
TIMESTAMP datatype 147
Traces

andTSQ 135
Troubleshooting 58
TRS

invoking RSPs 53

processing RSPs 5, 6

67

Index

TSQ
and traces 135
TSQL modes
migrating from 53
SQL transformation 24
TSQL settings
and EXECUTE 74
and USE PROCEDURE command 74
TSQLOmode 49
TSQL1 mode 49
TSQL2 mode 49

U

USE PROCEDURE command 74
USE PROCEDURE statement 49, 95

Usingfiletransfer protocol to contact Sybase Technical

Support xii

Vv

VARCHAR definition error 59
Variable subgtitution table 27
Variable text
and client processing 123
RSP8C sample RSP 123
VSAM 2,18

W

Window, Stored Procedure Test 47, 48
WITH BINARY DATA option 55
WITH DATA clause 95
WITH DATA option 54
WritingaSQLDA 147
Writing RSPs
choosingasample 33
renaming the sample 35
reviewingasample 16
testing the sample 35

169

Index

170

